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SiSimumulations of rigid fiberslations of rigid fibers
““Fibers in Fibers in WaterlandWaterland””

• Rigid fibers sedimenting due to gravity.
• Model of paper pulp.
• Two things that determine the quality of

the paper
• Orientation of the fibers - strength.
• Distribution of fibers.

• Fibers align in direction of gravity
• Weakens the paper in the other

direction.
• “Clusters” or “flocs” of fibers form.

• Creates uneven thickness and roughness.

800 fibers sedimenting due to gravity (initial
random distribution).

Right plot: showing 40 of these.



OutlineOutline
• Part 1: Mathematical model

• Mathematical modeling
• Stokes equations
• Boundary integral formulation
• Boundary integral equations
• Mathematical model for fiber suspensions:

• Non-local slender body approximation

• Part 2: Numerical simulations of fiber suspensions
• Introduction to fiber suspensions
• Numerical methods and algorithms
• Numerical experiments with parallel code
• Ongoing and future work

• Work is done in cooperation with:
• Prof. Anna-Karin Tornberg
• PhD-student Jennifer Grünig
• PhD-student Oana Marin



Mathematical modeling

• Idea - what do we want to investigate ?
• Physical model - what physical laws describe

our problem ?
• Mathematical model - can we do any

simplifications ?
• Numerical model - fast and accurate algorithms.
• Simulations and post-processing of computed

data.
• Accuracy assessment - results are compared to

experimental data.

We want to model and numerically
simulate the flow around several
objects - fibers.



Physical modelPhysical model
• The objects are immersed in a viscous fluid

of viscosity   .
• The objects are rigid bodies.
• External forces on the objects are given by

gravity.
• The objects are  heavier than the fluid but

the difference is small.
• The objects will sediment “slowly” in the

direction of gravity.
• The velocity of the objects depend on their

orientation.
• Viscous fluid – objects  will ”drag” the fluid

along.
• If more than one object they will interact

only through the fluid.

U

2U

µ

Objects in a fluid - Navier-Stokes equations!



Mathematical modelMathematical model
• Flow around an object in a fluid can be described by

the Navier-Stokes equations

  
! ut + (u "#)u( )

Convective term
! "## $##

 = -#p + µ#2u
Viscous term
% + f

! "u = 0

• They arise from applying Newton’s second law to
a fluid element.

• Time dependent and non-linear.
• Can we do any simplifications ?
• In our case: small velocity and large viscosity.
• Reynolds number

• Neglect convective terms.
 
Re =  !UL

µ
!1

u  velocity
p  pressure
f   force
    density
      viscosity
!
µ

Reynolds
number:
relation
between
convective
and viscous
termsStokes equations



Stokes equations can describe a large varietyStokes equations can describe a large variety
of flowsof flows

Few examples:
• Motion of microorganisms

• Cilia, Flagella.
• Blood flow in capillaries.
• Drops and bubbles.
• Liquid-particle suspensions

• Fiber suspensions.

http://www.liquidsculpture.com/



Stokes equations andStokes equations and……

    

i Stokes equations:    
     !p -  µ"u = f ,   ! #u = 0
i and boundary conditions: 
     u = u$%  on $%,  u & 0 for x &'

i No explicit time-dependence in equation. 
  Time-dependent system due to motion 
  of immersed objects. 
i No intertia. In equilibrium in each instant 
  in time. 
i Linear PDE. Possible to reformulate as a 
  boundary integral equation.

Boundary
conditions:

•The fluid velocity
at the boundary of
the object equals
the velocity of the
object (no-slip).

•The fluid velocity
far from the
object is not
affected by its
presence.



...the ...the StokesletStokeslet

     

i The singularily forced Stokes equation
          !p -  µ"u = g# (x $ y)
  has the solution
          ui (x) =

1
8%µ

Sij (x,y)g j   

          (Sij g j = Si1g1 + Si2g2 + Si3g3)

  where 

        Sij (x,y) =
# ij

| x $ y |
+

(xi $ yi )(x j $ y j )

| x $ y |3
,    i, j = 1,2,3.

Sij is called the Stokeslet and is the fundamental
solution or the free-space Green’s function for
the Stokes equations.

gy°
Source point

x
Observation 
point

°u



Immersed object Immersed object in Stokes flowin Stokes flow

y

° xu
    
ui (x) =

1
8!µ

Sij (x,y)
"#
$ f j (y) dSy ,  i = 1,2,3

• Let y be a point at the surface of the object.
• Let f be a force distribution on the surface of

the object.
• Then the velocity, u,  at the observation point x

is given by

x-y

Boundary integral formulation

• If f is known we can directly compute the velocity
field at any point x (at the boundary or outside the
object).

• If u is known at the boundary of the object we
have to solve a boundary integral equation for f.

!"



Boundary integral equation, BIEBoundary integral equation, BIE

   
u(s) = K(s,t)

C
! f (t) dt, s,t on C• A general form:

• K(s,t) is called a kernel.

    

uk = wl K(sk ,tl )
l=1

N

! fl , k = 1,2,…, N

u1 = w1K(s1,t1) f1 + w2 K(s1,t2 ) f2 +…wN K(s1,tN ) fN

u2 = w1K(s2 ,t1) f1 + w2 K(s2 ,t2 ) f2 +…wN K(s2 ,tN ) fN

   !

• Assume we know u along the curve C.
• We want to find f along the curve C.
• Discretize the integral with a quadrature rule

defined by the weights wl.

This will yield a linear system of equations (NxN)
to be solved for f

 Af = u

s

fl



Boundary integral equations, cont.Boundary integral equations, cont.

• For Stokes equation we have that

   
Kij (x,y) = Sij (x,y) =

! ij

| x " y |
+

(xi " yi )(x j " y j )

| x " y |3

so when both x and y are at the boundary the
kernel will be singular! (But still integrable.)

• Different techniques to handle the singularity
• Singularity subtraction.
• Construct special quadrature rule to handle the

singularity.

No details about this will be given in this talk…



Immersed Immersed solidsolid object  object in Stokes flow,in Stokes flow,

     

i What if both f and u at the boundary are unkown ?
i We know the externally applied force 
  (gravity).
i The object is centered at xc  with an 
  associated orthonormal basis t and surface
  !".
i Rigid body motion and no-slip, i.e for x #!",
       u(x) = U +$ % (x & xc )
  with translational velocity U 
  and angular velocity $ .
i Integrated force over the object must be equal 
  to externally applied force. Same for the torque.

!"

t

!
 U



Boundary integral formulationBoundary integral formulation

     

i For the object we have the equation relating the forces on 
  the surface to the velocity of the object:
       U i + (! " (x # xc ))i =

1
8$µ

Sij (x,y)
%&
' f j (y) dSy ,  i = 1,2,3  (1)

  together with the constraints
       Fbody = f (y)

%&
'  dSy    Tbody = (x # xc ) " f (y)

%&
'  dSy . (2)

     

i Solve the system of BIE, (1)-(2),  for f (x), U and !
i Update the position of the bodies by 

        d
dt

xc = U,     d
dt

t = t "!

     

i The velocity field can be computed in any point x by

         ui (x) =
1

8!µ
Sij (x,y)

"#
$ f j (y) dSy

          (as a post-processing step)

Unknowns:
 f1, f2, f3

U1, U2, U3

  !1, !2 , !3



Many immersed objects Many immersed objects in Stokes flowin Stokes flow

     

i M  immersed solid objects.
i Body m, m = 1,… M  centered at xc

m  with an 
  associated orthonormal basis tm  and surface
  !"m.
i As before, rigid body motion and no-slip, i.e for x #!"m ,
     u(x) = Um +$ m % (x & xc

m )

  with translational velocity Um  
  and angular velocity $ m.
i Integrated force over each body must be equal 
  to externally applied force. Same for the torque.

M = 2

 !"
1

 !"
2

Stokes equations are linear so we 
can use the superposition principle.



Boundary integral formulationBoundary integral formulation

     

i For body no m, we now have

  U i
m + (! m " (x # xc

m ))i =
1

8$µ
Sij (x,y)

%&l

' f j
l (y) dSy

l=1

M

( ,  (1)

  together with the constraints
   Fbody

m = f m(y)
%&m

'  dSy    Tbody
m = (x # xc

m ) " f m(y)
%&m

'  dSy . (2)

     

i As before, solve (1)-(2) for f m(x), Um  and ! m ,
  m = 1,…, M  and update the position of the bodies by 

  d
dt

xc
m = Um ,     d

dt
tm = tm "! m

     

i The velocity field can be computed in any point x by

         ui (x) =
1

8!µ
Sij (x,y)

"#l

$ f j
l (y) dSy

l=1

M

%
          (as a post-processing stage)

Unknowns:
 fm1, fm2, fm3

Um
1, Um

2, Um
3

m=1:M
   !

m
1, ! m

2 , ! m
3

Sum over all objects



Why use boundary integrals?Why use boundary integrals?

• We only need to consider the actual objects
when solving the problem.

• If we want information about the flow in the
fluid we can compute it as a post-processing.

• Reduction in dimensionality: we go from a
partial differential equation (3D) to a boundary
integral over a surface (2D).

• Still expensive to solve for many objects.
• N/many-body problem - all objects interact.

What about the fibers ?
We want many of them in
our simulations!



Slender fibersSlender fibers  in Stokes flowin Stokes flow

• We are concerned with
many and very slender
fibers.

• Slenderness defined by a
parameter.

• To expensive to discretize
and solve numerically for
slender fibers.

• Do an  asymptotic
expansions in the
slenderness parameter.

1/4 1/10 1/20 1/100

  ! = a / 2L << 1

Slender body equations

2L

a



Slender body approximationSlender body approximation

• Fundamental solutions (Stokeslets and dipoles) are
placed on fiber centerline (parametrized by s).

• For multiple fibers: Accurate to O( ).
• Formulation closed by enforcing no-slip condition on

fiber surface, no angular variation in fiber velocity.

Integral equations are solved along fiber centerlines - 1D!

!

Centerline, s

Center coordinate, x

Orientation, t

A fiber is defined by its center coordinate and orientation vector.



Part 2.Part 2.
• Part 2: Numerical simulations of fiber suspensions

• Introduction to fiber suspensions.
• Summary from yesterday.
• Mathematical model for many slender fibers.
• Numerical methods and algorithms.
• Numerical experiments with parallel.
• Ongoing and future work.



Introduction, part 2Introduction, part 2

• Gravity induced sedimentation of rigid
slender fibers in a viscous fluid.

• Microscopic description - track every
fiber.

• Low Reynolds number flow - Stokes
flow.

• Long range interactions and many body
character yield a very complex
behavior of the fibers.

• Collective dynamics of the suspension
is given by the coupling between
hydrodynamic interactions and the
micro-arrangement of the fibers.

• Study micro-structure and its
influences on averaged quantities.



Summary from yesterdaySummary from yesterday

• Simulate many rigid and slender fibers in a viscous
fluid.

• Slow motion - Stokes equations.
• Boundary integral formulation together with slender

body approximation.
• Reduction in dimensionality from a PDE in 3D to a

1D integral equation.



Slender body formulation for many fibersSlender body formulation for many fibers
• Velocity of fiber m is given by (rigid body motion):

     

!xm + s!tm

Velocity of
fiber m

"#$ %$
= L(tm ) fm (s)

Local contribution
" #$ %$

+ (I + tmtm )K fm!" #$(s)
Global contribution

" #$$$ %$$$

             + G(R(s,s '))
%1

1

&
l=1
l'm

M

( fl(s ') ds '.

Contribution from other fibers
" #$$$$ %$$$$

R(s,s ') = xm + stm % (xl + s 'tl)

• G is a linear combination of two fundamental
solutions:

• D(R) is called a Stokes doublet

Xm

tm

Xl

tl

s

s’

R(s,s’)

  G(R) = S(R) + ! 2D(R)

3 unknowns but only one equation!

(1)



Two additional conditionsTwo additional conditions
• Unknowns:

• Forces acting on the fibers
• Velocity of the fibers (translational and rotational)

• We have only one equation, need two additional
conditions:

   

   Fm = fm (s) ds = Fg ,        
!1

1

" Mm = s (tm # fm (s)) ds = 0     
!1

1

"
 

total force on fiber m total torque on fiber m

(2), (3)

System closed. Equations (1)-(3) solves our problem!

• Total force on a fiber is given by gravity (external force)
• No external torque



Summary ofSummary of  mathematical modelmathematical model

• Velocity of fiber m given by:

     

!xm + s!tm

Velocity of
fiber m

"#$ %$
= L(tm ) fm (s)

Local contribution
" #$ %$

+ (I + tmtm )K fm!" #$(s)
Global contribution

" #$$$ %$$$
+ G(R(s,s '))

%1

1

&
l=1
l'm

M

( fl(s ') ds '.

Contribution from other fibers
" #$$$$ %$$$$

R(s,s ') = xm + stm % (xl + s 'tl)

(1)

• Two extra conditions for fiber m:

   

   Fm = fm (s) ds = Fg ,        
!1

1

" Mm = s (tm # fm (s)) ds = 0     
!1

1

"
 

(2), (3)

Equations (1)-(3) for m=1, 2, …, M.
3M unknowns:
How do we solve these equations ?

    !xm , !tm , fm



NumericalNumerical discretization

     

i Manipulations of equations (1)-(3) leads to a closed system 
 for the forces fm  (without !xm  and !tm ) and two separate equations 
 for !xm  and !tm. 
i Force on each fiber expanded as a sum of Legendre polynomials:

           f
m
=

1
2

F
g
+ a

m
n P

n
(s)

n=1

N

!
  where the coefficients am

n  are vectors with three components. 
i  N  will be a parameter in our numerical algorithm. 
i System of equations for the fm's yields a closed linear system
  of equations for the coefficients am

n , n=1,…, N ,  m = 1,…, M .    
i The linear system is of size 3MN"3MN.



System matrix for the force coefficientsSystem matrix for the force coefficients

   

A =

I A12 ! A1M

A21 I ! A2M

" " # "
AM1 AM2 ! I

!

"

#
#
#
#
#

$

%

&
&
&
&
&

      
    

Aml  is the matrix (3N ! 3N ) for the contribution 
to the force coefficients for fiber m, 
from the force coefficients on fiber l.

     
i  Let us write the system as Aa = b, where A and b depends on all 
   of (xm ,tm ),  m = 1,…, M .

Many-body problem! Time consuming!
              Parallelization!

• Inner integral evaluated analytically.
• Outer integral evaluated numerically with a Gauss quadrature.
• Similar for the right hand side.

     

i For each Aml  we need to compute N 2  3! 3 matrices
  "lm

kn = G(R(s,s ')) Pk (s ') ds '
#1

1

$%&'
(
)*

Pn(s) ds
#1

1

$ , k,n = 1,2,…N



Parallelization and solving the system

     

i The code has been parallelized using MPI. 
i Natural partitioning: A number of fibers assigned to each processor. 
i For assembly of matrix and right hand side: 
   Broadcast xm  and tm , m = 1,…, M
   (6 degrees of freedom per fiber). 
i All integrals
          !lm

kn = G(R(s, s ')) P
k
(s ') ds '

"1

1

#$% &
' P

n
(s) ds

"1

1

#
  can then be evaluated, for the fibers assigned. 
i At end of assembly, subblocks of the matrix is communicated 
  and collected on one processor. 
i System solved with GMRES. Usually converges in 2-4 iterations. 
i After solve, force coefficients are distributed 
  (3N  degrees of freedom per fiber),  and the velocities 
  of the fibers are computed and their positions updated. 



Fiber velocities and update ofFiber velocities and update of
positionposition

     

i Once the forces fm  are known:
  Determine translational and rotational velocities by evaluating

 !xm =
1

2d
[d(I + tmtm ) + 2(I ! tmtm )] Fg +

1
d

G(R(s,s ')) fl(s ') ds '
!1

1

"
#

$
%
%

&

'
(
(!1

1

"
l=1,
l)m

M

*  ds

  !tm =
1
d

G(R(s,s ')) fl(s ') ds '
!1

1

"
#

$
%
%

&

'
(
(!1

1

"
l=1
l)m

M

*  s ds

i ODEs for xm  and tm  discretized by second order multistep method.



Summary of algorithmSummary of algorithm

Proc 0
Compute
integrals
(parts of A)
for M/4 fibers.

Proc 1
Compute
integrals
(parts of A)
for M/4 fibers.

Proc 2
Compute
integrals
(parts of A)
for M/4 fibers.

Proc 3
Compute
integrals
(parts of A)
for M/4 fibers.

Proc 0
Update
position and
orientation for
M/4 fibers.

Proc 0
Collect and
solve Aa=b.
Distribute a.

Proc 1
Update
position and
orientation for
M/4 fibers.

Proc 2
Update
position and
orientation for
M/4 fibers.

Proc 3
Update
position and
orientation for
M/4 fibers.

     xm
k  tm

k   m = 1,2, …,M

     xm
k+1 tm

k+1  m = 1,2, …,M

time step k

time step k+1

Solve for the force coefficients.



• How can we analyze the results ?
• Accuracy assessment.
• Qualitative: Study the fibers/suspension as it

proceeds in time – does it behave as expected ?
(Compare in “eye-norm”).

• Quantitative: Look at averaged quantities such as
mean velocity, concentration and average
orientation. (Compare numbers and trends.)

• Compare to available experimental findings.

Numerical experimentsNumerical experiments

Gustavsson Gustavsson & & TornbergTornberg, JCP 2006, , JCP 2006, PoF PoF 20102010



Numerical parameters

    

i Slenderness parameter: ! = 0.01
i Number of terms in force expansion: N = 5
i Number of quadrature points: Nq = 24 " 96
  (depends on distance between fibers).
i Timestep: #t = 0.05
i Number of timesteps: 10 000 (typically)
i 800 fibers took approx. 1600 cpu-hours.
  (Run on 40 processors - 40 h)



Known from physical experimentsKnown from physical experiments

• Few or single fibers:
• A vertically aligned fiber has twice the velocity of a

horizontal fiber.
• Tumbling orbits  (repetitive cycles).

• Suspension of fibers:
• Fibers form clusters (many fibers close to each other).
• The clusters sediment faster than single fibers.
• The mean sedimentation velocity is larger  than the

velocity of a single vertically aligned fiber (w=1).
• Mean sedimentation velocity increases with concentration

of fibers.
• The fibers tend to align with gravity.



Tumbling orbits - the movie 1Tumbling orbits - the movie 1



Tumbling orbits - theTumbling orbits - the  movie 2movie 2

• 16 fibers arranged in a symmetric
pattern

• Perform a repetitive tumbling orbit
• |wmax| when fibers are vertically

aligned
• |wmin| when fibers are horizontal
• Solution depend on N (number of terms

in force expansion)



Sedimenting Sedimenting suspensionsuspension
• Sedimentation of 800 fibers in a box of

size 4Lf x 4Lf x 32Lf (Lf length of fibers).
• Gravity in negative z-direction.
• Periodic boundary conditions.
• Initial random distribution of fibers.
• Experimental findings *:

• Fibers form streamers of fiber dense
domains

• Fibers form clusters
• Fibers continuously entering and leaving

clusters
• Cluster sediments faster than single fibers
• Fibers align with gravity
• Cluster creates a backflow in the fluid -

single fibers move upwards
• Mean sedimentation velocity can exceed

the velocity of a single vertically aligned
fiber (w=1)

* Herzhaft et al. (1999),  Metzger et al. (2007)



Fluid velocityFluid velocity

Note: different scaling of
arrows

• Fluid velocity can be
obtained by post
processing

• At initial time: Up
and downward flow
with small
recirculation zones

• At later time:
Strong backflow in
region with clear
fluid and  larger
recirculation zone



Clusters - the movie 1Clusters - the movie 1



Clusters - the movie 2Clusters - the movie 2

• Visualization of  a cluster (155/800
fibers)

• Fibers are leaving and entering the
cluster

• Fibers in the rear end of the cluster are
vertically aligned

• Fibers in outer region of the cluster will
detach due to strong backflow in the
fluid (recirculation zones)



Repetitive cycle ofRepetitive cycle of  a clustera cluster

• Repetitive cycle
• Densification phase (t1->t2)

Fiber “collecting”. Cluster
density and mean
sedimentation velocity
increases.

• Coarsening phase (t2->t3)
Cluster expands and fibers
detach.  Cluster density and
sedimentation velocity
decreases.

• Correlation to mean velocity
fluctuations

t1 t2 t3

t1

t2
t3



Sedimentation velocitySedimentation velocity

• Sedimentation velocity and mean vertical orientation depend on
concentration

• Time to steady state depend on concentration

Velocity distribution Vertical orientation distribution

Mean sedimentation velocity Mean vertical orientation

nl3=0.1 nl3=0.4 nl3=0.1 nl3=0.4



Local Local vsvs. global effects. global effects

• Same macroscopic properties:
• Same number of fibers
• Same size of box

• Different initial random distribution
• Large differences in dynamical behavior on

local scale
• Reflected in global quantities

t=t1 t=t2

t1 t2

Mean sedimentation velocity



SummarySummary
• We have used boundary integrals and the

slender body approximation to compute the
sedimentation of rigid fibers in a viscous fluid

• Using numerical simulations we are able to
reproduce many characteristic features of
sedimenting fibers/fiber suspension
• Velocity depend on fiber orientation
• Creation of clusters
• Strong backflow in the fluid
• Sedimentation velocity depend on

concentration
• Global quantities (e.g. sedimentation

velocity) depend on local properties of
the suspension

Cluster

Streamer

Random initial 
distribution

g

Simulations show good
agreement to experimental
data both on local and global
levels



Future and ongoing workFuture and ongoing work
• Today all fibers are straight and of same

length.
• Extend model and numerical algorithm to (w.

Jennifer Grünig, PhD stud.):
• Multi-disperse fiber suspensions.
• Non-straight rigid fiber suspension.

• Motivation
• Fibers in paper pulp.
• Other kind of suspensions: micro organisms,

bacteria.



FutureFuture  and ongoing workand ongoing work
• Investigate different ideas/methods for handling

wall boundary conditions in a boundary integral
setting  (w. Oana Marin, PhD stud.)
• Method of images/reflextions
• Direct discretization using a distribution of point

forces
• Combine boundary integral methods with grid based

methods (future)
• Motivation

• Wall bounded sedimentation yield more realistic
simulations (compared to experimental set-up)

• Particle - wall interactions
• Suspensions in shear flow



• In order to include more (in the order
of 10 times more) we need faster
• Methods (fast multipole)
• Algorithms (better parallelization)

FutureFuture  and necessary workand necessary work


