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Abstract

A general model for the dissolution of stoichiometric particles in multi-component

alloys is proposed and analysed. We introduce the concept of mass-conserving solu-

tions and give a self-similar solution for the resulting Stefan-problem. Furthermore,

we show that particle dissolution in multi-component alloys can under certain cir-

cumstances be approximated by a model for particle dissolution in binary alloys.

Subsequently, we propose a numerical method to solve the coupled dissolution prob-

lem. We end with some examples of hypothetical applications from metallurgy.
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1 Introduction

In the thermal processing of both ferrous and non-ferrous alloys, homogenisation of the ex-
isting microstructure by annealing at such a high temperature that unwanted precipitates
are fully dissolved, is required to obtain a microstructure suited to undergo heavy plas-
tic deformation as an optimal starting condition for a subsequent precipitation hardening
treatment. Such a homogenisation treatment, to name just a few examples, is applied in
hot-rolling of Al killed construction steels, HSLA steels, all engineering steels, as well as
aluminium extrusion alloys. Although precipitate dissolution is not the only metallurgical
process taking place, it is often the most critical of the occurring processes. The minimum
temperature at which the annealing should take place can be determined from thermody-
namic analysis of the phases present. The minimum annealing time at this temperature,
however, is not a constant but depends on particle size, particle geometry, particle concen-
tration, overall composition etc.
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Due to the scientific and industrial relevance of being able to predict the kinetics of
particle dissolution, many models of various complexity [19, 11, 7, 30, 2, 17, 16, 21, 9, 1,
20, 12, 18, 28, 4, 15, 8] have been presented and experimentally validated. In recent years
the simpler models covering binary and ternary alloys have been extended to cover multi-
component particles [24, 26, 25]. These advanced models cover a range of physical assump-
tions concerning the dissolution conditions and the initial microstructure. Furthermore,
mathematical implications (such as a possible bifurcation of the solution, monotonicity
of the solution and well-posedness) are addressed and mathematically sound extensions
to the case of n compound particles, with proven theorems concerning existence of mass-
concerning solutions and solution bounds, have been derived.

The current paper does not aim at being mathematically rigorous but merely aims
at being descriptive about the implications of the developed mathematics of these more
complex models. First we formulate the model for particle dissolution in multi-component
alloys. Subsequently, we give asymptotic solutions for both the planar and spherical par-
ticle. This asymptotic solution is used to verify numerical computations. Furthermore, we
show that the multi-component problem (a ’vector-valued’ Stefan problem) can be approx-
imated by a binary problem (’scalar’ Stefan problem) under certain circumstances. Next,
we give a numerical scheme to solve the mathematical problem for more general cases.
Subsequently, some test-cases are shown using some hypothetical experimental data. We
end up with a discussion and some conclusions.

2 Basic assumptions in the model

We consider a particle of a multi-component β phase surrounded by a ’matrix’ of phase α, of
uniform or non-uniform composition. The boundary between the β-particle and α-matrix
is referred to as the interface. The metal is divided into cells in which a particle of phase β
dissolves in an α-matrix. The model is based on the concept of local equilibrium, i.e. the
interfacial concentrations are those predicted by thermodynamics. In [25] we considered the
dissolution of a stoichiometric particle in a ternary alloy. The hyperbolic relationship be-
tween the interfacial concentrations for ternary alloys is derived using a three-dimensional
Gibbs-space. For the case that the particle consists of n chemical elements apart from
the atoms that form the bulk of the β-phase, a generalisation to a n-dimensional Gibbs
hyperspace has to be made. The Gibbs-surfaces become hypersurfaces. We expect that
similar consequences follow and that hence the hyperbolic relation between the interfacial
concentrations remains valid for the general stoichiometric particle in a multi-component
alloy. We denote the chemical species by Sp i, i ∈ {1, ..., n + 1}. We denote the stoichiom-
etry of the particle by (Sp1)m1

(Sp2)m2
(Sp3)m3

(...)(Spn)mn
. The numbers m1, m2, ... are

stoichiometric constants. We denote the interfacial concentration of species i by c sol
i and

we use the following hyperbolic relationship for the interfacial concentrations:

(csol
1 )m1(csol

2 )m2(...)(csol
n )mn = K = K(T ). (1)
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The factor K is referred to as the solubility product. It depends on temperature T according
to an Arrhenius relationship.

We denote the position of the moving interface between the β particle and α phase by
S(t). Consider a one-dimensional domain, i.e. there is one spatial variable, which extends
from 0 up to M . The spatial co-ordinate is denoted by r, 0 ≤ S(t) ≤ r ≤ M . This domain
is referred to as Ω(t) := {r ∈ R : 0 ≤ S(t) ≤ r ≤ M}. The α-matrix where diffusion takes
place is given by Ω(t) and the β-particle is represented by the domain 0 ≤ r < S(t). Hence
for each alloying element, we have for r ∈ Ω(t) and t > 0 (where t denotes time)

∂ci

∂t
=

Di

ra

∂

∂r

{

ra ∂ci

∂r

}

, for i ∈ {1, ..., n}. (2)

Here Di and ci respectively denote the diffusion coefficient and the concentration of the
species i in the α-rich phase. We neglect the cross-diffusion coefficients. Hence above
equation is a simplification of the more general multi-component diffusion equation as
stated by Kirkaldy and Young [10]. The geometry is planar, cylindrical and spherical for
respectively a = 0, 1 and 2. Let c0

i denote the initial concentration of each element in the
α phase, i.e. we take as initial conditions (IC) for r ∈ Ω(0)

(IC)







ci(r, 0) = c0
i (r) for i ∈ {1, ..., n}

S(0) = S0.

We omit the more general case in [24] where we consider the possibility of two simultane-
ously dissolving / growing particles. At a boundary not being an interface, i.e. at M or
when S(t) = 0, we assume no flux through it, i.e.

∂ci

∂r
= 0, for i ∈ {1, ..., n}. (3)

Furthermore at the moving interface S(t) we have the ’Dirichlet boundary condition’ c sol
i

for each alloying element. The concentration of element i in the particle is denoted by
cpart
i , this concentration is fixed at all stages. This assumption follows from the constraint

that the stoichiometry of the particle is maintained during dissolution in line with Reiso
et al [15]. The dissolution rate (interfacial velocity) is obtained from a mass-balance.
Summarised, we obtain at the interface for t > 0 and i, j ∈ {1, ..., n}:

ci(S(t), t) = csol
i

dS

dt
=

Di

cpart
i − csol

i

∂ci

∂r
(S(t), t)















⇒ Di

cpart
i − csol

i

∂ci

∂r
(S(t), t) =

Dj

cpart
j − csol

j

∂cj

∂r
(S(t), t). (4)

Above formulated problem falls within the class of Stefan-problems, i.e. diffusion with a
moving boundary. Since we consider simultaneous diffusion of several chemical elements,
it is referred to as a ’vector-valued Stefan problem’. The unknowns in above equations are
the concentrations ci, interfacial concentrations csol

i and the interfacial position S(t). For a
mathematical overview of Stefan problems we refer to the textbooks of Crank [5], Chadam
and Rasmussen [3] and Visintin [27].
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3 Analysis of the model

In this section we consider some general mathematical properties of the dissolution model.
For the diffusion equation with appropriate boundary conditions there exists exactly one
solution ci that is continuous at least up to the first and second derivative with respect to
respectively time t and position r. Protter and Weinberger [14] prove that these smooth
solutions satisfy a maximum principle, i.e. the global extremes of c i occur either at the
boundaries (r = S(t), r = M) or at t = 0.

3.1 Mass conserving solutions

We require that the total mass of all chemical elements is constant in the whole dissolution
cell, i.e. over 0 ≤ r ≤ M . Further, let c0

i be constant over Ω(0), then

∫ M

0

ci(r, t)r
adr = cpart

i

Sa+1
0

a + 1
+ c0

i

Ma+1 − Sa+1
0

a + 1
.

Subtraction of

∫ M

0

c0
i r

adr = c0
i

Ma+1

a + 1
from both sides of above equation gives

∫ M

0

(ci(r, t) − c0
i )r

adr = (cpart
i − c0

i )
Sa+1

0

a + 1
. (5)

All solutions of the Stefan-problem have to satisfy this condition. We use an intuitive
argument to show that some Stefan-problems do not have solutions that satisfy mass-
conservation and hence are ill-posed. A mathematical theorem is rigorously proven in [24].

Suppose that c0
i < cpart

i < csol
i , i.e. the interfacial concentration exceeds the initial

concentration (see Figure 1). From t = 0 the interfacial concentration can increase (build
up) only due to transport of atoms from the particle to the interface and matrix (since
concentration gradients and reactions are absent initially). This implies that the total
number of atoms of the alloying elements in the particle must decrease.

On the other hand from the maximum principle of the diffusion equation follows that
∂ci

∂r
(S(t), t) < 0. Hence, the total number of atoms of the alloying element in the matrix

increases. Furthermore, we have cpart
i − csol

i < 0, which implies
dS

dt
> 0, hence the total

number of atoms of the alloying elements in the particle increases. This gives a contradic-
tion.

Both the interfacial movement due to growth and the increase of the total number of
atoms of the alloying element are sketched in Figure 1. Mass can not be conserved for this
case.

Similar arguments can be used to show that the other case csol
i < cpart

i < c0
i also violates

mass-conservation (see Figure 2). This statement can be generalised in the following result:
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csol

t = 0                                                                  t > 0

S(0)                                                                                      S(t)
(I)                                                                           (II)

i

part
c i

0c i

part
c

0c

i i

Figure 1: The hypothetical case c0
i < cpart

i < csol
i which gives growth of the α-phase and

violation of the mass-balance. Left (I) shows the initial situation and right (II) shows a
situation at some time t > 0.

t = 0                                                                  t > 0

S(0)                                                                                      S(t)
(I)                                                                           (II)

c
part

i

cpart
csol

i ii

0ci
0c

Figure 2: The hypothetical case csol
i < cpart

i < c0
i which gives growth of the α-phase and

violation of the mass-balance. Left (I) shows the initial situation and right (II) shows a
situation at some time t > 0.
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Theorem: Let all concentrations be non-negative, then the following combinations give
non-conserving solutions in the sense of equation (5):

• csol
i < cpart

i < c0
i ,

• c0
i < cpart

i < csol
i (see Figures 1 and 2 for both cases).

This result is used to reject possible (numerical) unphysical solutions that result from
the vector-valued Stefan problem.

3.2 An asymptotic solution for the planar case

Here we consider the case of an α particle dissolving in an unbounded domain, i.e. M = ∞
and Ω(t) is unbounded at the right side. Furthermore, the domain is planar, i.e. a = 0 in
equation (2). The interfacial concentrations csol

i satisfy equation (1). For completeness we
start with the derivation of the self-similar solution for the one-component problem. As
far as we know, Weber was the first to derive such solution for the freezing problem [29].

3.2.1 The one-component problem

Suppose that the interface concentration of a certain component is known, say c(S(t), t) =
csol for a some component. Then, we have to solve the following problem (we refer to this
problem as (P1)):

(P1)



















































∂c

∂t
= D

∂2c

∂r2

dS

dt
=

D

cpart − csol

∂c

∂r
(S(t), t)

c(S(t), t) = csol

c(r, 0) = c0 = c(∞, t), S(0) = S0.

Here we omit the subscript i. As in [24] we search a self-similar solution for the function
c = c(r, t) and for S = S(t) we state a square-root behaviour as a function of time. Trial

of c = c(
r − S0

2
√

Dt
) shows that these expressions satisfy the differential equations in (P1).

Setting η :=
r − S0

2
√

Dt
gives the following differential equation for c = c(η) with general

solution

−ηc′ = c′′ ⇒ c = c(η) = A erfc(η) + B.

The complementary error function is defined as erfc(x) := 1−erf(x) = 2√
π

∫∞
x

e−y2

dy. Trial

of S = S0 + k
√

t, substitution of c(S(t), t) = csol into above solution and use of the initial
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condition gives

A erfc(
k

2
√

D
) + B = csol

limx→∞ erfc(x) = 0 ⇒ B = c0.

Solving for A and B gives the Neumann-solution as derived in [23]

c(r, t) =
c0 − csol

erfc( k
2
√

t
)
erfc

(

r − S0

2
√

Dt

)

+ c0

Above solution and S = S0 + k
√

t are substituted into equation (4) to give the following
expression for the constant k:

c0 − csol

cpart − csol
·
√

D

π
· e−

k2

4D

erfc( k
2
√

D
)

=
k

2
(6)

Above equation is solved for k using a standard zero-point iteration method. The physical
model in which the solubilities are coupled hyperbolically, see equation (1), is valid only for
the dilute regime [10]. Therefore, in most cases we have c i � cpart

i . Hence, in general we

have | csol − c0

cpart − csol
| � 1. From above equation it can be shown that k is then approximated

by (we refer to [23] for more detail)

k = −2
csol − c0

cpart − csol
·
√

D

π
. (7)

This gives the classical formula for the interfacial velocity that has been obtained by Aaron
and Kotler [1] using Laplace transforms

dS

dt
= − csol − c0

cpart − csol
·
√

D

π t
. (8)

We remark that the derivation of above equation using the Laplace tranasform contains
the assumption that the interface moves very slowly compared to the rate of diffusion, i.e.
it is a so-called ’frozen profile’ approach. For most cases of particle dissolution in solid
metals and alloys, the frozen profile approach is a reasonable approximation. Therefore
above approximation is used in the present paper for the extension to the multi-component
problem.

3.2.2 The multi-component problem

As a trial solution for the planar case in a semi-unbounded region, we take the interfacial
concentrations to be constant (these concentrations are not constant in time for other
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cases). Equation (4) has to be fullfilled, hence combined with equation (6) one obtains the
following system of non-linear equations to be solved for k and c sol

i for i ∈ {1, ..., n}:


















csol
i − c0

i

cpart
i − csol

i

·
√

Di

π
· e

− k2

4Di

erfc( k
2
√

Di
)

=
k

2
for i ∈ {1, ..., n},

(csol
1 )m1(csol

2 )m2(csol
3 )m3(...) = K.

(9)

Due to the non-linear nature of above equations, the solution is in general not unique.
Above set of equations provides an exact solution for the ’vector valued’ Stefan problem in
the parameters k and csol

1 , csol
2 , ...csol

n . Due to its complexity we rely on numerical solution
techniques to obtain its solution. This solution is referred to as the ’Neumann’ solution
for the planar case. Instead of equation (6) we use equation (8) as an approximation for

the case that | csol
i − c0

i

cpart
i − csol

i

| � 1. This gives the following set of equations to be solved in

k, csol
1 , csol

2 , ..., csol
n :















k = 2
c0
i − csol

i

cpart
i − csol

i

·
√

Di

π
for i ∈ {1, ..., n},

(csol
1 )m1(csol

2 )m2(csol
3 )m3(...) = K.

(10)

Note that above equation is accurate whenever | csol
i − c0

i

cpart
i − csol

i

| � 1. For cases where this

inequality does not hold, then the above set of equations should be replaced by system
(9). To illustrate the fact that more solutions can occur, we consider a hypothetical ternary
alloy with m1 = 1 = m2, cpart

1 = 50, cpart
2 = 1, c0

1 = 2 and c0
2 = 30 and D2 = 2D1, then

after some calculation one obtains two solutions for the interfacial concentrations and rate
factor k

{

csol
1 = 11.72680603, csol

2 = 25.58241343, k = −0.2867679473 ’slow’ solution
csol
1 = 42.43150941, csol

2 = 7.070217490, k = −6.027895861 ’fast’ solution.

Both solutions conserve mass and hence are well-posed. Note that the ’fast’ solution does

not satisfy | csol
i − c0

i

cpart
i − csol

i

| � 1 and hence the use of above equations gives an inaccurate

value for the ’fast’ solution. We remark here that this has only been given for illustrational
purposes. Real-world alloys do not fall into this class since the model is only valid in the
dilute solution regime, i.e. c i � cpart

i , i ∈ {1, ..., n} for t > 0, r ∈ Ω(t). For the interested
reader, we refer to [23] where several computations have been done to determine the two
solutions for a ternary alloy. The same computations for the ’exact’ Neumann solution are
done in [23] in which the set of equations (9) is used instead of system (10). Furthermore,
in [24] it has been shown that the interfacial velocity has the following upper- and lower
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bound:

c0
i − csol

i

cpart
i − csol

i

√

Di

πt
<

dS

dt
<

c0
i − csol

i

cpart
i − c0

i

√

Di

πt
. (11)

This gives two easy bounds for the solution of the interfacial concentrations and hence the
dissolution rate can be estimated very quickly.

The ’dilute’ case

We consider the case that the particle concentration is much larger than the interface
concentration. Furthermore, we assume that the initial concentration is almost equal to
zero, i.e. cpart

i � csol
i � c0

i ≈ 0. From the upper and lower bounds in above expression, it
follows that the interface velocity can be approximated by

dS

dt
= − csol

i

cpart
i

√

Di

πt
for i ∈ {1, ..., n}. (12)

Since this has to hold for all i ∈ {1, ..., n} it follows that all interfacial concentrations can
be expressed in terms of, for instance, the interfacial concentration corresponding to the
first element, i.e.

− csol
i

cpart
i

√

Di = − csol
1

cpart
1

√

D1 ⇒ csol
i =

cpart
i

cpart
1

√

D1

Di
· csol

1

We substitute all these expressions for csol
i into the hyperbolic relation for the interfacial

concentrations (equation (1)) to obtain a simple exponential equation for c sol
1 whose non-

negative real-valued solution gives

(csol
1 )µ ·

(

cpart
2

cpart
1

√

D1

D2

)m2

·
(

cpart
4

cpart
1

√

D1

D4

)m4

...

(

cpart
n

cpart
1

√

D1

Dn

)mn

= K

⇔ csol
1 =

cpart
1√
D1

[

Πn
i=1

(√
Di

cpart
i

)mi

· K
]

1

µ
(∈ R

+
0 ).

where Πn
i=1fi := f1f2...fn and µ := m1 + m2 + ... + mn. Note again that we consider

only non-negative and real-valued concentrations. The solution for csol
1 is substituted into

equation (12) to obtain the interface velocity:

dS

dt
= −

csol
eff

cpart
eff

√

Deff

πt

with csol
eff := K

1

µ , cpart
eff :=

[

Πn
i=1(c

part
i )mi

]
1

µ , Deff := [Πn
i=1(Di)

mi ]
1

µ .

(13)
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We see that for this case particle dissolution in a multi-component alloy is mathematically
reduced to particle dissolution in a binary alloy. The effective parameters (particle concen-
tration and diffusion coefficient) are equal to geometric averages with weights according to
stoichiometry. Above differential equation is solved to give the following dissolution time
τ

τ =
π(cpart

eff )2S2
0

4(csol
eff)

2Deff

.

We consider an example with three components: Let the particle concentrations of species 1
and 2 be equal, cpart

1 = 33wt.% = cpart
2 , for the first two species. The particle concentration

of the third component, cpart
3 , is allowed to vary. When the stoichiometry is unchanged for

all configurations, then the variation of the particle concentration reflects the molecular
weight of the third component. Further, let the initial concentration in the matrix be
zero for all alloying elements, i.e. c0

i = 0. The solubility product is chosen equal to
one, i.e. K = 1. We start with a layer of thickness S0 = 10−6m. This data-set gives
csol
eff = 1. We start with diffusivities D1 = 10−13m2/s and D2 = 2 · 10−13m2/s. The third

diffusion coefficient is allowed to vary to study its impact on the dissolution time. As can
be seen from substitution into above relation, the dissolution time τ (s) varies with the
diffusion coefficient of the third component according to a reciprocal power of one third,
i.e. τ ∝ (D3)

−1/3. Figure 3 shows the variation of the dissolution time with the value of the
third diffusion coefficient for relatively low values. Both the approximate solution, based
on equation (12), and the ’exact’ Neumann solution of system (9), are plotted in Figure 3
for consecutive particle concentrations. It can be seen that the difference is small.

From Figure 3 it can be seen that the dissolution time is highly sensitive to changes of
the diffusion coefficient of the third component, D3, when D3 is small. A small value of
D3 corresponds to the addition of a slowly diffusing third component. Hence dissolution
times are long when a slowly diffusing third component is added. Furthermore, it can be
seen from Figure 3 that the dissolution time increases for increasing particle concentration
of the third component.

Figure 4 shows a similar picture in the top-left as in Figure 3, however, the diffusion
coefficient of the third component is varied over a larger range and the particle concentra-
tion of the third component is set equal to 3, i.e. cpart

3 = 3wt.%. In Figure 4, we see that
the interfacial concentration of the first component increases for increasing D 3. Hence, the

difference cpart
1 −csol

1 decreases and therewith |c
sol
1 − c0

1

csol
1 − c0

i

| increases and hence |c
sol
1 − c0

1

csol
1 − c0

i

| � 1

is no longer true. However, the interfacial concentration of the second component de-

creases and hence |c
sol
1 − c0

1

csol
1 − c0

i

| decreases. This implies that these two effects work against

each other, and this supports the small difference between the exact ’Neumann’ solution
and approximate solution (equation (11)), also for high values of D3. Note, however, that
the difference in Figure 4 is more significant than in Figure 3. For completeness, we also
give the evolution of the the velocity coefficient, k, as a function of the diffusion coefficient
of the third component.
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When we increase the diffusion coefficient D3 sufficienty, then csol
1 , as predicted by

equation (11) exceeds the value of cpart
1 . Therewith, one enters the region of ill-posedness

(mass is no longer conserved). Of course equation (11) cannot be used for this case. So this
behaviour of τ ∝ (D3)

−1/3 breaks down for large D3. This break-down takes place when
csol
1 becomes significant with respect to cpart

1 . Equation (10) is used as an initial guess
for the ’exact’ Neumann solution (9), obtained from numerical solution of this system.
We also observed that when csol

1 , as determined from approximation (11) and used as an
initial guess for the solution of equation (6), exceeds cpart

1 no convergence is obtained when
equation (6) is solved numerically. It is shown in [23] that also no Neumann solutions exist
in this range.

In Figure 3 and 4 we see that the dissolution time as predicted by the Neumann solu-
tion is smaller than for the quasi-binary approach. This is explained as follows: consider
equation (6), we see that convergence to equation (7) takes place as D3 → ∞. Since c0

i = 0

and csol
i ≥ 0 it follows that

csol
i − c0

i

cpart
i − csol

i

=
csol
i

cpart
i − csol

i

<
csol
i

cpart
i

. Use of equation (8) shows

that the Neumann solution time is smaller than the quasi-binary dissolution time for D 3

sufficiently large. Hence τ → 0 as D3 → ∞.
We define the relative error made by the use of the quasi-binary approach as

ε :=
|τN − τqb|

τN
,

where τN and τqb respectively correspond to the dissolution time as predicted by the use
of the Neumann solution and the quasi-binary approach. We plot the relative error made
by the use of the quasi-binary approach as a function of the diffusion coefficient for dif-
ferent particle concentrations in Figure 5 on a double logarithmic scale. It can be seen
that the relative error increases monotonically with D3. Furthermore, the relative error
increases as the particle concentration of the third component decreases. This is explained
by the increase of the significance of the interfacial concentration. The slope of all lines
for consecutive particle concentrations is the same. This suggests an approximate power
behaviour for the relative error ε ∝ (D3)

0.42.
When the assumption 0 ≈ c0

i � csol
i � cpart

i is relaxed, both expressions in equation
(10) can be combined to get a polynomial equation of order µ = m1 + m2 + ... + mn in
csol
1 . A numerical zero-point method can be used to get the solution. This more general

case is omitted here, since we are not able to find general expressions for the zeros of the
resulting polynomial.

3.3 An asymptotic solution for the spherical case

The diffusion equation for the spherical case in an unbounded domain admits a similar
self-similar solution, in terms of c = c(r/

√
t), as for the planar case. However, one obtains

incompatibility with the interface rate equation. Therefore, we are not able to find a
solution of the type of the previous section. Using Laplace transforms, Whelan [30] came
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Figure 3: The dissolution time τ as a function of the diffusion coefficient of the third
element D3 for consecutive values of the particle concentration of the third element cpart

3 .
The diffusion coefficient and time are respectivey given in the units µm 2/s and s. The
solid and dotted curves respectively correspond to the approximate solution and the exact
solution.

up with the following expression for the interface velocity

dS

dt
= − csol

i − c0
i

cpart
i − csol

i

{

Di

S
+

√

Di

πt

}

. (14)

The interfacial position S(t) has been treated as a constant during Whelan’s derivation.
At early stages it behaves like Aaron and Kotler’s [1] solution, i.e. the second (planar)
term dominates. At later stages as the second term decreases, the first term becomes more
important during dissolution. Therefore, at some stage, say t1 < t < t2, we approximate
the interfacial velocity by

dS

dt
= − csol

i − c0
i

cpart
i − csol

i

Di

S
. (15)

Above equation is also obtained after solving of the stationary diffusion equation and
subsequent substitution of this solution into the Stefan condition. We remark that this

solution becomes inaccurate again as blow up (| dS

dt
| → ∞ as S → 0) takes place. Similar

to the planar case we assume 0 ≈ c0
i � csol

i � cpart
i . After carrying out the same analysis

as before for the planar case, we see all interfacial concentrations can be expressed in terms
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Figure 5: The relative error of the dissolution time as predicted by the quasi-binary
approach as a function of the diffusion coefficient of the third component for consecutive
particle concentrations.

of the interfacial concentration of the first element

csol
i =

cpart
i D1

cpart
1 Di

csol
1 for i ∈ {1, ..., n}.

Substitution of above relations into the hyperbolic relation for the interfacial concentrations
(equation (1)) gives the following expression for the interfacial concentration of the first
alloying element

csol
1 =

cpart
1

D1

[

Πn
i=1(

Di

cpart
i

)mi · K
]

1

µ

, with µ := m1 + m2 + ... + mn.

Above expression is similar to the one for planar geometry except for the absence of the
square root for the diffusion coefficients. This gives hence different values for the interfacial
concentrations csol

i . So during the dissolution process the values of the interfacial concen-
trations converge from the values as determined in the previous section to the values just
mentioned. Note that this holds for the case that the interfacial position moves slowly, i.e.

| csol
i − c0

i

cpart
i − csol

i

| � 1. Let the time be in the interval t1 < t < t2, then substitution of above

expression into equation (15) gives for the interfacial velocity

dS

dt
= − csol

1

cpart
1

D1

S
⇒ dS

dt
= −

csol
eff

cpart
eff

Deff

S
,
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where the effective interfacial concentration, particle concentration and diffusion coeffi-

cient are defined by csol
eff := K

1

µ , cpart
eff :=

[

Πn
i=1(c

part
i )mi

]
1

µ , Deff := [Πn
i=1(Di)

mi ]
1

µ . Solution
of above equation is trivial. Note that these effective parameters are equal to the ones that
were obtained for the planar case. Nevertheless, the interfacial concentrations differ in
both cases. Furthermore, it should be noted that the approximations hold under limiting
assumptions.

For the more general case, where 0 ≈ c0
i � csol

i � cpart
i does not hold necessarily and

where we are in the range of time where both terms in equation (14) are of same order,
the interfacial concentrations are continuous functions of time. Their values start at the
planar solution (see preceeding subsection) and converges towards the solution obtained
in this subsection (see above relation). The evolution of the interfacial concentrations and
interfacial position is obtained by the use of the full equations (14) and hyperbolic relation
(1) for the interfacial concentrations. The calculation of the interfacial concentrations is
straightforward.

4 Numerical method

Various numerical methods are known to solve Stefan problems: front-tracking, front-fixing
and fixed domain methods. Since the concentration at the interface varies with time in our
problem, we restrict ourselves to a front-tracking method. Recently a number of promising
methods are proposed for multi-dimensional problems: phase field methods and level set
methods, such as in [19, 11]. However, imposing local equilibrium condition at the interface
in such models is not as straightforward as in front-tracking methods that are used here.
A coupling between thermodynamics and a phase field model is presented by Grafe et al
[6].

Our main interest is to give an accurate discretisation of the boundary conditions for
this Stefan problem with one spatial co-ordinate. Therefore we use the classical moving
grid method of Murray and Landis [13] to discretise the diffusion equations. In this paper
we briefly describe the method, for more details we refer to [24].

Discretisation of the interior region
We use an implicit finite difference method to solve the diffusion equation in the inner
region. An explicitly treated convection term due to grid-movement is included. Since the
magnitude of the gradient is maximal near the moving interface we use a geometrically
distributed grid such that the discretisation near the interface is fine and coarse farther
away from the moving interface. Furthermore, we use a virtual grid-point near the moving
boundary. The distance between the virtual node and the interface is chosen equal to the
distance between the interface and the first grid-node. The resulting set of linear equations
is solved using a tridiagonal matrix solver.

Discrete boundary conditions at the interface
We define the discrete approximation of the concentration as cj

i,k, where j, i and k respec-
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tively denote the time-step, the index of the chemical (alloying) element and gridnode. The
virtual gridnode behind the moving interface and the gridnode at the interface respectively
have indices k = −1 and k = 0. At the moving interface, we obtain from discretisation of
equation (4)

Di

cpart
i − csol

i

cj+1
i,1 − cj+1

i,−1

2∆r
=

Di+1

cpart
i+1 − csol

i+1

cj+1
i+1,1 − cj+1

i+1,−1

2∆r
, for j ∈ {1, ..., n − 1}.

Note that the concentration profile of each element is determined by the value of the
interfacial concentration. Above equation can be re-arranged into a zero-point equation
for all chemical elements. All interfacial concentrations satisfy the hyperbolic relation (1).
Combination of all this, gives for i ∈ {1, ..., n − 1} and i = n

fi(c
j+1
i,0 , cj

i+1,0) := Di(c
j+1
i,1 − cj+1

i,−1)(c
part
i+1 − csol

i+1) − Di+1(c
j+1
i+1,1 − cj+1

i+1,−1)(c
part
i − csol

i ) = 0

fn(csol
1 , ..., csol

n ) := (csol
1 )m1(csol

2 )m2(...)(csol
n )mn − K = 0.

To approximate a root for the ’vector-function’ f we use Newton’s method combined with
discrete approximations for the non-zero entries in the first n − 1 rows of the Jacobian
matrix. The iteration is terminated when sufficient accuracy is reached. This is explained
in more detail in [24].

Adaptation of the moving boundary
The moving interface is adapted according to equation (4). In [22] the forward (explicit)
Euler and Trapezium time integration methods are described and compared. It was found
that the (implicit) Trapezium method was superior in accuracy. Furthermore, the iteration
step to determine the interfacial concentrations is included in each Trapezium step to
determine the interfacial position. Hence, the work per time-iteration remains the same
for both time-integration methods. Therefore, the Trapezium rule is used to determine
the interfacial position as a function of time. We terminate the iteration when sufficient
accuracy is reached, i.e. let ε be the inaccuracy, then we stop the iteration when the
inequality

n
∑

i=1

|csol
i (p + 1) − csol

i (p)| + |Sj+1(p + 1) − Sj+1(p)|
Sj+1 − M

< ε

holds. Here Sj denotes the discrete approximation of the interfacial position at time-step
j. The integer p represents the iteration number during the determination of the interfacial
concentrations and position.

5 Numerical experiments

This section contains the numerical experiments done with the Finite Difference method.
We aim at a comparison between the quasi-binary solution and the full multi-component
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solution. Experiments are done for planar and spherical geometries. The input-data used is
hypothetical but the order of magnitude is comparable to the case of commercial aluminium
alloys.

5.1 Planar experiments

We consider the quasi-binary and multi-component approach for the planar geometry. The
configuration entered here applies to a quaternary alloy. As input-data we use the values
as listed in Table 1.

Table 1: Input data

Physical quantity Value Si-Unit
D1 10−13 m2/s
D2 2 · 10−13 m2/s
K 1 -

cpart
1 33 -

cpart
2 33 -
c0
1 0 -

c0
2 0 -

c0
3 0 -

m1 1 -
m2 2 -
S0 1 · 10−6 m
M 1 · 10−4 m

We vary the diffusion coefficient and particle concentration of the third component (D 3

and cpart
3 ). The results are shown in Figure 6 where we plot the interfacial position as a

function of time. For all these situations it can be seen that the quasi-binary solution and
full multi-component solution agree very well (see Figure 6). This agreement persists also
for the higher diffusivities of the third alloying element. This is in agreement with the
result shown in Figure 4 for the case that the region is unbounded.

Furthermore, one expects that the concentration at the cell boundary (i.e. at r = M)
is larger for cases where the diffusion coefficient of the third component is larger. However,
both the penetration depth and the interfacial position exhibit a square-root behaviour
with time. This implies that possibly the atoms from the alloying elements reach the cell
boundary M after complete dissolution of the particle. This depends on the cell size and
geometry. Therefore, the observed differences in dissolution rate remain small for all cases
where the geometrical settings are equal.

Figure 7 shows the same configuration as in Table 1 with cpart
3 = 33 and D3 = 10 ·10−13

except all curves correspond to cellsizes M = 5 · 10−5 and M = 2.5 · 10−5. The bold lines
correspond to the full multi-component solution. Whereas the other lines are predicted
using the quasi-binary approach. It can be seen that the difference between the quasi-
binary approach and full multi-component approach is more significant. This significant
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Figure 6: The interfacial position as a function of time. All curves correspond to the
configuration as listed in Table 1. The bold and ordinary curves respectively reflect the
quasi-binary and full multi-component solution. Curves I corresponds to c part

3 = 33 and
D3 = 0.1 · 10−13. Curve II reflects the case that cpart

3 = 3 and D3 = 0.1 · 10−13. Curve III
displays the situation in which cpart

3 = 33 and D3 = 10 · 10−13, whereas curve IV shows
the configuration cpart

3 = 3 and D3 = 10 · 10−13
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Figure 7: The interfacial position as a function of time. The bold curve corresponds to the
quasi-binary approach and the other curve corresponds to the multi-component approach.

difference has also been observed when non-zero values for the initial concentrations are
taken.

Figure 8 presents the interfacial position as computed by the quasi-binary approach as
a function of the computed interfacial position by the full multi-component approach. It
can be seen that the curvature of the line increases for smaller cell-sizes. This is attributed
to the accumulation of the atoms of the alloying elements at the cell boundary. For the
case of M = 2.5 · 10−5 an interesting behaviour is observed: At the early stages where the
atoms did not reach the cell-boundary yet, the curve is straight. Later, as the atoms reach
the cell-boundary, the curve starts to deviate from a straight line, similar to the case of a
cell-boundary at M = 5 · 10−5. Subsequently, the matrix gets saturated and dissolution
stops: the dissolution rate converges towards zero. The equilibrium state is not effected
by the use of the quasi-binary approach and the thereby the curve converges back to the
straight line.

5.2 Spherical experiments

We consider the dissolution of a spherical particle in the multi-component and quasi-
binary alloy. The configuration entered here applies to a quaternary alloy. We use the
same input-data from Table 1, except for the geometry and the cell size: M = 10−5, unless
stated otherwise. We vary the particle concentration and diffusion coefficient of the third
component.

For different diffusivities and particle concentrations of the third component, the results
are shown in Figure 9. The agreement between the quasi-binary approach and the full
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Figure 8: The computed interfacial position by the quasi-binary approach as a function of
the computed interfacial position using the full multi-component approach for consecutive
cell-sizes.

multi-component solution is good. The difference between the two approaches is smallest
for the higher values of the diffusion coefficient of the third component. As expected, the
dissolution process takes place relatively fast compared to the rate of penetration of the
alloying elements from the particle into the matrix, although the order of magnitude of the
rate of both processes is similar. Let Smc and Sqb be the interfacial positions predicted using
respectively the multi-component and quasi-binary approach. We compare the relative
errors, defined by

ε :=
|Smc − Sqb|

Smc
· 100%,

taken at the times when the multi-component solution is nearest to Smc = 0.5, we see that
the errors for the cases corresponding to curves I,II,III and IV in Figure 9 are respectively
given by 9.94, 13.90, 4.23 and 3.87 %. It can be seen that the quasi-binary approach is
most accurate for cases where the diffusion coefficient of the third component is large.
This observation is contrary to Figure 5 where the error becomes more significant for
larger diffusion coefficients of the third component. This discrepancy may be caused by
the geometrical differences between this situation and the situation in Figure 5 (sphere and
bounded domain versus plane and unbounded).

Some dissolution curves are shown in Figure 10 for different values of the cell radius.
Here we took a low value for the diffusion coefficient of the third component, being a case
where the quasi-binary approach is less accurate (compared to the case where the diffusion
coefficient of the third component is high). It can be seen that the difference between
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Figure 9: The interfacial position as a function of time for a spherical dissolving particle.
All curves correspond to the input-data from Table 1. The bold and ordinary curves
respectively correspond to the quasi-binary and full multi-component approaches. Curves
I correspond to cpart

3 = 33 and D3 = 10−14. Curves II depict the case that cpart
3 = 3

and D3 = 10−14. The situation with cpart
3 = 33 and D3 = 10−12 is shown by curves III.

Whereas curves IV display the case that cpart
3 = 3 and D3 = 10−12.

the quasi-binary and full multi-component approach is reasonably small. However, for
the case that M = 4 · 10−6 the difference is large. Apparently, the difference between
both approaches is large when dissolution times are large, but finite. In the case that
M = 2.5 · 10−6 full dissolution does not take place. The difference between the different
approaches is large at early stages, but becomes less significant as time proceeds: the
curves reach the same limit. This observation is similar to the observation in the planar
case (see Figure 8). We remark that this observation follows from experiment and that a
more mathematical basis is needed for a full understanding.

Finally we show the interfacial position as a function of time for different initial matrix
concentrations in Figure 11. For low initial matrix concentrations, the difference between
the quasi-binary and full multi-component approach is small. For larger concentrations the
difference increases and hence the quasi-binary approach breaks down. This is attributed to
the fact that the difference between the interfacial concentration and initial concentration
becomes more significant (see equation (15)).
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Figure 10: The interfacial position as a function of time for a spherical dissolving particle
for consecutive cell radii. The bold curves correspond to the quasi-binary approach. The
configuration is taken from Table 1 with cpart

3 = 33 and D3 = 10−14.

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

In
te

rfa
ci

al
 p

os
iti

on
 (µ

 m
)

c0 = 0.05
c0 = 0.2

c0 = 0.5

Figure 11: The interfacial position as a function of time for a spherical dissolving particle
for consecutive initial matrix concentrations. The bold curves correspond to the quasi-
binary approach. The configuration is taken from Table 1 with cpart

3 = 33 and D3 = 10−14.
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6 Conclusions

A model, based on a vector-valued Stefan problem, has been developed to predict the disso-
lution of particles in general multi-component alloys. A remark has been given concerning
existence and well-posedness of solutions of the vector-valued Stefan problem. The remark
is motivated using a physical argument. For general cases with one spatial co-ordinate the
full vector-valued Stefan problem is solved using Finite Differences.

For some cases, when the difference between the particle concentrations and interfacial
concentations are large and when the initial matrix concentration is negligible, the full
multi-component (vector-valued) Stefan problem can be approximated accurately using an
averaging technique for the particle concentrations and diffusion coefficients. This reduces
the multi-component problem to a quasi-binary problem. This approximation is essentially
usefull when more geometric flexibility is included into the model, see for instance [28, 16].
It also turned out that this quasi-binary approach is accurate for the spherical dissolving
phases. We expect this method also to be accurate for the case of dissolving cylindrical
phases in multi-component alloys.
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