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Motivations (I)

* Hydrosphere: oceans, shelf seas, estuaries, rivers, groundwater,
etc. + sea ice (for the sake of simplicity)

shallow marine areas:
depth =< 200 m
area = 7% of WO
volume = 0.2% of WO
biomass = 300% of WO
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Motivations (1)

* Models exist of each of the component of the hydrosphere,
which are generally made up of PDEs derived from fluid
mechanics.

* Components of the hydrosphere interact with each other.
Therefore, there 1s a growing need for models dealing with several,
if not all, of the components of the hydrosphere. Possible

applications are:
- Climate change studies should take into the impact of shallow

areas on global biogeochemical cycles, especially that of carbon;
- Environmental 1mpact assessment: pollutants know no
borders/boundaries.

* A daunting multi-scale/physics problem is to be addressed.



A flavour of multi-scale (oceanic) dynamics (1)

The real ocean surface circulation is closer to
this, with many transient eddies 50-100 km =
1n size.

A common representation of the oceanic
surface circulation.
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A flavour of multi-scale (oceanic) dynamics (II)
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Structured vs unstructured grids

2nd generation

unstructured gri
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Structured grids

Advantages
* Finite-difference methods are easy to implement.
* Programming 1s easy.

* Well known in the realm of oceanography/meteorology.

Disadvantages
* Representation of the coastlines (staircase-like).

* Difficult to enhance resolution (even with curvilinear
coordinates or embedded grid systems).

* Singularity of the pole(s) in global models.



Unstructured grids

Disadvantages
* Numerical methods are uneasy to implement.
* Programming is uneasy.

* Not well known 1n the realm of oceanography/meteorology.

Advantages
* Representation of the coastlines.
* Easy to enhance resolution (including adaptive strategies).

* No singular points in global models.



Are adaptive- and unstructured-mesh models coming of age?

* C(lassical structured-mesh eco-hydrodynamic models with
(almost) constant resolution may be getting obsolete.

* Time may be ripe for developing models in which resolution
may be enhanced where and when needed, facilitating multi-scale
approaches.

* Encouraging example: reduced-gravity simulation of a baroclinic
eddy* in the Gulf of Mexico by means of a Discontinuous
Galerkin (DG), finite-element, adaptive-mesh model (Bernard et
al., Ocean Dynamics, 2007). = moviel

This simulation 1s one order of magnitude cheaper than a constant-
resolution one of the same accuracy!

* Features of the eddy inspired by Lewis and Kirwan (JGR, 1987).
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Multi-scale modelling: the Scheldt basin (I)

The main advantage of unstructured meshes probably 1s that multi-
scale modelling 1s rendered easier. Example: the Scheldt
tributaries, River, Estuary and ROFI (www.climate.be/timothy).

* 40% of the meshes in
the estuary, which
represents 0.3% of the
computational domain.

* No major problem

with open boundary
conditions (for tides, @
storms, river discharge).

(de Brye et al., Coastal Enginéering, 2010)



Multi-scale modelling: the Scheldt basin (II)
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Elevation [m]

Multi-scale modelling: the Scheldt basin (III)
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Multi-scale modelling: the Scheldt basin (IV)
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Multi-scale modelling: the Scheldt basin (V)
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Multi-scale modelling: the Scheldt basin (VI)

* Contaminant modelling in the Scheldt system:

- Fecal bacteria + experimental design (de Brauwere et al.,
Environmental Modelling and Software, 2009; de Brauwere et

al. Water Research, 2011);
- Heavy metals (under development).

o Development. of a e
three-layer sediment module
(essential for studying the fate

of heavy metals)
-
freshly-deposited layer kg/mﬂ




Multi-scale modelling: the Great Barrier Reef (I)

See Wolanski et al. (2003, in: Advances in Coastal
Modeling, V.C. Lakhan (Ed.))

time-space scales of GBR hydrodynamics

| general circulation, |

1 year exchanges with Coral Sea
1 monthr oy 1
1 week}| parameterization of flow around i

free shear layers an archipelago
1 dayr i
flow around one
reef / island tidal friction steering
large-scale circulation
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1 hourt | tidal jets -
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Australia
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Multi-scale modelling: the Great Barrier Reef (II)

* 0(10%) triangles, with
AXmax [ AXmin = 102 ‘

* Forcings: wind, tides,

Coral Sea inflow

* A wide spectrum of
hydrodynamic processes
simulated (eddies, tidal jets,

“sticky waters”, general —> movie3
circulation)

See Legrand et al. (ECSS, 2006) and Lambrechts et al. (ECSS, 2008)
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Mahakam River (Indonesia) land-sea continuum
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New project,
conducted in collaboration with

Prof Ton Hoitink (Univ. Wageningen)
http://www.eastkalimantan.org
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® - Horizontal Acoustic Doppler Current Profiler (HADCP) (2008 - 2009)
@ - Historical data of daily discharge (1993 - 2005)
® - Hourly rainfall data (2008 - 2009) Delta South
@ - Daily rainfall data (1993 - 2004) o
® - Water level data (2008 - 2009)
@ - Groundwater level data (2008 - 2009)
® - Electrical conductivity data (2008 - 2009)
@ - Optical Backscatter Systems (OBSs) (2008 - 2009)
- Nile Sampling data (2008 - 2009) 50 km
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(de Brye et al., Ocean Dynamics, submitted; Sassi et al., Ocean Dynamics, submitted)



Rattray Island eddies and associated upwelling
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See Blaise et al. (CSR, 2007) , White et al. (ECSS, 2007), and White and Wolanski (ECSS, 2008)
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Volume (x 10° km®)
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Sea ice in the Arctic

=> movied
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e Finite element formulation of Hibler's

rheology
* Semtner's zero-layer thermodynamics

* Slab ocean (no ocean current)

(Lietaer et al., Ocean Modelling, 2008)
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Current developments

* A underground flow module (Richards equation).

* 3D baroclinic flow module is being tested, and coupled to the sea

ice module (Blaise et al. & Comblen et al., Ocean Dynamics,
2010)

* Wetting-drying algorithm: speed up of O(200) (Kéarna et al.,
Computer Methods in Applied Mechanics and Engineering, 2011).

* Speeding up the model by at least one order of magnitude:

- Higher-order implicit schemes (appropriate for a few processors);
- Multi-rate RK (explicit) time steppings (appropriate for a large
number of processors) (Constantinescu and Sandu, 2007; Schlegel
et al., 2009).
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Conclusion

e SLIM already has some of the building blocks of a multi-
scale/physics hydrospheric model.

* The availability of multi-scale data 1s a key problem.

* Will multi-scale reactive transport models prove superior to
those focused on long time and space scales (which often do not
represent the most energetic processes, such as floods, tides, etc.)?

* Will pursuing the dream of a model of the whole hydrosphere
lead to useful results (even if such a model never comes true)?
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