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Introduction 
Unibalance is a stand alone program that models preferences / values / utilities of a group 
of experts or stakeholders. It takes paired comparison input from E experts / stakeholders 
and calculates scale values for the N objects compared according to three models: 

1) Bradley Terry /Negative Exponential Life (NEL) model 
2) Thurstone models B and C 
3) Probabilistic Inversion Models based in Iterative Proportional Fitting (IPF) and 

PARFUM 
 
Although UNIBALANCE stands alone, it can link to EXCEL, to the graphics package 
UNIGRAPH and the sensitivity analysis program UNISENS. 
 
Note: 
It is recommended that each expert/stakeholder express strict preference between each 
pair of items. Equality of preference, and absence of preference may be used and 
processed; however, coefficients of consistence, agreement, and concordance will not 
work, nor will statistical tests based on these coefficients. The model processing will 
work. 
 

Data description, getting started 
Each of E experts compare N objects pairwise, indicating which of each pair they prefer.  
The features discussed in this section are independent of model type, and reflect data 
entry and preliminary analysis.  UNIBALANCE files have the extension *.XML. The 
demo file Policies.xml supplied with the program is used to illustrate features. 
 



On start up, the basic menu structure is shown on the left panel: 
 

 
 
 

1) Assign the project a name and enter an appropriate description. 
2) Enter the item names by Highlighting Items. If true values for some items are 

know, they may be entered as well. These can be used to calibrate the Bradley 
Terry and Thurstone models. When names are entered, a “+” appears by the Item 
menu, indicating that this can be expanded. 

3) Enter the expert names and any description to be used in the report, by 
highlighting Experts. A “+” appears by the Expert and Matrices fields, indicating 
that these can be expanded. 

4) Expand the Matrices field. Double click on an expert’s matrix. For each cell 
(row,col), enter 

a. > if the row item is strictly preferred to the column item 
b. < if the column item is strictly preferred to the row item 
c. = if the preference between row and column items is equal 
d.    (empty) if the preference is not filled in. 

“=” and “  “ should be avoided if possible. The screenshot below shows the matrix of 
expert 15,  Ronny: 



 
 

The p-value at which we would reject the hypothesis that Ronny filled in his preferences 
at random, is 0.2080, too high for rejection. This test is based on the number of circular 
triads (see glossary below) which one would expect if the preferences were indeed at 
random. The coefficient of consistence measures the degree of consistency (that is, 
absence of circular triads, see glossary below). The value 1 is perfectly consistent, and 
zero is maximally inconsistent. It must be stressed that these measures are derived under 
the assumption that all preferences are strict. When equal or void preferences are 
admitted, they should be viewed as indicative.  

 
 

Brief model descriptions 
 
When the data has been entered, the models can be analyzed.  
 
Bradley Terry 
It is assumed that each item i has a value V(i) to be estimated from the paired comparison 
data. The percentage of experts %(i,j) who prefer item i to item j, estimates of the 
conditional probability of drawing an expert from the population of experts who prefers i 
to j, given that (s)he must choose between i and j.   It is assumed that this probability is 
equal to V(i)/[V(i)+V(j)].  The model is solved by maximum likelihood. Assuming that 
each expert for each comparison is drawn independently from the expert population, the 
lielihood of the data is 
 



Πall pairs (i,j)  [V(i)/(V(i)+V(j))]E×%(ij) × [V(j)/(V(i)+V(j))]E×%(j,i). 
 
The circumstance that each expert assess all pairs of items approximates the will 
approximately satisfy this assumption as the number of experts gets large. Values are 
sought which make the above expression as large as possible. Evidently, a solution 
V(1)...V(N) is determined only up to a positive multiplicative constant. If one of the V(i) 
is known, the other values are uniquely determined. 
 
Negative exponential lifetime model 
      
This model is computationally identical to the Bradely Terry model, though the 
interpretation is different. It is assumed that the item i is a component with exponential 
life distribution, and with failure rate λi, i = 1,...N.  For all pairs of objects, each subject is 
asked to determine which component has the greater probability of failing per unit time. 
In answering each such question, it is assumed that each subject performs a "mental 
experiment", observing which of two independent exponential components with failure 
rates λi, λj fails first. Under these assumptions the probability pij that i fails before j is 
given by: 
 

λj 
pij =     . 

λi + λj 
 
The percentage of experts preferring i to j is taken to estimate pij. The above system of  
equations is overdetermined, and the principle of maximal likelihood may be used to 
solve for the λi's. Multiplying each failure rate in the above equation by a constant would 
leave the equations invariant, hence the resulting λi's are determined only up to a 
constant. If one of the λi is known,  (reference value) the others may be determined from  
the maximum likelihood solution.  
 
 
Thurstone models     
 
It is assumed that a subject comparing two objects i and j effectively samples two normal 
random variables Xi and Xj with means and standard deviations µi, σi, µj, σj. Item i is 
preferred to j if and only if Xi - Xj > 0. It is further assumed that all experts sample the 
same normal variables.  The model is sometimes explained as follows: each item i has a 
“true value” µi; each expert perceives this value with an “error” σi.  
 
The variable Xij = Xi - Xj is normal with mean mij and standard deviation sij:  
 
 

µij = µi - µj 
 

σij =  √(σi
2  + σj

2  - 2ρijσiσj) 
 



 
where ρij is the correlation between Xi and Xj.  The percentage %(ij) of experts preferring 
i to j estimates the probability that Xij is positive, or equivalently, that  
 

(Xij- µij)/ σij > -µij/σij. 
 
Letting  Φ denote the cumulative standard normal distribution function, and 
let Φ-1 denote its inverse. We derive Thurstone's law of comparative judgments: 
 
 
 Φ-1(%(ij)) ~  µij/σij = (µi - µj)/σij. 
 
 
Note that the law of comparative judgments is invariant under positive affine 
transformations of all variables. That is, if for each i, Xi is replaced by a positive affine 
transform Xi' = aXi + b, a > 0, then µij'/σij' = µij/σij. This means that paired comparison 
data can determine the values of the µi only up to a positive affine transformation, and the 
values of σi only up to a linear transformation. 
 
Considered as a system of equations, the law of comparative judgments  contains more 
unknowns than knowns, and hence cannot be solved. However, under various ssumptions 
it is possible to determine the means mi up to a positive affine transformation, i.e. up to a 
choice of zero and unit.  
 
Thurstone C          
 
In this model it is assumed that σij = σ (i.e. does not depend on i and j). For all practical 
purposes this equivalent to assuming that ρij = 0 and σi = σ/√2. Filling these into 
Thurstone's law, and recalling that the Xi are determined only up to an affine 
transformation, Thurstone's law becomes simply: 
 
       µi - µj = Φ-1(%(ij)) 
 
A least squares routine is used to determine the mi up to a positive affine transformation. 
 
Thurstone B          
 
Thurstone’s model B is computed and displayed under “Results” but confidence intervals 
for this model are not supported. 
 
In this model it is assumed that for all i ≠ j.  
 
       ρij = ρ, 
       |σi - σj| << σi. 
 
Under these conditions we can derive 



 
µi - µj = Φ-1(%(ij))×√(1-ρ) ×(σi + σj) / √2. 
 
 
Since the units of the Xi are arbitrary, we can write this as 
 
µi - µj = Φ-1(%(ij))(σi + σj). 
 
which is equivalent to assuming ρij = -1 in Thurstones law of comparative judgments.                                            
With N objects, there are N CHOOSE 2 such equations with 2N unknowns. For N > 5 
there are more equations than unknowns. We find a least squares solution for the mi, 
unique up to a positive affine transformation.   
 
Confidence  intervals            
 
Confidence intervals are simulated for the Thurstone C linear and the NEL models. The  
procedure is roughly as follows:  
 
1. The model is solved using the expert data and reference values. This yields values for 
the model parameters mi (Thurstone C) or λi (NEL). 
 
2. Expert responses are simulated by appropriately sampling distributions with the model 
parameter values emerging from step 1.  
 
3. The model is solved again, using the expert preference data emerging from step 2, and 
the initial reference values. The results are stored. 
 
4. Steps 2 and 3 are repeated 500 times for each model and 90% central confidence bands 
are extracted and displayed. 
 
 
Probabilistic Inversion 
 
Probabilistic inversion denotes the operation of inverting a function at a (set of) 
distributions, and it constitutes a different approach to utility quantification than the 
Bradley Terry or Thurstone models.  This model involves one very mild assumption, 
which, in combination with a choice of starting “non-informative” starting distribution, 
yields an estimate of the joint distribution of utility scores over the population of experts. 
 
Assumption:

 

 There are two alternatives, not necessarily included in the set of items, for 
which all experts agree that one of these is strictly preferred to the other and that all 
items are between these two in preference.  

That is, we can find two alternatives, say “very very good” and “very very bad” which 
everyone agrees are strictly better and worse respectively, than the items of study.  
Decision theory teaches that all utility functions are unique up to a positive affine 



transformation, that is, up to a choice of 0 and unit. With the above assumption, we may 
assume that all experts’ utilities are normalized to the [0, 1] interval.  
 
Starting distribution

 

: The starting distribution is a sample from product uniform 
distribution [0,1]N. 

The size of the sample for the starting distributions is controlled under the “Options” field 
for probabilistic inversion. With N items, we start by assuming that the population of 
experts’ utilities are independently uniformly distributed on the [0, 1] interval for each 
item.   
 
We now want to ‘minimally perturb’ the starting distribution so as to comply with the 
expert preferences. That is if U1,…UN is a vector of utilities drawn from the perturbed 
distribution, then for each i, j, the following constraint is satisfied: 
 

the probability Ui > Uj = percentage %(i,j) of experts who preferred i to j. 
 
Two algorithms are available to accomplish this. Iterative Proportional Fitting (IPF) 
finds the maximum likelihood distribution satisfying the expert preference constraints, 
relative to the starting distribution IF the problem is feasible.  The problem may not be 
feasible; that is, there may be no distribution on [0, 1]N satisfying the above constraint. In 
this case IPF does not converge. 
 
Infeasibility is rather common in this context, as there are a very large number of 
constraints. In such cases we seek a distribution which is ‘minimally infeasible’. This can 
be found with the PARFUM algorithm. If the problem is feasible, the PARFUM 
algorithm returns a solution which is close to, but not equal to, the IPF solution. If the 
problem is infeasible PARFUM converges to a distribution which ‘distributes the pain’ 
equally over the constraints, in an appropriate information sense. Parfum takes much 
longer to converge. 
 
For the 6 policies case, the “proportion matrix” showing the target preference 
probabilities (black) and the preference probabilities realized by IPF (gray) after 100 
iterations.  They are identical up to 4 decimals. This problem is feasible. 
 



 
 
The proportion matrix for PARFUM after 1000 iterations is shown below:  

 
 
There are still substantial differences, the largest of which are highlighted.  5000 
iterations are required to achieve the same accuracy as with 100 IPF iterations.  
 
The correlation matrix for the utilities of the items is shown below for the IPF solution 
(10000 iterations): 



 
Note that these correlations are not identical. If we draw a ‘random expert’ the utility 
values for items 2 and 6 are correlated with 0.2817, whereas the values for items 2 and 1 
are practically uncorrelated. 
 
The results of the various models can be compared from the Results field, as shown 
below: 
 

 
For the Thurstone and PI models, the option of rescaling the utility values so that the  
highest is 1.000 and the lowest is 0 is available. These are called standardized scores, and 



they facilitate model comparisons. Standardization is not meaningful for the Bradley 
Terry model, as these are not measured on an affine scale, but on a ratio scale.  
 
From the “Tools  generate report” menu option, a report can be generated with all input 
and output. 
 
 

Issues and Features 
 
UNIBALANCE has a few warts and blemishes, which however are easily worked around 
 

1. Error messages: these are placed on a balk which is only visible if run full screen 
2. file management: the first time UNIBALANCE is run, it creates a subdirectory 

SIMULATION in the directory where UNIBALANCE lives.  That is by default 
the locus of all output files. Results are stored in files named file.*. file.sam is an 
ascii file read by UNIGRAPH and UNISENS. File.prb is a list of probabilities for 
resampling file.sam.  Normally you have no use fot this file. File.txt is a space 
separated ascii file which you can open with EXCEL.  

3. UNIGRAPH is called by UNIBALANCE after the file location has been entered 
in the OPTIONS field. However, you will have to open file.sam manually from 
UNIGRAPH. Alternatively, open UNIGRAPH  directly, not via UNIBALANCE, 
and it will remember the last visited directory. 

4. Entering Data: items and experts cannot be deleted once entered. If you enter 
items and forget to hit “OK” you don’t see the number if items indicated. If you 
go back and re-enter the items, the old ones re-appear as “item 1,..” and cant be 
eliminated. Start over. Similar remarks hold for experts. 

5. Preference matrix in Summary field: the p-value refers to the coefficient of 
agreement. These coefficients should only apply when all preferences are strict. 

6. Can’t open file: if UNIGRAPH is open, you cannot write another file.sam. 
7. Tolerance: stops the iterative algorithms when a prescribed absolute difference 

between successive iterates is achieved. When tolerance = 0, a non convergence 
message will always appear. Tolerance is given in multiples of 10-15, but only 7 
digits are shown in the corresponding fenster. 

 
Glossary of Terms 
 
Circular Triads  
A circular triad obtains in the preferences of an expert for items i,j,k if  i > j, j > k, and k 
> i.  Too many circular triads in an expert’s data is an indication that his preferences are 
being “drawn at random”, or that the items are indistinguishable. Simple computations 
and tests are available when all preferences are strict. Letting ai denote the number of 
times that item i is (strictly) preferred to some other item, the number of circular triads in 
the response data for a given expert is  
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If the number of items T < 7, we obtain the p-value of the hypothesis that the expert 
specifies his preference randomly from the tables (e.g. Table10C from Kendall (1975)). 
For more than 7 items, Kendall showed that the transformed number of circular triads is 
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Based on these equations we are able to test the hypothesis that the expert specified his 
preferences randomly. We would like to reject this hypothesis. If the p value is above, 
say, 0.05, then the ‘at-random’ hypothesis would not be rejected. In this case we could 
consider dropping the expert.  
 

Coefficient of consistence 
We can also introduce the coefficient of consistence ζ. It reaches the maximum value 1 if 
there are no inconsistencies in the data, which implies that the output of comparison 
process might be expressed as a ranking. The value decreases if the number of circular 
triads increases. The lowest value of ζ is 0. 
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Coefficient of agreement            
Let E be the number of experts, N the number of object is to be compared, and a(ij) the 
number of experts who prefer object i to j. Define "A CHOOSE B" 
as the binomial coefficient A!/(B!(A-B)!), and define 
 
        ∆ = Σ i≠j (a(ij) CHOOSE 2) 
 



The coefficient of agreement u is defined as 
 
                             2∆ 
u =    -  1. 
     (E CHOOSE 2) * (N CHOOSE 2) 
 
u attains its maximal value, 1, when there is complete agreement. u can be used to test the  
hypothesis that all agreements are due to chance (see Experts in Uncertainty chapter 14). 
The coefficient of agreement is not diminished for lack of consistency in the experts; if 
there are 3 items and all say 1 > 2 > 3 > 1, then u = 1. 
 
Coefficient of concordance          
Let R(i,e) denote the rank of object i for expert e, where the rank is determined by the 
number of times e prefers i to some other object. Define 
 
           R(i) = Σe=1..ER(i,e) 
 
S  =  Σi=1..N[(R(i) - (1/N) × Σi=1..N R(j)]2 
 
The coefficient of concordance w is defined as 
 
                           S 
      w  =    . 
               E2*(N3-N)/12 
 
 
w attains its maximal value, 1, when there is complete agreement, and can be used to test 
the hypothesis that all agreements are due to chance  (see Experts in Uncertainty,  chapter 
14). If for three items, all experts say 1 > 2 > 3 > 1, then S = 0. 
 
Iterative proportional fitting 
This algorithm finds a distribution which is minimally informative (and thus maximum 
likely) relative to a starting distribution and which satisfies finitely many marginal 
constraints. The algorithm works by cyclically adapting the starting distribution to each 
constraint. If a distribution satisfying the constraints exists, which is absolutely 
continuous with respect to the starting distribution, then IPF converges rapidly. 
 
PARFUM 
The PARFUM algorithm is a variant on the IPF algorithm. Instead of cycling through the 
constraints, a starting distribution is adapted to each constraint individually, and these 
distributions are then averaged to form the next iteration. PARFUM always converges, 
and if the problem is feasible, it converges to a solution which is close to, though not 
identical with, the IPF solution. 
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