Mathematical Physics

Arnold Heemink, TU Delft

Modelling physical phenomena using (stochastic) (partial) differential equations:Analysis of the model (resonance)Numerical simulation

- Inverse modelling (parameter estimation)
- Data assimilation (for real-time forecasting)

Related courses at TU Delft:
Advanced modelling in Science
Nonlinear differential equations
Environmental simulation and data assimilation
Computational aspect of stochastic differential equations

Modelling coastal sea pollution transport

Why modelling Environmental Transport?

 Modelling coastal sea pollution transport
 Modelling transport of sand (morphodynamics)

Small sand dunes on the beach

Large sand dunes along the North Sea coast

 Modelling coastal sea pollution transport
 Modelling transport of sand (morphodynamics)
 Modelling atherosclerosis

Atherosclerosis

Modelling coastal sea pollution transport
Modelling transport of sand (morphodynamics)
Modelling atherosclerosis
Estimation permeability field in oil reservoir models

- Modelling coastal sea pollution transport
 Modelling transport of sand (morphodynamics)
 Modelling atherosclerosis
 Estimation permeability field in oil
 - reservoir models
- Real-time forecasting of waterlevels and tidal flows

Example of a water lavel forecast

Data locations

HF radar data

Measurements of the vertical velocity profile

Modelling coastal sea pollution transport Modelling transport of sand (morphodynamics) Modelling atherosclerosis Estimation permeability field in oil reservoir models Real-time forecasting of waterlevels and tidal flows Estimation of emissions in air pollution models