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General features of the SPH

The SPH is a particle method

The fluid domain (D hereinafter)
is discretized into a finite number
of particles that represent
elementary volumes of fluid

No topological connections
=> the SPH is a Meshless method

Particles transport the values of the physical
qguantities (e.g. pressure and velocity),
moving with the fluid velocity

=> the SPH is a Lagrangian method
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Why smoothing?

e the Lagrangian nature of the SPH induces non-uniform spatial distributions
of particles during the flow evolution

e the absence of topological connections between particles (meshless method)
makes the evaluation of standard differential operators very complex

The smoothing procedure allows us to model the interactions between

neighbour particles in a simple and consistent way and to approximate the
usual differential operators in a reliable manner




/
Let us consider a weight function W / w
(kernel function) defined as follows: /
///
* radial and positive /
///
e with a compact support Q2 // >0
(i.e. it is null outside Q) o T
// Rﬁ

o CYR") at least N



Smoothing

Let us consider a weight function W

(kernel function) defined as follows: /
///
* radial and positive /
///
e with a compact support Q /
(i.e. it is null outside Q) //

// R”

e C(R") at least R

The kernel function has generally a bump-like shape:
* (@Gaussian-type
* Polinomial type (e.g. Wendland kernels)

e Spline kernels (e.g. Cubic/quintic splines) 0



Smoothing

Let us consider a weight function W
(kernel function) defined as follows:

* radial and positive /
///
e with a compact support Q //
(i.e. it is null outside Q) 7
// RH
e C(R") at least A

The kernel function is generally expressed
as a function of a reference length h,
called smoothing length,
which is proportional to the radius R

of the kernel domain Q

Wix:h)



Smoothing

The kernel function is normalized to one, that is:

fW(.r;h)dV* =1 h >0
Q

Consequently, the kernel function W preserves
its «mass» inside the support Q for every choice of h Q




Smoothing

The kernel function is normalized to one, that is:

fW(x:,h)dV* = 1 h >0
0

Consequently, the kernel function W preserves
its «mass» inside the support Q for every choice of h Q

For h going to zero, the Kernel function shrinks to a point (preserving its mass)

Wi(x:h) , Gaussian kernel in 2D with R=3h

—— h=1/3

h — 0 — h=1/2
—— h=2/3
h=1




Smoothing

The kernel function is normalized to one, that is:

fW(x:,h)dV* = 1 h >0
0

Consequently, the kernel function W preserves
its «mass» inside the support Q for every choice of h Q

For h going to zero, the Kernel function shrinks to a point (preserving its mass)

Wi(x:h) , Gaussian kernel in 2D with R=3h

—— h=1/3

h — 0 — h=1/2
—— h=2/3
h=1

T ? |
1 z =

w cénverges weakly to a Dirac function!




Smoothing - continuum

The smoothing procedure is defined through a convolution integral with the
kernel function W over the fluid domain D

In particular, for a generic scalar function f, we define:

()x) = f £ W — x°, h) dV*
OonD

the support Q is centred at the point x and 0
the integration is done on the variable x*

As a consequence of the properties of W, we have:
o Wkx=x"h = Wkx"=x:h)

o VWx—-x"h = -V'W(x —x":h) where V™ denotes
differentiation with respect to x*



Smoothing - continuum

The simplest case is obtained for f=1

['(x) = W(x —x":h)dV~
QnD Q0

This function takes into account how much “mass” of the fluid domain D
is inside the kernel domain Q



Smoothing - continuum

The simplest case is obtained for f=1

['(x) = Wx—x"h)dV”
QnD

This function takes into account how much “mass” of the fluid domain D
is inside the kernel domain Q

Since the kernel is normalized, we have:

['(x) =1 it QcbD

All the «mass» is inside the fluid domain
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The simplest case is obtained for f=1

2h)dV”®
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['(x) =

QnD

This function takes into account how much “mass” of the fluid domain D
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Smoothing - continuum

() x) = f fx*)W(x —-x",h)dV* [(x) = f Wx—x"h)dV”
QnD QnD

A little more involved is the derivation of the smoothed gradient operator

Using integration by parts (and a careful modelling of boundary terms),
it is possible to obtain the following approximation:

(Vi) = f [ f(x")— fx)| VW(x —x".h)dV* + O(h)
QnD




The fluid domain is discretized in a finite number of particles that represent
elementary volumes of fluid and transport the main physical quantities

Let us assume that the volumes V; are known...

(these may be obtained through geometrical procedures basing
on particle distribution or during the numerical simulation)




The fluid domain is discretized in a finite number of particles that represent
elementary volumes of fluid and transport the main physical quantities

Let us assume that the volumes V; are known...

(these may be obtained through geometrical procedures basing
on particle distribution or during the numerical simulation)

Then, we replace the integral over 2 by summations over the neighbour particles

[{x) = j Wx—x";:h)dV* I = Z WiV
QnD

jeN;

Wi; = W(xi=x;,h)

A; = { j such that |lx; — x| <R




Similarly, we define:

(H(x)

(V)x)

= f Fx) W(x = x*, hydv* (i = Z fiWii Vi
QnD

jeM

where fi = f(x})

= [ )= e W ndv (V) = ;(ﬁf ~ fi) ViWi; V;
Jeh

where V; represents
differentiation with respect to x;

Hereinafter the symbol .4 in the summations is understood




What about the convergence of discrete operator towards
the continuous smoothed operators?

increasing the number of particlein Q ‘ decreasing Ax/h

Ax is the mean particle distance

In any case....

e the convergence strongly depends on the way in which the particles
are distributed (regular distributions are needed)

e even in the presence of regular particle distribution, the order of
convergence is generally between 1 and 2




For the function, if |Xx; € & C D | (i.e. inside the fluid domain)

discrete smoothed (continuous) exact

i > (fr(x;) > f(x)

— 50 h— 0

+ REGULAR PARTICLE
DISTRIBUTIONS!

For regular distributions, the convergence to the exact solution
is attained if BOTH the parameters Ax/h and h go to zero!
(see, for example, Quinlan et al. 2006)



For example, if we check the convergence

of the SPH by decreasing h
& = 1< — flx) Y &
while Ax/h is fixed

(i.e. constant number of particles in Q)...

Ax/h = const

Ax/h = const/2

Ax/h = const/4

7~
_~" Theoretical second-order convergence for h

-~
-~
-~
-~
-~




For|x; € Q c D |[(i.e.inside the fluid domain)

for Ax/h, h « 1 ....and for regular distributions!

L= ) WijVj= 1 =), WiV = T f(x)
J J

VIi= ) ViWi; V= 0 V= Y (fi= £) ViWi; Vi = TV fGx)

J j



The standard SPH

We are interested in the SPH in the fluid dynamics field....

Despite many fluids (like water) are modelled as incompressible, the SPH
in its basic form relies on the hypotheses that the fluid is weakly-compressible

(this will be clarified later)

It may be derived from the Navier-Stokes equations for compressible fluids:

Lagrangian derivatives
U p is the fluid density,

u is the fluid velocity

pf—-Vp+ p is the pressure field

fis a body force

u
viscous component of the stress tensor

State equation for barotropic fluids




The standard SPH

We are interested in the SPH in the fluid dynamics field....

Despite many fluids (like water) are modelled as incompressible, the SPH
in its basic form relies on the hypotheses that the fluid is weakly-compressible

(this will be clarified later)

It may be derived from the Navier-Stokes equations for compressible fluids:

dr

du
|

dx
dr

9. . pV-u

.

p—f :pf—Vp-F V-V
C

[ dpl
LA P 73
% piV - u)
du,-
<y = pifi— (Vp) + (V-V}

p = F(p) u

dx;
—! = y; . = F(p;
& u p (pi)

the differential operators are substituted with their smoothed (and discrete) counterparts




The standard SPH

Divergence of the velocity... (V-uy; = Z (uj - ui) : ViW
J

mmmm) | we need to find out the volumes!

Being a Lagrangian method, it is common practise in the standard SPH to associate
amass m; to each particle and to maintain it constant during the flow evolution

1n;

dm,; V: =
= 0 i ==
— - and o

It is also possible to define the volumes basing on geometrical considerations
(e.g. particle distributions, Espanol & Revenga, 2003)



The standard SPH

Generally....

* the SPH simulation is initialized by imposing
a uniform particle distribution
(or, at least, as regular as possible!) _
=> the volumes are initially uniform Vi =ty Vo Vi



Generally....

the SPH simulation is initialized by imposing
a uniform particle distribution

(or, at least, as regular as possible!)

=> the volumes are initially uniform

the density field is assigned as an initial condition
(and generally it is not constant all over the fluid domain)
=> the particles may have different masses

During the simulation, the masses do not change
while the density field evolves according to the
physical equations

=> volumes may evolve in a way that disregards
the actual geometrical distribution of particles

dm; _ V. = n
dr Pi
Vi ‘IZI{} = Vo Vi

m; = p;‘ Vo

=iy

m;

Vitr) =
( pil1)

=> Reduced accuracy when intense density gradients occur!




The standard SPH

| Velocity Module
.|f Standard SPH 0:=0.01 IUI/(gH)”
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The standard SPH

About the pressure gradient....

| e preserves linear and angular momenta
(Vphi = ) (pi+p)ViWi,V;
j * the work along the free surface is null

in an integral sense, namely

j pu-n)dsS =0
oD

Advantages:

e if we set p=0 along the FS at the initial time, the SPH does a null work along the FS
(in an integral sense) during the subsequent evolution

* in comparison to the incompressible SPH variants, there is no need to impose
p=0 along the FS during the evolution



The standard SPH

Almost done...

3 = TP Z(uj_uf)'vfwf,j V;
)

Viscous term
du,—

pi—" = pi i = Z( pi+ pi)ViWi; V; (Monaghan & Gingold,1983)
J

A

dx;
— = U pi = F(p)

Symmetric => cons. linear momentum

+
Radial => cons. angular momentum

Zur(V-V)i Vi £ 0| => purely dissipative term!

1




The standard SPH

(wj—u;) - (x;—x;)
N Y AACAL

To stabilize and regularize
the simulations of “inviscid” flows

&

ARTIFICIAL VISCOSITY a=0.01-0.1
c, is the sound velocity (to be defined later)
p, is the reference density value

ahcypo

n(n+2)u  PHYSICAL VISCOSITY K is the dynamical viscosity
n is the number of spatial dimensions

J

(V-Vy ~2uV(V-u) + uViu for h<l, — <1,

\

and regular particle distributions



The standard SPH

If the viscosity is set to zero, the standard SPH preserves the sum of
kinetic energy, potential energy (if any) and reversible internal energy

Er + €, + €, = constant

g, - Zmi I|u2i”2 £, = - stcbf e - Zm‘ fp' pes) oo

i

If the viscosity is included in the scheme, in agreement with
the second law of thermodynamics , we have:

d
a (Ek + Ep + Ec) 0 Power due to dissipation




The standard SPH - weak-compressibility

Up to now, the SPH equations represent a generic compressible fluid

—— = —pi Z(uj_uf)'viwf,j Vj
J

du; Z (uj—u;)-(x;—x;)

! pi— = + pi) ViW; V+KZ VWiV
Pi s pifi — (pj+pi) i.j lx; — x|]2 PR
d.rf
— = U; . = F(p;:

| df’ 1 ,.DI (Pr)

The fluid is barotropic, then the pressure field is derived

from the knowledge of the density field

Thg sgnals (e.g. pressure wa.ves) move with a finite velocity, ) - dp - dF(p)
which is called sound velocity c(p) c(p) = — = ——



The standard SPH - weak-compressibility

For the problems we want to simulate (e.g. water),
the physical sound velocity is much larger than the fluid velocity

= nearly incompressible fluids (small density variations)!

=> we can linearize the state equation around a reference density value p,

p=Fp) — ;J:Cﬁ(p—pg} where ¢p = ¢ (po)

Generally for free-surface flows p, is the density along the FS (where p=0)



The standard SPH - weak-compressibility

The time step of the SPH is approximately Al = —

Unfortunately, we cannot use the physical sound velocity otherwise the time step
of the simulation (which depends on the inverse of ¢, ) would be too small!

A Pmax
Co = IOmax[Um. P ]

£o

where U, ., and p,. ., are the maximum expected velocity and pressure

The above constraint guarantees that the density variations
maintains below 1% during the evolution, that is:

Ap

p

< 0.01 Weakly-compressibility
assumption




The standard SPH - weak-compressibility

In fact, the use of a numerical sound velocity is not a problem...

A

energy

...at least for the phenomena we want to simulate!

Mean flow

numerical
sound speed

(N

acoustics
(physical sound speed)

/\ >

frequency



The standard SPH - weak-compressibility

Finally.... the standard SPH scheme

v Conservation of mass
v Conservation of linear and angular momenta
v’ If K=0, conservation of (kinetic + potential + internal)

(see, for example, Monaghan 2005)

( dp;
i = —Fi Z(u u) V i,J _;
- () — uj) - (X = x;)
\ = 0 i)ViWi; Vi + K
Ty = pifi - Z(P}+P) VAN I Z lx; — x|
dx;
STikn u; pi = C%(PE‘PU) Vi = mi/pi



The standard SPH - weak-compressibility

The standard SPH:

PROS:
v’ explicit scheme => good for parallelization (e.g. 3D simulations)
v Implicit fulfilment of the free-surface boundary conditions

=> good for simulations with complex interface deformations/fragmentations

CONS:
» large sound speed => small time step
» weakly-compressible fluid => acoustic noise

» central-explicit scheme (+ nonlinearities) => spurious numerical noise

numerical schemes to reduce/avoid the spurious numerical noise




The standard SPH - noise in the pressure field

Generally, the velocity field and particle positions are good....

What about other relevant quantities like pressure?

L P/pgH
I 1
I 0.9
15 | 0.8
: = 07
- 06
0.5
0.4
0.3
0.2
0.1

05 -

Dam-break flow: “inviscid fluid” simulated with artificial viscosity (a=0.01)



The standard SPH - noise in the pressure field

Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:
* Numerical scheme: centred + explicit




The standard SPH - noise in the pressure field

Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:
* Numerical scheme: centred + explicit

e Physical model: acoustic waves




The standard SPH - noise in the pressure field

Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:
* Numerical scheme: centred + explicit

e Physical model: acoustic waves

e Lagrangian character:
particle resettlement




The standard SPH - noise in the pressure field

Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:
* Numerical scheme: centred + explicit

e Physical model: acoustic waves

e Lagrangian character:
particle resettlement




The standard SPH - noise in the pressure field

Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:
* Numerical scheme: centred + explicit

e Physical model: acoustic waves

e Lagrangian character:
particle resettlement

All the three aspects
are strictly linked!




An example:
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Pressure Field Instabilities during a Dam-Break Flow

Standart SPH formulation for inviscid fluid
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Remember the scheme relies on conservation:

Pressure Field Instabilities during a Dam-Break Flow
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The standard SPH - noise in the pressure field

The effect of the artificial viscosity is to add diffusion inside the momentum equation

Velocity Field

L Standard SPH a=0 r IUIl(gH)'/i L Standard SPH 0.=0.01 |[;[|/(gI.I)V2
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15 | 1.2 15 |
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The standard SPH - noise in the pressure field

Velocity Field

Standard SPH o=0 1 U(gH)*
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Pressure Field

Standard SPH o:=0
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The effect of the artificial viscosity is to add diffusion inside the momentum equation

Standard SPH o.=0.01

IUl/(gH)"
1.5

Standard SPH 0.=0.01




The standard SPH - noise in the pressure field

Velocity Field

Standard SPH o=0 1 U(gH)*
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Pressure Field

Standard SPH o:=0

1 1 L I 1 o L e vl 1 L I
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The effect of the artificial viscosity is to add diffusion inside the momentum equation

Standard SPH o.=0.01

IUl/(gH)"
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Not enough!
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The diffusive approach

Since the spurious noise mainly affects the density/pressure fields, a possible
strategy is to add a diffusive term inside the continuity equation:

"d;
= p;Z(u u) - VWi, V,

du; (j—u;)-(xj—x;)
1 Pi—— = pifi - i+ pi)ViWi; Vi + K ViWi;V;
P dr Pf 2(*01-}-*0) JVit 2 ||Ij—-1'f||2 i "l
dxf

5 u; pPi = C%(Pi—PU) Vi = mi/pi

where 6 is a dimensionless parameter and

the specific form of l,l’f,j
2 Z '/’i,j -ViWi;i V; characterizes the diffusive
J

scheme at hand

=
Il




The diffusive approach

The vector l,ll,-,_,- has to be symmetric, that is

Vij = Vi —— Zf‘l‘ Vi=0

This ensures the consistency of the integral form of the continuity equation
(e.g. consistency with the equation of mass conservation)

with diffusion without diffusion
A A
] ] \
Z d(fr+ﬁ:(v H);_{S;?CD:D]VI— [ﬂ*'PI(Vu),‘V

dp
dr

g

+pV- u]dV:O




The diffusive approach

(X; —x;) . .
v = (p;i—pi) Molteni & Colagrossi (2009)
e llx;— xill?
W = (Pj - 0i) (xj i) Ferrari et al. (2009)
J 2h|lxj— x|l

but they are inconsistent close to the free surface (no hydrostatic solution!)




The diffusive approach

For example, let us consider the diffusive term by Molteni & Colagrossi (2009
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The diffusive approach

For example, let us consider the diffusive term by Molteni & Colagrossi (2009)

X7 Xi
2 Z(Pj—Pa il -ViW;;V; = 2Vp [i Api + O(h)

]

i = ZVI'W,;JVJ; =
J

A spurious term appears
close to the free surface!
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The diffusive approach

To avoid such an inconsistency, Antuono et al. (2010) defined the following form:

(xj—xi)
lx; —x; |7

1
7y [(P; i) & 5 ((Vp)s +(Vp)f ) - (xj — xy)

e this formulation is consistent close to the free surface

* the diffusive term converges to zero if h goes to zero

The latter scheme is called
6-SPH scheme

Inside the fluid h* 34;01'
- Di = = Biipg
domain 12 OX j0x0X,0X,




The diffusive approach

Hydrostatic test

Molteni & Colagrossi (2009)
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The diffusive approach

Hydrostatic test

Molteni & Colagrossi (2009)
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The diffusive approach

Comparison with standard SPH

Velocity Field
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The diffusive approach
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The 6-SPH scheme
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The 6-SPH scheme

The 6-SPH maintains all the conservation properties of the standard SPH scheme

v Conservation of mass
v Conservation of linear and angular momenta
v If K=0, conservation of (kinetic + potential + internal)

(see, for example, Antuono et al. 2015 )

The dimensionless parameter 6 varies in a narrow range of values
that depends on the ratio (Ax/h) and on the spatial dimensions
(see Antuono et al. 2012)

(6=0.1 is areliable choice in 2D simulations)



The 6-SPH scheme — an example of application

nonlinear
wave-wave
interaction

=

acoustic

waves
L/IH=3
7 I TR
spurious
high-frequency
noise

Fig. 14. The impact of two rectangular fluid patches: sketches of the evolution. The upper part of the fluid domain is given by the 5-SPH while the
lower part is obtained by using the standard SPH.



Simulation of a dam break flow
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Simulation of a dam break flow
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The 6-SPH scheme — numerical details

(xj—x;)
lx; —x: |7

((VoYs +<Vp)f ) - (x = xi)

1
2

 An additional loop is needed in order to calculate renormalized gradients
—1

(Voyt =) (p—pDLiViWsV; L=y (1j—1)® ViW;V,
J J

e However when using higher-order time integrators (e.g. RK4) this cost can be
drastically reduced through a “frozen” diffusion



The 6-SPH scheme — numerical details

The discrete scheme can be represented as follows:

dw
i Qw) + D(w)

where D(w) contains the diffusive term

The RK 4-th order with frozen diffusion reads:

W@ —




The 6-SPH scheme — convergence

Impinging jet

Water wedge impact
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The 6-SPH scheme — convergence

Pressure signals at probe P1
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The 6-SPH scheme — convergence

Pressure signals at probe P1
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The 6-SPH scheme — convergence

y/H (a)

Pressure signals at probe P1
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————— Similarity Solution (Dobrovol'skaya, 1969)
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Being Lagrangian is a
double-edged sword... -
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Particles distribution becomes
non-uniform —> larger errors!
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This occurs when:
e increasing diffusion (Riemann)
e Increasing accuracy

(e.g. interpolation order)
e simulating high shear regions

Eulerian solver with Lagrangian tracers



The 6-SPH scheme - recent and future developments

SPH has a self-rearrangement mechanism (when p is positive!)

but this induces however numerical noise and energy dissipation!!




The 6-SPH scheme - recent and future developments

further insight....

(Vp)i = D (pj+p) VWi Vi = > (pj=pi) ViWi; V;
j

VI = ) ViWi V;
J

L’ |
standard formula for the gradient
(e.g. divergence of the velocity)

v
VI'; points towards the «voids» in the fluid domain

e if p, >0, theterm p; VI'; tends to reduce the disorder in the particle distribution
mmmss)  «implicit particle packing»

e if p, <0, theterm p; VI'i tends to increase the disorder in the particle distribution

mmmmm) tensile instability



The 6-SPH scheme - recent and future developments

Inside the momentum equation, the contribution from this termis | — 2 p; VI;

pi > 0 pi <0

b= o _C_)\‘ P o _5\\
70204990 , 7020 a4°°%0 |
0~ 0O o) 'O~ O Q o)
, o o @) o ! , o o (@) o !
:ooo o 0o :ooo ?fo o,
10 50, O O o] 0 50, O O o]
'O _ 0 ‘%OO\ \0 o 0af \{A)OO‘\
\\OOO oooo‘ “Oo oooo\
O \ O \

\\\O O 9”——~"‘?—c_)_o/l \\\O o S"—-~“~?_C_)_O/l

regularizing increasing disorder



The 6-SPH scheme - recent and future developments

Onset of tensile instability

Negative pressure regions

05 0 03 1w 15

Fig. 1. Flow around a MACAOO10 profile, ¢ = 30°, Re = 10.000. Snapshots of the §7-5PH solutions without {left) and with (right) Tensile |H&HML

With tensile instability control




The 6-SPH scheme - recent and future developments

The idea is to put a term similarto -2 p;VI; with p,>0

directly in the particle position update:

“particle shifting” (Nestor et al. JCP 2009, Lind et al. JCP 2012)

3k
r; =r; + or;

Sri == —CFL-Ma - 2h;j))*> [ Y ViW;V,

y/H Fully Lagrangian

y/H Shifting

Vi = ) VW,V
J




The 6-SPH scheme - recent and future developments

e |ncreasing accuracy through particle shifting
technique: the 6*-SPH

yiL ( SSPH g1 T

Rotating square patch
Sun et al. CMAME 2016

" , \ 'l's-l ! W IRVOP SNUTPU: SRR | L
-1 0 TR -5 -1 05 0 05 1 15

e Tensile instability control |
Airfoil in stall configuration 05'_ ( 'c,- (i
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The 6-SPH scheme - recent and future developments

e Arbitrary Lagrangian Eulerian framework for 6-SPH
e O0-SPH for multi-phase flows

e Large Eddy Simulation perspective for 6-SPH

Di Mascio et al. (2017)
Meringolo et al. (2018)




The 6-SPH scheme - recent and future developments

The viscous term in the momentum equation and the diffusive term
in the continuity equation are interpreted as closures in the LES framework

=> dynamic choice of coefficients using the velocity deformation tensor

( Dp;
B = Z(u" ) - VW Vg + hco ,-j =N Wy Vs,

M

6;6- V:
=2 a Oy = : Vi = (Cslees X IIDI;



The 6-SPH scheme - recent and future developments

The viscous term in the momentum equation and the diffusive term
in the continuity equation are interpreted as closures in the LES framework

=> dynamic choice of coefficients using the velocity deformation tensor
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The 6-SPH scheme - recent and future developments
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