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Plan of the Talk

• The standard SPH: general structure

• Diffusive variants of SPH: main features and limits 

• The δ-SPH scheme: a consistent diffusive variant

• Current developments: the δLES-SPH and the δplus-SPH 

• Weakly-compressibility assumption: issues in pressure evaluation
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The SPH is a particle method

The fluid domain (D hereinafter) 

is discretized into a finite number 

of particles that represent 

elementary volumes of fluid

D

Particles transport the values of the physical

quantities (e.g. pressure and velocity), 

moving with the fluid velocity

=> the SPH is a Lagrangian method
ui

No topological connections 

=> the SPH is a Meshless method

General features of the SPH



Why smoothing?

• the Lagrangian nature of the SPH induces non-uniform spatial distributions 

of particles during the flow evolution  

• the absence of topological connections between particles (meshless method) 

makes the evaluation of standard differential operators very complex

The smoothing procedure allows us to model the interactions between

neighbour particles in a simple and consistent way and to approximate the

usual differential operators in a reliable manner

General features of the SPH



Let us consider a weight function W

(kernel function) defined as follows:

• radial and positive

• with a compact support Ω

(i.e. it is null outside Ω) 

• C1(Rn) at least

Ω
x

W

Smoothing



Let us consider a weight function W

(kernel function) defined as follows:

• radial and positive

• with a compact support Ω

(i.e. it is null outside Ω) 

• C1(Rn) at least

Ω
x

W

Ω

x

R

The kernel function has generally a bump-like shape:

• Gaussian-type

• Polinomial type (e.g. Wendland kernels)

• Spline kernels (e.g. Cubic/quintic splines)

Smoothing



Let us consider a weight function W

(kernel function) defined as follows:

• radial and positive

• with a compact support Ω

(i.e. it is null outside Ω) 

• C1(Rn) at least

Ω
x

W

Ω

x

R ≈ h

The kernel function is generally expressed

as a function of a reference length h, 

called smoothing length, 

which is proportional to the radius R

of the kernel domain Ω

Smoothing



The kernel function is normalized to one, that is:

Ω

x

R ≈ h

Consequently, the kernel function W preserves 

its «mass»  inside the support  Ω for every choice of  h

Smoothing



The kernel function is normalized to one, that is:

Ω

x

R ≈ h

Consequently, the kernel function W preserves 

its «mass»  inside the support  Ω for every choice of  h

h = 1/3

h = 1/2

h = 2/3

h = 1

Gaussian kernel in 2D with R=3h

For h going to zero, the Kernel function shrinks to a point  (preserving its mass)
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The kernel function is normalized to one, that is:

Ω

x

R ≈ h

Consequently, the kernel function W preserves 

its «mass»  inside the support  Ω for every choice of  h

h = 1/3

h = 1/2

h = 2/3

h = 1

Gaussian kernel in 2D with R=3h

For h going to zero, the Kernel function shrinks to a point  (preserving its mass)

W converges weakly to a Dirac function!

Smoothing



The smoothing procedure is defined through a convolution integral with the

kernel function W over the fluid domain D

In particular, for a generic scalar function f, we define:

Ω

x
x*

R ≈ h

the support  Ω is centred at the point  x and 

the integration is done on the variable x*





As a consequence of the properties of W, we have:

denotes

differentiation with respect to x*

where 

Smoothing - continuum



The simplest case is obtained for f=1 

This function takes into account how much “mass” of the fluid domain D

is inside the kernel domain Ω

Ω

x

x*

Smoothing - continuum



The simplest case is obtained for f=1 

Since the kernel is normalized, we have: 

All the «mass» is inside the fluid domain

Ω
x

D

x*

This function takes into account how much “mass” of the fluid domain D

is inside the kernel domain Ω

Smoothing - continuum



The simplest case is obtained for f=1 

Ω
x

D

Some «mass» is outside the fluid domain

Since the kernel is normalized, we have: 

x*

This function takes into account how much “mass” of the fluid domain D

is inside the kernel domain Ω

Smoothing - continuum



A little more involved is the derivation of the smoothed gradient operator

Using integration by parts (and a careful modelling of boundary terms), 

it is possible to obtain the following approximation:

Smoothing - continuum



The fluid domain is discretized in a finite number of particles that represent 

elementary volumes of fluid and transport the main physical quantities

Let us assume that the volumes Vi are known… 

(these may be obtained through geometrical procedures basing 

on particle distribution or during the numerical simulation) 

Smoothing



The fluid domain is discretized in a finite number of particles that represent 

elementary volumes of fluid and transport the main physical quantities

Let us assume that the volumes Vi are known… 

(these may be obtained through geometrical procedures basing 

on particle distribution or during the numerical simulation) 

Then, we replace the integral over Ω by summations over the neighbour particles

Smoothing



Similarly, we define:

where

represents 

differentiation with respect to xi

where

Hereinafter the symbol in the summations is understood   

Smoothing



What about the convergence of discrete operator towards 

the continuous smoothed operators?

increasing the number of particle in Ω decreasing   ∆x/h

• the convergence strongly depends on the way in which the particles 

are distributed (regular distributions are needed)

• even in the presence of regular particle distribution, the order of 

convergence is generally between 1 and 2 

In any case….

∆x is the mean particle distance

Smoothing



For the function,   if

discrete smoothed (continuous) exact

+ REGULAR PARTICLE 

DISTRIBUTIONS!

(i.e. inside the fluid domain)

For regular distributions, the convergence to the exact solution 

is attained if BOTH the parameters ∆x/h and h go to zero!

(see, for example, Quinlan et al. 2006) 

Smoothing



∆x/h = const

∆x/h = const/2

∆x/h = const/4

h

Theoretical second-order convergence for h

For example, if we check the convergence 

of the SPH by decreasing  h

while  ∆x/h  is fixed

(i.e. constant number of particles in Ω)…

Smoothing



For                               (i.e. inside the fluid domain) 

for  ∆x/h, h  « 1   ….and for regular distributions!

Smoothing



The standard SPH

Despite many fluids (like water) are modelled as incompressible, the SPH 

in its basic form relies on the hypotheses that the fluid is weakly-compressible 

(this will be clarified later) 

It may be derived from the Navier-Stokes equations for compressible fluids: 

We are interested in the SPH in the fluid dynamics field…. 

ρ is the fluid density, 

u is the fluid velocity

p is the pressure field

f is a body force

State equation for barotropic fluids 

viscous component of the stress tensor

Lagrangian derivatives



Despite many fluids (like water) are modelled as incompressible, the SPH 

in its basic form relies on the hypotheses that the fluid is weakly-compressible 

(this will be clarified later) 

It may be derived from the Navier-Stokes equations for compressible fluids: 

We are interested in the SPH in the fluid dynamics field…. 

the differential operators are substituted with their smoothed (and discrete) counterparts

The standard SPH



Divergence of the velocity…

we need to find out the volumes!

Being a Lagrangian method, it is common practise in the standard SPH to associate 

a mass           to each particle and to maintain it constant during the flow evolution  

It is also possible to define the volumes basing on geometrical considerations 

(e.g. particle distributions, Espaŋol & Revenga, 2003) 

and

The standard SPH



Generally….

• the SPH simulation is initialized by imposing 

a uniform particle distribution

(or, at least, as regular as possible!)

=>  the volumes are initially uniform

• the density field is assigned as an initial condition 

(and generally it is not constant all over the fluid domain)

=> the particles may have different masses

• During the simulation, the masses do not change

while the density field evolves according to the 

physical equations

=> volumes may evolve in a way that disregards

the actual geometrical distribution of particles

The standard SPH



Generally….

• the SPH simulation is initialized by imposing 

a uniform particle distribution

(or, at least, as regular as possible!)

=>  the volumes are initially uniform

• the density field is assigned as an initial condition 

(and generally it is not constant all over the fluid domain)

=> the particles may have different masses

• During the simulation, the masses do not change

while the density field evolves according to the 

physical equations

=> volumes may evolve in a way that disregards

the actual geometrical distribution of particles

=>   Reduced accuracy when intense density gradients occur!

The standard SPH



The standard SPH



About the pressure gradient….

• preserves linear and angular momenta

• the work along the free surface is null

in an integral sense, namely

Advantages:

• if we set p=0 along the FS at the initial time, the SPH does a null work along the FS

(in an integral sense) during the subsequent evolution 

• in comparison to the incompressible SPH variants, there is no need to impose 

p=0 along the FS during the evolution

The standard SPH



Almost done…

Symmetric   =>  cons. linear momentum 

+

Radial   =>   cons. angular momentum

Viscous term 

(Monaghan & Gingold,1983)

=>    purely dissipative term!

The standard SPH



ARTIFICIAL VISCOSITY     α = 0.01 – 0.1

c0 is the sound velocity (to be defined later)

ρ0 is the reference density value 

PHYSICAL VISCOSITY         µ is the dynamical  viscosity

n is the number of spatial dimensions   

To stabilize and regularize

the simulations of “inviscid” flows

and regular particle distributions

The standard SPH



If the viscosity is set to zero, the standard SPH preserves the sum of  

kinetic energy , potential energy (if any) and  reversible internal energy

If the viscosity is included in the scheme, in agreement with 

the second law of thermodynamics , we have:

Power due to dissipation 

The standard SPH



The standard SPH  - weak-compressibility

The fluid is barotropic, then the pressure field is derived 

from the knowledge of the density field

Up to now, the SPH equations represent a generic compressible fluid

The signals (e.g. pressure waves) move with a finite velocity, 

which is called   sound velocity   c(ρ)



For the problems  we want to simulate (e.g. water), 

the physical sound velocity is much larger than the fluid velocity

 nearly incompressible fluids  (small density variations)!

=>  we can linearize the state equation around a reference density value   ρ0

Generally for free-surface flows   ρ0 is the density along the FS  (where  p=0)

The standard SPH  - weak-compressibility



The time step of the SPH is approximately

Unfortunately, we cannot use the physical sound velocity otherwise the time step

of the simulation (which depends on the inverse of c0 ) would be too small!

where Umax and pmax are the maximum expected velocity and pressure

The above constraint guarantees that the density variations 

maintains below 1% during the evolution, that is:

Weakly-compressibility

assumption

The standard SPH  - weak-compressibility



In fact, the use of a numerical sound velocity is not a problem…

…at least for the phenomena we want to simulate!

energy

frequency

Mean flow

acoustics

(physical sound speed)
numerical

sound speed

The standard SPH  - weak-compressibility



Finally…. the standard SPH scheme

 Conservation of mass

 Conservation of linear and angular momenta

 If K=0, conservation of  (kinetic + potential + internal) 

(see, for example,  Monaghan 2005)

The standard SPH  - weak-compressibility



The standard SPH: 

PROS:

 explicit scheme   =>  good for parallelization (e.g. 3D simulations)

 Implicit fulfilment of the free-surface boundary conditions

=>  good for simulations with complex interface deformations/fragmentations

CONS:

 large sound speed  =>  small time step 

 weakly-compressible fluid  =>  acoustic noise

 central-explicit scheme  (+ nonlinearities)   =>  spurious numerical noise

numerical schemes to reduce/avoid the spurious numerical noise 

The standard SPH  - weak-compressibility



Generally, the velocity field and particle positions are good….

What about other relevant quantities like pressure?

The standard SPH  - noise in the pressure field

Dam-break flow: “inviscid fluid” simulated with artificial viscosity (α=0.01)



Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:

• Numerical scheme: centred + explicit

The standard SPH  - noise in the pressure field



Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:

• Numerical scheme: centred + explicit

• Physical model: acoustic waves
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Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:

• Numerical scheme: centred + explicit

• Physical model: acoustic waves

• Lagrangian character:

particle resettlement

The standard SPH  - noise in the pressure field



Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:

• Numerical scheme: centred + explicit

• Physical model: acoustic waves

• Lagrangian character: 

particle resettlement 

The standard SPH  - noise in the pressure field



Kinematics is correct, but pressure field is noisy!

Main sources of noise on the pressure field:

• Numerical scheme: centred + explicit

• Physical model: acoustic waves

• Lagrangian character: 

particle resettlement 

All the three aspects 

are strictly linked!

The standard SPH  - noise in the pressure field



An example: 

simulation of dam-break without artificial viscosity (α=0)

The standard SPH  - noise in the pressure field



Remember the scheme relies on conservation:

errors goes in internal energy!

The standard SPH  - noise in the pressure field



The effect of the artificial viscosity is to add diffusion inside the momentum equation  

Velocity Field

The standard SPH  - noise in the pressure field



The effect of the artificial viscosity is to add diffusion inside the momentum equation  

Velocity Field

Pressure Field

The standard SPH  - noise in the pressure field



The effect of the artificial viscosity is to add diffusion inside the momentum equation  

Velocity Field

Pressure Field

Not enough!

The standard SPH  - noise in the pressure field



The diffusive approach

Since the spurious noise mainly affects the density/pressure fields, a possible

strategy is to add a diffusive term inside the continuity equation:

the specific form of           

characterizes the diffusive 

scheme at hand

where  δ is a dimensionless  parameter and



This ensures the consistency of the integral form of the continuity equation 

(e.g. consistency with the equation of mass conservation) 

with diffusion without diffusion

The vector             has to be symmetric, that is

The diffusive approach



Molteni & Colagrossi (2009) 

Ferrari et al. (2009)

but they are inconsistent close to the free surface (no hydrostatic solution!)

The diffusive approach



The diffusive approach

For example, let us consider the diffusive term by Molteni & Colagrossi (2009)

S∂Ω
B∂Ω

Ω
g
rxi



The diffusive approach

For example, let us consider the diffusive term by Molteni & Colagrossi (2009)

S∂Ω
B∂Ω

Ω
g
r

xi

A spurious term appears 

close to the free surface!



To avoid such an inconsistency, Antuono et al. (2010) defined the following form:

The latter scheme is called

δ-SPH scheme
Inside the fluid

domain

The diffusive approach

• this formulation is consistent close to the free surface

• the diffusive term converges to zero if h goes to zero



δ-SPH

Hydrostatic test

Molteni & Colagrossi (2009)

The diffusive approach



δ-SPH

Hydrostatic test

Molteni & Colagrossi (2009)

This happens also with 

density filters (MLS, shepard)

The diffusive approach



Comparison with standard SPH

Velocity Field

Pressure Field

The diffusive approach



Weakly-Compressible δ-SPH Incompressible FVM 

The diffusive approach



The δ-SPH scheme

where  δ is a dimensionless  parameter and



The δ-SPH maintains all the conservation properties of the standard SPH scheme

 Conservation of mass

 Conservation of linear and angular momenta

 If K=0, conservation of  (kinetic + potential + internal) 

(see, for example,  Antuono et al. 2015  )

The δ-SPH scheme

The dimensionless parameter  δ varies in a narrow range of values 

that depends on the ratio (∆x/h) and on the spatial dimensions 

(see Antuono et al. 2012)

(δ=0.1  is a reliable choice in 2D simulations)



The δ-SPH scheme – an example of application

acoustic 

waves

spurious

high-frequency

noise

nonlinear

wave-wave

interaction



Standard SPH

(with and without 

artificial viscosity)

Simulation of a dam break flow



Standard SPH

(with and without 

artificial viscosity)

δ-SPH

(with and without 

artificial viscosity)

Simulation of a dam break flow



• An additional loop is needed in order to calculate renormalized gradients

• However when using higher-order time integrators (e.g. RK4) this cost can be 

drastically reduced through a “frozen” diffusion

The δ-SPH scheme – numerical details



The δ-SPH scheme – numerical details

The discrete scheme can be represented as follows: 

where D(w) contains the diffusive term

The RK 4-th order with frozen diffusion reads:



Impinging jet

Water wedge impact

against a wall

The δ-SPH scheme – convergence



Pressure signals at probe P1

The δ-SPH scheme – convergence



Pressure signals at probe P1

The δ-SPH scheme – convergence



Pressure signals at probe P1

The δ-SPH scheme – convergence



Being Lagrangian is a 
double-edged sword…

Particles distribution becomes 

non-uniform  larger errors!

This occurs when:

• increasing diffusion (Riemann)

• Increasing accuracy 

(e.g. interpolation order)

• simulating  high shear regions

The δ-SPH scheme – recent and future developments

Eulerian solver with Lagrangian tracers



SPH has a self-rearrangement mechanism (when p is positive!)

but this induces however numerical noise and energy dissipation!!

The δ-SPH scheme – recent and future developments



further  insight….

standard formula for the gradient

(e.g. divergence of the velocity)

points towards the «voids» in the fluid domain

• if pi > 0,  the term                  tends to reduce the disorder in the particle distribution

• if pi < 0, the term                  tends to increase the disorder in the particle distribution

«implicit particle packing»

tensile instability

The δ-SPH scheme – recent and future developments



Inside the momentum equation, the contribution from this term is

regularizing increasing  disorder

The δ-SPH scheme – recent and future developments



Onset of tensile instability Negative pressure regions

With tensile instability control

The δ-SPH scheme – recent and future developments



The idea is to put a term similar to                      with  pi > 0

directly in the particle position update: 

“particle shifting” (Nestor et al. JCP 2009, Lind et al. JCP 2012)

Shifting

The δ-SPH scheme – recent and future developments



• Increasing accuracy through particle shifting 

technique: the δ+-SPH

• Tensile instability control

Rotating square patch
Sun et al. CMAME 2016

Airfoil in stall configuration 

at Re=10000
Sun et al. CPC 2018

The δ-SPH scheme – recent and future developments



• Arbitrary Lagrangian Eulerian framework for δ-SPH 

• δ-SPH for multi-phase flows

• Large Eddy Simulation perspective for δ-SPH

Di Mascio et al. (2017)

Meringolo et al. (2018) 

The δ-SPH scheme – recent and future developments



The δ-SPH scheme – recent and future developments

The viscous term in the momentum equation and the diffusive term 

in the continuity equation are interpreted as closures in the LES framework

=>  dynamic choice of coefficients using the velocity deformation tensor



The δ-SPH scheme – recent and future developments

The viscous term in the momentum equation and the diffusive term 

in the continuity equation are interpreted as closures in the LES framework

=>  dynamic choice of coefficients using the velocity deformation tensor



The δ-SPH scheme – recent and future developments

Two-dimensional freely-decaying turbulence:  Rel = 125,000

DNS by using SPH 

(insufficient resolution)

LES-SPH

(same resolution,

correct modelling of 

large vortex structures)

Initial vorticity field

(2D vortex pattern)
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