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Wishes for a better future

Wouldn’t it be nice, if
. our heating system makes our apartment nice and

comfortable and a same time the energy resources are
significantly reduced;

. our airplane flies through a turbulence and we don’t notice;

. a high-speed train goes by our house and we don’t hear it;

. the public transport system is always on time;

. our car makes less noise, uses less gas and produces less
CO2;

. our computers get faster every year and have more storage;

. fatal traffic accidents are avoided by automated help systems;

. . . ..
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Theses
. Our engineers have built cars, airplanes, bridges,

skyscrapers, chips, plants . . . for ages.
. Most engineers get away with the math from the first year.
. For the solution of differential equations, eigenvalue problems,

optimization problems, there are wonderful commercial
packages? They always deliver good solutions.

. If the problems become more complex then we just buy a
bigger computer.

. We don’t really need mathematics except as language for
describing the models.

. And the mathematicians don’t really help, they spent their
time looking for the zeroes of the Riemann Zeta-function.

. Optimization? We just use genetic algorithms, they always
find the optimal solution.
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Anti-theses

No technological development without modern
mathematics! We need:

. Very good mathematical models, that represent the
technological process well.

. Deep understanding of the models and the dynamics of the
processes.

. Accurate and efficient algorithms to simulate the
models/processes.

. Accurate and efficient methods to control and optimize the
processes and products.

Modelling, simulation and control 5 / 43



Overview

1 Introduction
2 MATHEON
3 Real world applications
4 Linear systems
5 Eigenvalue problems
6 Conclusions

Modelling, simulation and control 6 / 43



What is MATHEON?

. DFG Research center funded since June 2002.

. Mathematics for key technologies: Modelling, simulation, and
optimization of real world processes.

. Participating institutions: TU Berlin, HU Berlin, FU Berlin,
Weierstraß Institut (WIAS), Konrad Zuse Institut Berlin (ZIB).

. Funding volume, approx. 5.5 Mio Euro per year from DFG, 3
Mio per year from the research institutions and more than 7
Mio extra outside funding with about half from industry.

. Approx. 60 research projects.

. 45 math. professors.

Modelling, simulation and control 7 / 43



MATHEON Vision

. Modern key technologies become more and more complex.

. Innovation cycles become shorter.

. Flexible mathematical models are the prerequisite to master
complexity, to act fast and to find smart solutions.

. To derive such models needs abstractions.

. The language of abstraction is mathematics.

. But mathematics is not only a language. It creates value.

Theoretical understanding, efficient algorithms, optimal
solutions.
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MATHEON application areas.
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What are (P)DAEs ?
(Partial) differential-algebraic equations (DAEs), descriptor
systems, singular differential eqns are implicit systems of
differential equations of the form

0 = F(t , ξ,u, ξ̇, p, ω),
y1 = G1(t , ξ,u,p, ω),
y2 = G2(t , ξ,u,p, ω),

with F ∈ C0(R× Dξ × Du × Dξ̇ × Dp × Dω,R`),
Gi ∈ C0(R× Dξ × Du × Dp × Dω,Rpi ), i = 1,2.
. t ∈ I ⊂ R is the time,
. ξ denotes the state (finite or infinite dimensional), ξ̇ = d

dt ξ,
. u denotes control inputs, ω denotes

uncertainties/disturbances,
. y1 denotes controlled, y2 measured outputs,
. p denotes parameters.
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Automatic gearboxes

Modeling, simulation and software control of automatic
gearboxes. Project with Daimler AG (Dissertation: Peter
Hamann 2009)→ film.
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Technological Application

. Modeling of multi-physics model: multi-body system, elasticity,
hydraulics, friction, . . . .

. Development of control methods for coupled system.

. Real time control of gearbox.

Goal: Decrease full consumption, improve switching
Large hybrid multi-physics control system (PDAE)
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Drop size distributions
with M. Kraume (Chemical Eng., TU Berlin), M. Schäfer (Mech. Eng.
TU Darmstadt)
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Technological Application, Tasks

Chemical industry: pearl polymerization and extraction
processes

. Modeling of coalescence and breakage in turbulent flow.

. Numerical methods for simulation of coupled system of
population balance equations/fluid flow equations. → film.

. Development of optimal control methods for large scale
coupled systems

. Model reduction and observer design.

. Feedback control of real configurations via stirrer speed.

Goal: Achieve specified average drop diameter and small
standard deviation for distribution by real time-control of
stirrer-speed.
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Mathematical system components

. Navier Stokes equation (flow field)

. Population balance equation (drop size distribution).

. One or two way coupling.

. Initial and boundary conditions.

Space discretization leads to an extremely large control system
of nonlinear DAEs.
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Active flow control

Project in Sfb 557 Control of complex shear flows, with F.
Tröltzsch, M. Schmidt
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Technological Application, Tasks

Control of detached turbulent flow on airline wing

. Test case (backward step to compare experiment/numerics.)

. modeling of turbulent flow.

. Development of control methods for large scale coupled
systems.

. Model reduction and observer design.

. Optimal feedback control of real configurations via blowing
and sucking of air in wing.

Ultimate goal: Force detached flow back to wing.
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Controlled flow
Movement of recirculation bubble following reference curve.
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Further PDAE Applications

Classical applications of (P)DAE modeling.
. Electronic circuit simulation (Kirchhoff’s laws).
. Simulation and control of mechanical multi-body systems

(position or velocity constraints).
. Flow simulation and flow control (mass conservation).
. Metabolic networks (balance equations).
. Simulation and control of systems from chemical engineering

(mass balances).
. Simulation and control of traffic systems (mass conservation).
. . . .
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Why (P)DAEs?

(P)DAEs provide a unified framework for the analysis,
simulation and control of (coupled) dynamical systems
(continuous and discrete time).

. Automatic modeling leads to DAEs. (Constraints at
interfaces).

. Conservation laws lead to DAEs. (Conservation of mass,
energy, momentum).

. Coupling of solvers leads to DAEs (discrete time).

. Control problems are DAEs (behavior).
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A simple DAE
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Figure: A mechanical multibody system
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DAE modeling
. Mass point with mass m in Cartesian coordinates (x , y) moves

under influence of gravity in a distance l around the origin.
. Kinetic energy T = 1

2m(ẋ2 + ẏ2)

. potential energy U = mgy , where g is the gravity constant,

. Constraint equation x2 + y2 − l2 = 0,

. Lagrange function L = 1
2m(ẋ2 + ẏ2)−mgy − λ(x2 + y2 − l2)

. Equations of motion

d
dt

(
∂L
∂q̇

)
− ∂L
∂q

= 0

for the variables q = x , y , λ, i. e.,
. DAE model:

mẍ + 2xλ = 0,
mÿ + 2yλ+ mg = 0,

x2 + y2 − l2 = 0.
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Multi-physics systems
DAE modeling is standard in multi-physics systems.

Packages like MATLAB (SIMULINK, DYMOLA (MODELLICA) and
SPICE like circuit simulators proceed as follows:
. Modularized modeling of uni-physics components.
. Network based connection of components.
. Identification of input and output parameters.
. Numerical simulation and control on full model.
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Black-box modeling with DAEs

Modeling becomes extremely convenient, but:
. Numerical simulation does not always work, instabilities and

convergence problems occur (e.g. SIMULINK) !
. Solution may depend on derivatives of input functions.
. Consistent initialization is difficult.
. The discretized system may be unsolvable even if the DAE is

solvable and vice versa.
. Numerical drift-off phenomenon.
. Model reduction is difficult.
. Classical control is difficult (non-proper transfer functions).
Black-box DAE modeling pushes all difficulties into the
numerics. In general the methods cannot handle this!
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DAE Theory
We use derivative arrays (Campbell 1989).
We assume that derivatives of original functions are available or
can be obtained via computer algebra or automatic
differentiation.
Linear case: We put E(t)ẋ = A(t)x + f (t) and its derivatives up
to order µ into a large DAE

Mk(t)żk = Nk(t)zk + gk(t), k ∈ N0

for zk = (x , ẋ , . . . , x (k)).

M2 =

 E 0 0
A− Ė E 0
Ȧ− 2Ë A− Ė E

 , N2 =

 A 0 0
Ȧ 0 0
Ä 0 0

 , z2 =

 x
ẋ
ẍ

 .
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Derivative arrays, nonlinear problems

Analogous approach for F (t , x , ẋ) = 0 yields derivative array:

0 = Fk(t , x , ẋ , . . . , x (k+1)) =


F (t , x , ẋ)

d
dt F (t , x , ẋ)

. . .
dk

dtk F (t , x , ẋ)

 .
We set

Mk(t , x , ẋ , . . . , x (k+1)) = Fk ;ẋ ,...,x (k+1)(t , x , ẋ , . . . , x (k+1)),

Nk(t , x , ẋ , . . . , x (k+1)) = −(Fk ;x(t , x , ẋ , . . . , x (k+1)),0, . . . ,0),
zk = (t , x , ẋ , . . . , x (k+1)).
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Hypothesis

Hypothesis: There exist integers µ, r , a, d , and v such that
L = F−1

µ ({0}) 6= ∅.
We have rank Fµ;t ,x ,ẋ ,...,x (µ+1) = rank Fµ;x ,ẋ ,...,x (µ+1) = r , in a
neighborhood of L such that there exists an equivalent system
F̃ (zµ) = 0 with a Jacobian of full row rank r . On L we have
1. corank Fµ;x ,ẋ ,...,x (µ+1) − corank Fµ−1;x ,ẋ ,...,x (µ+1) = v .
2. corank F̃x ,ẋ ,...,x (µ+1) = a and there exist smooth matrix functions
Z2 (left nullspace of Mµ) and T2 (right nullspace of Â2 = F̃x ) with
Z T

2 F̃x ,ẋ ,...,x (µ+1) = 0 and Z T
2 Â2T2 = 0.

3. rank FẋT2 = d , d = `− a− v , and there exists a smooth
matrix function Z1 with rank Z T

1 Fẋ = d .
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Theorem (Kunkel/M. 2002)

The solution set L forms a (smooth) manifold of dimension
(µ+ 2)n + 1− r .
The DAE can locally be transformed (by application of the
implicit function theorem) to a reduced DAE of the form

ẋ1 = G1(t , x1, x3), (d differential equations),
x2 = G2(t , x1, x3), (a algebraic equations),
0 = 0 (v redundant equations).

The variables x3 represent undetermined components (controls).
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General numerical simulation procedure
. Consistent initial values are obtained by solving

Fµ(t0, x , ẋ , . . . , x (µ+1)) = 0 at t0 for the algebraic variable
(x , ẋ , . . . , x (µ+1)).

. For the integration of the DAE, e.g. with BDF methods, the
system

Fµ(t0 + h, x , ẋ , . . . , x (µ+1)) = 0,

Z̃ T
1 F (t0 + h, x ,Dhx) = 0

is solved for (x , ẋ , . . . , x (µ+1)).
. Here, Z̃1 denotes a suitable approximation of Z1 which projects

onto the d differential equations at the desired solution, and

Dhxi =
1
h

k∑
l=0

αlxi−l ,

is the discretization by BDF.
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Numerical Software

Several productions codes are available.

. Production code GELDA Kunkel/M./Rath/Weickert 1998 (linear
variable coefficients), uses BDF and Runge-Kutta
discretization.

. Production code GENDA (nonlinear regular), Kunkel/M./Seufer
2002 based on BDF.

. Matlab code SOLVEDAE (nonlinear), Kunkel/Mehrmann/Seidel
2005.

. Special multi-body code GEOMS Steinbrecher 2006.

. Circuit codes, joint with NEC, Bächle, Ebert, 2006.
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Acoustic field in car interior

Project with company SFE in Berlin 2007/2009.

. Computation of acoustic field for coupled system of car body
and air.

. SFE has its own parameterized FEM model which allows
geometry and topology changes. (→ film)

. Frequent solution of linear systems and nonlinear eigenvalue
problems (up to size 10,000,000) is needed within
optimization loop that changes geometry, topology, damping
material, etc.

. Ultimate goal: Minimize noise in important regions in car
interior.
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Frequency response

SFE GmbH, Berlin
CEO: Hans Zimmer
h.zimmer@sfe-berlin.de
http://www.sfe-berlin.de

© SFE GmbH 2007

SFE AKUSMOD
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Frequency response: Linear system
Solve P(ω, α)u(ω, α) = f (ω, α), where

P(ω, α) := −ω2
[

Ms 0
0 Mf

]
+ ıω

[
Ds DT

as
Das Df

]
+

[
Ks(ω) 0

0 Kf

]
,

is complex symmetric of dimension up to 10,000,000,
. Ms,Mf ,Kf are real symm. pos. semidef. mass/stiffness

matrices of structure and air, Ms is singular and diagonal, Mf

is sparse. Ms is a factor 1000− 10000 larger than Mf .
. Ks(ω) = Ks(ω)

T = K1(ω) + ıK2.
. Ds is a real damping matrix, Df is complex symmetric.
. Das is real coupling matrix between structure and air.
. All or part of the matrices depend on geometry, topology and

material parameters.
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Detailed tasks of project

. Solve for a given set of parameters αi , i = 1,2, . . . , the linear
system P(ω)u(ω, αi) = f (ω, αi), for ω = 0, . . . , 1000hz in small
frequency steps.

. The parameters αi are determined in a manual or automatic
optimization process, i.e. αi and αi+1 are typically close.

. Parallelization in multi-processor multi-core environment.

. Often many right hand sides (load vectors) f (ω).

. Accuracy goal: Relative residual 10−6.
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Difficulties and challenges

. Problems are badly scaled and get increasingly ill-conditioned
when ω grows.

. For some parameter constellations the system becomes
exactly singular with inconsistent right hand side.

. Direct solution methods work only out-of-core.

. Blocks of matrices are changed with α.

. No multilevel or adaptive grid refinement is available, methods
must be matrix based.
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Eigenvalue problem
Consider nonlinear eigenvalue problem P(λ, α)x(α) = 0, where

P(λ, α) := λ2
[

Ms 0
0 Mf

]
+ λ

[
Ds DT

as
Das Df

]
+

[
Ks(λ) 0

0 Kf

]
,

is complex symmetric and has dimension up to 10,000,000,
and all coefficients depend on parameter vector α. Tasks:

. Compute all eigenvalues in a given region of C and
associated eigenvectors.

. Project the problem into the subspace spanned by these
eigenvectors (for given sets of parameters) (Model reduction).

. Solve the second order differential-algebraic system (DAE).

. Optimize the eigenfrequencies/acoustic field, w.r.t. the set of
parameters.
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Difficulties and challenges

. We need to improve convergence and preconditioning.

. We need better linearization techniques.

. We need better perturbation and error analysis.

. We need multiple grids.

. We need adaptivity in mesh refinement, eigenvalue
computation and optimization.

. The methods have to run as parallel methods on modern
multi-core machines.
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Conclusions

. Industrial applications lead to hard mathematical problems.

. Simulation and control of PDAEs.

. Large scale nonlinear eigenvalue problems within optimization
loop.

. The mathematical theory and algorithms are still far from the
needs in reality.

. Commercially available codes are not satisfactory.

. Industry is not interested in and does not pay for the analysis,
convergence proofs, etc.

. Industrial production code development is a challenge.

References and papers see: http://www.matheon.de/
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Thank you very much
for your attention.

Modelling, simulation and control 43 / 43


	Introduction
	Matheon
	Real world applications
	Linear systems
	Eigenvalue problems
	Conclusions

