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Abstract: In this paper we construct a copula, that is, a distribution with uniform marginals.
This copula is continuous and can realize any correlation value in (−1, 1). It has linear regression
and has the properties that partial correlation is equal to constant conditional correlation. This
later property is important in Monte Carlo simulations. The new copula can be used in graphi-
cal models specifying dependence in high dimensional distributions such as Markov trees and vines.
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1 Introduction

In modelling high dimensional distributions the problems encountered include

(a) Determining whether a partially specified matrix can be extended to a correlation matrix;

(b) Finding a convenient way of representing correlation matrices;

(c) Choosing an unique joint distribution to realize a correlation matrix.

(a) is so called matrix completion which is receiving attention at the moment (Laurent [9]). To
tackle these problems the graphical models called vines were introduced by (Cooke [3]). A vine
is a set of trees such that the edges of the tree Ti are nodes of the tree Ti+1 and all trees have
the maximum number of edges. A vine is regular if two edges of Ti are joined by an edge of Ti+1

only if these edges share a common node in Ti. Partial correlations, defined in (Yule and Kendall
[13]), can be assigned to the edges of the regular vine such that conditioning and conditioned
sets of the vine and partial correlations are equal ( for the details we refer readers to Bedford
and Cooke [1]). There are

(
n
2

)
edges in the regular vine and there is a bijection from (−1, 1)(

n
2)

to the set of full rank correlation matrices ([1]). Using regular vines with partial correlations
we thus determine the entire correlation matrix in convenient way (b). Using regular vines with
conditional correlations we can determine a convenient sampling routines (c). In general, however,
partial and conditional correlations are not equal. For popular copulas such as the diagonal band
(Cooke and Waij [4]) and the minimum information copulae with given correlation (Meeuwissen
and Bedford [10]), when conditional rank correlation is held constant, the partial correlation and
mean conditional product moment correlation are approximately equal (Kurowicka and Cooke
[7]). This approximation, however, deteriorates as the correlations become more extreme. For
the well known Fréchet copulae the partial and constant conditional correlations are equal but
these copulae are not very useful from the application point of view ([7]). In (Kurowicka and
Cooke [8]) it is shown how regular vines can be applied to the completion problem (a). For other
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copulae and their properties we refer to (Dall’Agilo, Kotz and Salinetti [5]) and (Nelsen [12]). In
this article we present the new copula for which partial and constant conditional correlations are
equal. In constructing this new copula the properties of elliptically contoured and rotationally
invariant random vectors were used (see Harding [2] and Misiewicz [11]). These copula present a
striking companion with copulae previously used in Monte Carlo simulation codes (Unicorn and
PREP/SPOP [6])

This paper is organized as follows. In Section 2 the uniform distribution on the sphere and
its properties is presented. In Section 3 the copula is given. The properties of this function are
shown. In Section 4 after introducing definitions of the partial and conditional correlations the
equality of partial and constant conditional correlations for the new copula is proven. Section 5
contains conclusions.

2 Uniform distribution on the sphere and its properties

Let X = (X1, X2, X3) have the uniform distribution on the sphere with the radius r, S2(r) ⊆ R3

where sphere in Rn is defined as

Sn−1(r) = {x ∈ Rn|
n∑

k=1

x2
k = r2}.

We can see that for every t ∈ [−r, r]

P (X1 < t) = P (X2 < t) = P (X3 < t) =
2π

4πr2

∫ t

−r

√
r2 − x2

√
1 +

[
d

dx

√
r2 − x2

]2
dx

=
1
2

+
t

2r
,

which means that each of the variables X1, X2 and X3 has a uniform distribution on the interval
[−r, r].
Consider now a linear operator A : R3 → R3 represented by the matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Since the random vector X is rotationally invariant, the random vector

W = (W1,W2,W3) = AXT

is elliptically contoured.
Harding proved (see [2]) that every elliptically contoured1 random vector on Rn, n ≥ 2 has

the linear regression property if it has second moment. This means in particular that for every
j 6= k, j, k ∈ {1, 2, 3} there exists ajk such that

E(Wj |Wk) = ajkWk.

The numbers ajk can be calculated directly:

Wj = aj1X1 + aj2X2 + aj3X3.

1 A random vector X = (X1, X2, . . . , Xn) is elliptically contoured if it is pseudo isotropic with a function
c : Rn → [0,∞) defined by an inner product on Rn; i.e there exists a symmetric positive definite n × n matrix Σ
such that

c(ξ)2 =< ξ, Σξ >,∀ξ ∈ Rn.

If Σ = I then the vector X is called rotationally invariant.
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Since E(Xk) = 0, E(XjXk) = 0 for k 6= j and Var(Xk) = 1
2r

∫ r

−r
x2dx = 1

3r2 thus W1,W2,W3

have expectations 0 and

Var(Wj) = E
(
(aj1X1 + aj2X2 + aj3X3)2

)
=

1
3
r2
(
a2

j1 + a2
j2 + a2

j3

)
.

According to Harding’s result the conditional expectation E(Wj |Wk) coincides with the orthogonal
projection of vector Wj onto Wk. Then we can calculate for k 6= j

E(WjWk) = E ((aj1X1 + aj2X2 + aj3X3)(ak1X1 + ak2X2 + ak3X3))

=
1
3
r2(aj1ak1 + aj2ak2 + aj3ak3).

Finally we get

E(Wj |Wk) =
E(WjWk)

VarWk
Wk =

aj1ak1 + aj2ak2 + aj3ak3

a2
k1 + a2

k2 + a2
k3

Wk. (1)

Notice now that random variables W1,W2,W3 have uniform distributions, which with appropriate
choice of A will be uniform distributions on [−r, r]. We use a very helpful property of rotationally
invariant random vectors, namely:

if Y ∈ Rn is rotationally invariant and a ∈ Rn then the distribution of a1Y1 + . . . + anYn is the
same as the distribution of ‖a‖2Y1, where ‖a‖2 is the Euclidean norm of the vector a.

Now we can write the following:

P (Wk < t) = P (ak1X1 + ak2X2 + ak3X3 < t)

= P

(
X1 <

t√
a2

k1 + a2
k2 + a2

k3

)
=

1
2

+
t

2r
√

a2
k1 + a2

k2 + a2
k3

for t ∈ [−r
√

a2
k1 + a2

k2 + a2
k3, r

√
a2

k1 + a2
k2 + a2

k3].
It is enough to assume that for all k = 1, 2, 3

a2
k1 + a2

k2 + a2
k3 = 1 (2)

to have uniform distribution on [−r, r].

3 The elliptical copulae

Taking the projection of the uniform distribution on the sphere S2( 1
2 ) on a plane (X, Y ) we can

construct copulae.
The area of surface given in functional form z = g(x, y) above area D ⊆ R2 can be calculated as:

∫ ∫
D

√
1 +

(
d

dx
g(x, y)

)2

+
(

d

dy
g(x, y)

)2

dxdy. (3)

Using (3) for the sphere with radius 1
2 , hence for function g(x, y) = 2

√
1
4 − x2 − y2, and dividing

by the whole area of surface of S2( 1
2 ), which is equal to π, we obtain∫ ∫

x2+y2< 1
4

1

π
√

1
4 − x2 − y2

dxdy = 1.
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Hence function

f(x, y) =

{
1

π
√

1
4−x2−y2

(x, y) ∈ B

0 (x, y) 6∈ B
(4)

where B = {(x, y)|x2 + y2 < 1
4} is a density function in R2.

Figure 5.1. The density function f .

We can easily check that the function f has uniform marginals.
For x ∈ [− 1

2 , 1
2 ]

fX(x) =
∫ √

1
4−x2

−
√

1
4−x2

1

π
√

1
4 − x2 − y2

dy =
1
π

arcsin
y√

1
4 − x2

∣∣∣∣∣∣
√

1
4−x2

−
√

1
4−x2

= 1.

To construct family of copulae which can represent all correlations ρ ∈ (−1, 1) we consider linear
transformation represented by a matrix

A =

 cos ϕ sinϕ 0
sinϕ cos ϕ 0

0 0 1

 (5)

where

ϕ ∈ (−π

4
,
π

4
).

This transformation satisfies condition (2).
Let (x′, y′, z′) ∈ S2( 1

2 ). Applying transformation (5) we get points (x, y, z) from ellipsoid

x = cos(ϕ)x′ + sin(ϕ)y′

y = sin(ϕ)x′ + cos(ϕ)y′

z = z′.

We now find the equation of this ellipsoid. Since

x′2 + y′2 + z′2 =
1
4

and

x′ =
cos(ϕ)x− sin(ϕ)y

cos(2ϕ)

y′ =
− sin(ϕ)x + cos(ϕ)y

cos(2ϕ)
z′ = z.
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then the ellipsoid is given by

x2 + y2 − 2 sin(2ϕ)xy + (cos2(2ϕ))z2 =
cos2(2ϕ)

4
.

This can be also written as

x2 +
(

y − sin(2ϕ)x
cos(2ϕ)

)2

+ z2 =
1
4
.

For all points from ellipse

x2 +
(

y − sin(2ϕ)x
cos(2ϕ)

)2

<
1
4

density function is given by following formula

fϕ(x, y) =
1

π cos(2ϕ)
1√

1
4 − x2 −

(
y−2 sin(2ϕ)x

cos(2ϕ)

) . (6)

The distribution with density function given by formula (6) has uniform marginals so this is a
copula. This copula depends on parameter ϕ. We will write Cϕ. For two variables joined by
copula Cϕ on [− 1

2 , 1
2 ]2 the following holds:

Proposition 3.1 If X, Y are joined by the copula Cϕ, then

ρXY = sin(2ϕ). (7)

Proof. We get

ρXY =
E(XY )
σXσY

=
E(XE(Y |X))

σ2
X

.

By (1)

E(Y |X) = 2 cos(ϕ) sin(ϕ)X
= sin(2ϕ)X

hence

ρXY =
sin(2ϕ)E(X2)

σ2
X

= sin(2ϕ)

which concludes the proof. 2

We can see that the function f given by (4) and presented on the Figure 5.1 is a density
function of the copula C0. Correlation between variables X and Y joined by the copula C0 is
equal to 0.
It is more convenient to start with the assumption that elliptical copula depends on correlation
ρ ∈ (−1, 1). The parameter ϕ can be recovered as follows

ϕ =
arcsin(ρ)

2
.

We will consider from now on the copula C with given correlation ρ and write Cρ.
The density function of the elliptical copulae with given correlation ρ ∈ (−1, 1) is

fρ(x, y) =


1

π
√

1−ρ2

1√
1
4−

x2+y2−2ρxy

1−ρ2

(x, y) ∈ B

0 (x, y) 6∈ B
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where

B = {(x, y)| x2 +

(
y − ρx√
1− ρ2

)2

<
1
4
}

The figures below show graphs of density function of the copula C with correlation ρ = 0.8
and projection of this density on the plane.

Figure 5.2. A density function of the copula C with correlation ρ = 0.8.

Figure 5.3. Projecting of density function of the copula C with correlation ρ = 0.8 on the plane.

For comparison we present below graphs of the density functions for diagonal band and mini-
mum information copulae with correlation 0.8.

Figure 5.4. The diagonal band distribution with correlation 0.8.
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Figure 5.5. The minimum information distribution with correlation 0.8.

We show now some properties of the copula Cρ.

Theorem 3.1 If X, Y joined by the copula Cρ then

(a) E(Y |X) = ρX,

(b) Var(Y |X) = 1
2 (1− ρ2)

(
1
4 −X2

)
.

Proof. By (1) and (7) the copula Cρ has linear regression with coefficient equal to correlation
hence (a) holds. We verify condition (b)

Var(Y |X) =
∫ ρX+

√
1−ρ2

√
1
4−X2

ρX−
√

1−ρ2
√

1
4−X2

(y − ρX)2
1

π
√

1− ρ2

1√
1
4 −

X2+y2−2ρXy
1−ρ2

dy

=
1

π
√

1− ρ2

∫ ρX+
√

1−ρ2
√

1
4−X2

ρX−
√

1−ρ2
√

1
4−X2

(y − ρX)2

1√
1
4 −X2

1√
1−

(
y−ρX√

1−ρ2
√

1
4−X2

)2

=
1
π

(1− ρ2)(
1
4
−X2)

∫ 1

−1

t2
1√

1− t2
dt

=
1
2
(1− ρ2)(

1
4
−X2)

which concludes the proof. 2

4 Partial and conditional correlations

Let us consider variables Xi with zero mean and standard deviations σi, i = 1, . . . , n. Let the
numbers b12;3,...,n, . . . , b1n;3,...,n−1 minimize

E
(
(X1 − b12;3,...,nX2 − . . .− b1n;2,...,n−1Xn)2

)
;

then the partial correlations are defined as (Yule and Kendall [13]):

ρ12;3,...,n = sgn(b12;3,...,n) (b12;3,...,nb21;3,...,n)
1
2 , etc.
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Partial correlations can be computed from correlations with the following recursive formula:

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;2,...,n−1 · ρ2n;1,3,...,n−1√

1− ρ2
1n;2,...,n−1

√
1− ρ2

2n;1,3,...,n−1

. (8)

The conditional correlation of Z and Y given X

ρY Z|X = ρ(Y |X, Z|X)

is the product moment correlation computed with the conditional distribution given X. In general
this depends on the value of X, but it may be constant.
We are interested in finding the relationship between partial ρY Z;X and conditional correlations
ρZY |X if variables X and Y are joined by the copula CρXY

and X, Z are joined by the copula
CρXZ

.
It is shown in (Kurowicka and Cooke [7]) that the linear regression property leads to equality

of partial and conditional correlations in the case of conditional independence. We present now
some numerical results prepared in Matlab 5.3. We assume variables X and Y are joined by the
copula CρXY

and X, Z are joined by the copula CρXZ
and Y and Z conditionally independent

given X.

Stipulated Computed

ρXY ρXZ ρY Z ρY Z;X

0 0 -7.74e-19 -7.74e-19
0.4 0.8 0.3199 -0.0002
0.2 -0.9 -0.1799 0.0002
-0.8 0.7 -0.5598 0.0005
0.9 -0.9 -0.8097 0.0017

Table 1: Numerical results for conditional independence.

Theorem 4.1 Let X, Y, Z be uniform on [− 1
2 , 1

2 ] and suppose

(a) X, Y are joined by CρXY
,

(b) X, Z are joined by CρXZ
,

(c) ρY Z|X = ρ

then

ρY Z;X = ρ.

Proof. By Theorem 3.1

E(Y |X) = ρXY X,

E(Z|X) = ρXZX.

The partial correlation ρY Z;X can be calculated in the following way

ρZY ;X =
ρZY − ρXY ρXZ√

(1− ρ2
XY )(1− ρ2

XZ)
.
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We also get

ρ = ρY Z|X =
E(Y Z|X)− E(Y |X)E(Z|X)

σY |XσZ|X
=

E(Y Z|X)− ρXY ρXZX2

σY |XσZ|X
.

Hence

E(Y Z|X) = ρσY |XσZ|X + ρXY ρXZX2.

Since

ρZY =
E(E(Y Z|X))

σ2
X

then

ρY Z;X =
ρE(σY |XσZ|X)

σ2
X

√
(1− ρ2

XY )(1− ρ2
XZ)

.

Since by Theorem 3.1

σY |X =

√
1
2
(1− ρ2

XY )(
1
4
−X2), σZ|X =

√
1
2
(1− ρ2

XZ)(
1
4
−X2)

then

ρY Z;X =
ρE
(√

1
2 (1− ρ2

XY )( 1
4 −X2)

√
1
2 (1− ρ2

XY )( 1
4 −X2)

)
σ2

X

√
(1− ρ2

XY )(1− ρ2
XZ)

=
r 1

2E( 1
4 −X2)
σ2

X

=
r 1

2 ( 1
4 −

1
12 )

1
12

= ρ. 2

5 Conclusions

1. Elliptical copulae are continuous and can realize all correlation values ρ ∈ (−1, 1).

2. This copula has linear regression and for variables joined by this copula we showed that
partial and constant conditional correlations are equal.

3. Similar properties characterize normal and Fréchet distribution.

4. Combining elliptical copulae with graphical model called vines, presents attractive way of
representing high dimensional distribution and can be used in direct sampling procedures.
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