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January 8, 2001

Abstract

In this paper we propose and analyse a simplified mathematical model on the

effect of a fully miscible preflush on gel-placement in an oil reservoir. The approach

is based on a segregated flow model even if the two phases are fully miscible. For the

rate of a constant injection rate condition, fully implicit solutions can be constructed.

Saturation profiles consist of shocks and fingering zones. For constant pressure condi-

tions we construct a semi-explicit relation for the shock position and gel penetration

depth.

keywords: self-similar solution, analytic solution, transport in porous media

1 Introduction

Polymer gels are used in a wide variety of fields, e.g. improved oil and gas recovery,
confinement of ground water contaminants, water treatment plant control and filtration.
One motivation is that mature oil fields suffer from excessive water production. Large
water production causes serious environmental problems concerning water waste control.
Moreover, operation cost increase and large oil reserves remain unproduced. A major cause
of large water production is water-chanelling through high permeability layers in reservoirs.

To minimize water production, polymer-gels in aqueous solution are injected in the near
well-bore region, aiming at a decrease of the permeability of high permeability regions. The
gel adsorbs at the pore surface of the porous medium and consequently the permeability
decreases. To improve the efficiency of the gel-placement a pre-treatment of the reservoir
prior to gel-placement is often necessary. This treatment is in the form of injection of a
fluid with a very high viscosity. This treatment is referred to as a viscous preflush and
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aims at a diversion of the polymer-gels from the low permeability regions. It is our aim to
analyse a simplified model for this viscous preflush.

We assume that the porous medium is initially saturated with water. Since the viscosity
of the viscous preflush fluid is much higher than the viscosity of water, the transition region
between the fluid and water becomes negligible and effectively results in a shock. When
the thin gel, whose viscosity is in the same order of magnitude as the viscosity of water,
displaces the far more viscous preflush fluid, a fingering zone occurs between the gel and
viscous fluid. This has been observed by [4]. They mainly observed fingering in the high
permeability layer. In this viscous fingering area the effective water viscosity is between
the pure water viscosity and the viscosity of the viscous preflush fluid. For this effective
viscosity, we use a quarter power mixing rule as has been done by Koval [6]. We note for
completeness that there are many other choices for this effective viscosity. Ourt model is
based on a displacement model of miscible fluids derived by Koval. Stavland analysed this
viscous preflush mainly experimentally and numerically [7].

In the present we aim at an analytic treatment of the mathematical problem. Stavland
[7] also obtained an analytic solution for the injection of a viscous fluid. However, the
subsequent inlet of a much less viscous fluid was not incorporated in their analytic solu-
tion. The immediate change of the condition at the inlet is referred to as a ’variable inlet
condition’. Modelling transport in porous media with variable inlet conditions has, among
others, been done earlier by Karakas [8] and Chen [9]. Karakas et al present a mathemati-
cal model describing combined injection of chemical components and hot water, aiming at
a displacement of viscous oil. Chen et al consider Barenblatt self-similar solutions for the
porous medium equation with a variable inlet condition according to a power-law in time.

This paper deals with an analysis of transport of miscible fluids with high viscosity
contrast combined with an abruptly changing inlet condition. First, we obtain a self-
similar solution for the saturation profile at consecutive times for the case of a constant
injection rate. Subsequently, we apply this solution to a porous medium over which a
constant pressure drop is applied. The analysis can serve as a tool for a check of numerical
solutions obtained when modelling a viscous preflush treatment.

The paper is organised as follows. First we formulate the model equations. Subse-
quently, we solve the equations. This is followed by some examples and an application.
We end up with some conclusions.

2 The Model

In this section we formulate a model for flow of two fully miscible fluids in porous media.
We consider an open rectangular two dimensional domain Ω := {(y, z) ∈ R

2 : 0 < rw <

y < R, 0 < z < H}. The horizontal and vertical co-ordinates are respectively denoted by
y and z. At t = 0, t denotes time, injection of a viscous fluid with viscosity µ 1, which
is constant, is started at the well at y = rw into the domain. The domain is treated as
initially fully saturated with water. Injection of the viscous fluid takes place during the
time-interval t ∈ [0, T ). For t ≥ T water with dissolved gel is injected. Since the viscosity
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Figure 1: A sketch of the region near the fingering zone in the reservoir.

of the viscous fluid is several orders of magnitude larger than the viscosity of water and
viscosity of water with dissolved gels, we use the simplification that the presence of gel
does not effect the water viscosity. This can be used as a first order approximation. The
viscosity of water with and without gel is denoted by µ2. This viscosity, µ2, depends on
the presence of the viscous preflush fluid. Polymer/gel-wall interactions are neglected and
the flow is incompressible. We disregard molecular diffusion and dispersion effects. The
flow is modelled as a segregated flow (see Figure 1).

2.1 Transport

Let the porous medium in the domain Ω be homogeneous and isotropic with porosity φ.
Assuming the flow to be uniformly distributed accross the thickness of the reservoir, the
average specific discharge of each phase (qi) is given for (y, z) ∈ Ω and t > 0:

qi =
Qi

H
, i ∈ {1, 2}, (2.1)

where Qi (m3/s) represents the total volumetric flow of fluid i in the domain Ω.

2.2 Equations

For completeness we formulate the volume balance equations for the viscous phase in a
layer of the reservoir. The geometry of a layer has been sketched in Figure 1. The fingering
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zone, as shown there, is a mixing on a macroscopic scale. We reduce the problem to a well-
posed one-dimensional problem by averaging over the height H of the reservoir. We use
a procedure similar to the method of van Duijn and Strack [5]. They apply this to model
flow of salt and fresh water in a porous medium. Furthermore, we assume that there is no
flow through horizontal boundaries.

Let Si denote the saturation of phase i, then the mass balance equations are for (y, z) ∈
Ω, t > 0:

φ
∂Si

∂t
+ ∇ · q

i
= 0, i ∈ {1, 2}. (2.2)

Here q
i
= (qi,y, qi,z)

T . In the present work we are interested in averaged quantities over the
height H to reduce above equation to a one-dimensional problem. First we define an area
element dydz and we integrate above equation over the rectangular area, V , with vertices
(y, 0), (y + ∆y, 0), (y + ∆y, H), (y, H) to get

∫ H

0

∫ y+∆y

y

φ
∂Si

∂t
dydz +

∫ H

0

∫ y+∆y

y

∇ · qidydz = 0.

Subsequently, we apply Gauss’ Theorem for a planar domain to obtain

φ

∫ H

0

∫ y+∆y

y

∂Si

∂t
dydz +

∮

∂V

qi · nds = 0,

where we treat φ as a constant and ∂V := V \ V represents the boundary of rectangle R.
For the integral over y in the first term, we apply the Mean Value Theorem for integrals.
For the second term the condition qz = 0 on z ∈ {0, H} and n = (1, 0)T on y = y and
n = (−1, 0)T on y = y + ∆y are applied, this gives

∆yφ
∂

∂t

∫ H

0

Si(ξ, z)dz +

∫ H

0

(qi,y(y + ∆y, z) − qi,y(y, z))dz = 0,

for a certain ξ ∈ (y, y + ∆y).

Since we integrate over the co-ordinate z, we interchange the differentiation and integration.
Subsequently, the Mean Value Theorem is applied again for the second term to get

∆yφ
∂

∂t

∫ H

0

Si(ξ, z)dz + ∆y

∫ H

0

∂qi,y

∂y
(η, z)dz = 0,

for a certain η ∈ (y, y + ∆y).

We let ∆y → 0 and divide above equation by ∆yH and (re)define

ui = ui(y) :=
1

H

∫ H

0

Si(y, z)dz,

qi = qi(y) :=
1

H

∫ H

0

qi,y(y, z)dz,

4



With ξ, η → y as ∆y → 0, this gives

φ
∂ui

∂t
+

∂qi

∂y
= 0. (2.3)

Summation of above equation over i ∈ {1, 2}, use of u1+u2 = 1 and subsequent integration
over y gives

q1 + q2 = Q(t) (2.4)

Let Ω1 and Ω2, Ω1 ∪ Ω2 ∪ (Ω1 ∩ Ω2) = Ω, be the non-overlapping open subdomains of Ω
that respectively contain the viscous fluid and water (overlines refer to the closures of the
subdomains), then Darcy Law gives

qi,z =















qi,y = −k0Si

µi

∂p

∂y
, (y, z) ∈ Ωi,

0, (y, z) ∈ Ω \ Ωi.

We use the concept of vertical equilibrium, meaning that we disregard viscous forces in the
vertical direction (z). This means that we have hydrostatic equilibrium, i.e.

p(y, z) = p0(y) + ρgz,

and consequently

∂

∂z

(

∂p

∂y

)

= 0 =
∂

∂y

(

∂p

∂z

)

.

Then the averaged specific discharge reads as

qi = −k0ui

µi

∂p

∂y
.

Combination of above equation with equation (2.4), subsequent substitution into equation
(2.3), and defining
x := φ(y − rw) with Ω̃ := {x ∈ R : 0 < x < L}, where L := φ(R − rw) gives

qi,x =
Q(t)

1 + u2µ1

u1µ2

=: Q(t)f(u1)

∂ui

∂t
+ Q(t)

∂f

∂x
(u1) = 0

qi = −k0ui

µiφ

∂p

∂x

(2.5)
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Here f(ui) is referred to as the flux-function. We reduced the two dimensional problem to
a one dimensional problem. Here Q(t) is interpreted as a velocity.

Initially the porous medium is saturated with water and no preflush fluid is present in
the reservoir. Between t = 0 and t = T the viscous fluid is injected. After t = T , water is
injected again. Hence we are faced with the following initial and boundary conditions

(IB)















u1(x, 0) = 0, 0 < x < L

u1(0, t) =

{

1, 0 < t < T

0, t ≥ T.

The boundary condition at x = 0 is referred to as a variable-inlet condition. Karakas et al
[8] analyse the injection of a chemical slug under a variable inlet condition.

We deal with two fully miscible fluids. We use a mixing rule, see Koval [6], for the
water viscosity in the area where 0 < u1 < 1. Let µw be the viscosity of pure water, then

we use the following function for E = E(u1) :=
µ1

µ2(u1)

E = E(u1) =











E1, u1 ∈ {0, 1},
(

0.78 + 0.22E
1/4
1

)4

, u1 ∈ (0, 1),

where E1 :=
µ1

µw
. The fluxfunction f = f(u1) becomes

f = f(u1) =
u1

u1 + (1 − u1)E
. (2.6)

3 Analysis

Since E(u1) is constant on u1 ∈ (0, 1), see equation 2.6, the flux-function is continuous and
differentiable on u1 ∈ (0, 1). For µ1 > µw we have 1 < E ≤ E1. Since E > 1 it can be
shown using equation (2.6) that f ′′(u1) > 0 for all 0 < u1 < 1. On the contrary if µ1 < µ2

then f ′′(u1) < 0 for all 0 ≤ u1 ≤ 1. Note that the case µ1 = µ2, i.e. f(u1) = u1, is similar
to single phase flow. Since for 0 < t < T we have u1 = 1 at x = 0, it is clear from the
entropy condition [12] that the interface between the viscous fluid and water is a stable
shock. For completeness, we illustrate this by the method of characteristics. For more
details on this standard method we suggest to consult for instance the books of Smoller
[12] and Rhee et al [11]. Let u1(x, t) = u1(x(t), t) be the solution over characteristics, then
we choose

du1(x(t), t)

dt
=

∂u1(x(t), t)

∂t
+

∂u1(x(t), t)

∂x

dx(t)

dt
≡ 0.
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Combination of above relation with equation (2.5) implies if u 1 is continuous and differen-
tiable near x(t)

dx(t)

dt
= f ′(u1) · Q(t).

This gives the reciprocal slope of characteristics in the x,t-plane. From differentiation
of equation (2.6) follows that limu1→0+ f ′(u1) = 1

E2
< 1 < E2 = limu1→1− f ′(u1), f(u1) is

convex, and hence characteristics originating from the x and t-axis (for 0 < t < T ) intersect
(see Figure 2). This intersection results in a stable shock at position s(t) (see Figure 2,
between the viscous preflush fluid and water, which is the reverse case of the rarefaction
as obtained from the Koval model), travelling with velocity

ṡ(t) =
f(u1(s+(t), t)) − f(u1(s−(t), t))

u1(s+(t), t) − u1(s−(t), t)
· Q(t) =

Q(t)

(u1(s−(t), t) + (1 − u1(s−(t), t)) · E)
.

(3.1)

Above condition is referred to as the Rankine-Hugoniot condition [12]. Note that E =
E(u1) which has been defined previously. If u1(s−(t), t) = 1 then ṡ(t) = Q(t) and if
u1(s−(t), t) ∈ (0, 1) then E = E2. It follows that ṡ(t) < Q(t) for 0 < u1(s−(t), t) < 1

and that ṡ(t) → Q(t)

E2
as u1(s−(t), t) → 0. We will show later in this section that the

rarefaction travels faster than the shock and that under certain condition the rarefaction
overtakes the shock. So there exists a τ > T such that ṡ(t) = Q(t) for all 0 < t < τ and
Q(t)

E2
< ṡ(t) < Q(t) for t > τ . This point has been indicated in Figure 2.

3.1 The saturation profile for t > T

For t > T (injection of water and gel) the injection saturation is changed and from the
entropy condition [12], [11] a rarefaction between water with dissolved gel and the viscous
fluids results (see Figure 2), whereas the shock between the viscous fluid and water, s(t),
continues to move. In the rarefaction part the saturation is continuous and we give a self-
similar solution for this region, where 0 < u1 < 1. Both fluids are fully miscible. However,
due to absence of molecular diffusion, the fluids do not actually mix on a microscale. Since
equation (2.2) holds on an upscaled macro-scale, the continuous part of the solution is
interpreted as a fingering zone [6], which is modelled as mixing on an integrated scale. We
seek solutions of the form

u1(x, t) = u1(η), η :=
x

∫ t

T
Q(χ)dχ

.

Note that this η is not the same as used in Section 2. A generalisation for all curvilinear
co-ordinates can be done easily. We have chosen to omit this now since it does not change
the nature of the problem. Substitution of this transformation into equation (2.5) gives

u′

1 = 0 or η = f ′(u1).
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Figure 2: Sketch of characteristics in the x, t-plane.

The first solution corresponds to a constant state solution. A shock (with velocity from
equation (3.1)) occurs at the interface between the viscous fluid and water, where a high
viscous fluid displaces a low viscous fluid. The second solution represents a rarefaction
(fingering) part between water and the viscous fluid. Here we have for the viscosity ratio
E = E2. Assuming that both fluids are fully miscible, we combine equation (2.6) with
above relation to obtain

u1(η) =

√

E2

η
− E2

1 − E2

. (3.2)

Above relation holds for the rarefaction part of the saturation profile, i.e. u1(η) is con-
tinuous for a region ηL < η < ηR. The bounds ηL and ηR are to be determined. We are
interested in bounded solutions u1(η) ∈ [0, 1], see (IB). From above relation follows that
u(η) increases strictly monotonically since µ1 > µ2. Therefore there exists a pair (ηL, ηR),
ηL < ηR, such that u1(ηL) = 0 and u1(ηR) = 1. Using above relation gives for ηL and ηR

ηL =
1

E2

< 1, ηR = E2 > 1.

note that E2 > 1. We introduce the positions xL(t) and xR(t) such that respectively
u1(xL(t), t) = 0 and u1(xR(t), t) = 1 for all T < t < τ , where bound τ is to be determined.
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Since E > 1, it is clear that for T < t < τ

ẋL(t) =
Q(t)

E2
< Q(t) = ṡ(t) < E2 Q(t) = ẋR(t),

where xL(T ) = 0 = xR(T ).
With s(t) =

∫ t

0
Q(χ)dχ and xL(T ) = 0 = xR(T ), we obtain xL(t) = 1

E2
·
∫ t

T
Q(χ)dχ, xR(t) =

E2 ·
∫ t

T
Q(χ)dχ, since E2 > 1 we have E2Q(t) > ṡ(t) and hence there exists a t = τ such

that xR(t) reaches the shock position, i.e.
∫ τ

T

E2Q(χ)dχ =

∫ τ

0

Q(χ)dχ = s(τ).

This implies
E2(s(τ) − s(T )) = s(τ) ⇔ (1 − E2)s(τ) = E2s(T ),

and
∫ τ

T

Q(χ)dχ =

∫ T

0
Q(χ)dχ

E2 − 1
.

Here τ is the time at which the rare-faction overtakes the shock. The shock is overtaken
within the reservoir, e.g. domain Ω̃, iff s(τ) < L, i.e. E2s(T ) < L(E2 − 1). Summarised,
we showed:

Proposition 1: Let Q(t) > 0 be integrable over t > 0, then if E2s(T ) < L(E2 − 1) then

1. there exists a τ > T such that

s(τ) =
E2s(T )

E2 − 1
,

2. here τ also satisfies
∫ τ

T

Q(χ)dχ =

∫ T

0
Q(χ)dχ

E2 − 1
.

2

Note that s(T ) =
∫ T

0
Q(χ)dχ and for t < τ we have s(t) =

∫ t

0
Q(χ)dχ.

For t > τ the saturation at x → s−(t) is given by (e.g. equation (3.2))

u1(s−(t), t) =

√

E2

∫ τ

T
Q(χ)dχ

s(t)
− E2

1 − E2

.

Since s(t) < E2

∫ τ

T
Q(χ)dχ for t > τ we have u1(s−(t), t) < 1. Substitution of above

expression into equation (3.1) and using E = E2 for u1(s−(t), t) < 1 gives for t > τ

ṡ(t) =

√

s(t)

E2

∫ t

T
Q(χ)dχ

Q(t). (3.3)
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We require for physical reasons that the shock position s(t) is a continuous function of
time t. Hence continuity of s(t) at t = τ and solving equation (3.3) imply for the solution
of (3.3):

s(t) = (
√

s(τ) +
√

1
E2
{
[

∫ t

T
Q(χ)dχ

]
1

2

+

−
[∫ τ

T
Q(χ)dχ

]
1

2})2, t > τ.

(3.4)

Above relation causes the convex shape of the shock-curve, s(t), for t > T in the x, t-plane
(see Figure 2). For compactness of notation we define the subintervals J1, J2 and J3 as
follows:

• J1 :=

[

0,
(

1
E2

∫ t

T
Q(χ)dχ

)

+

]

,

• J2 :=
(

( 1
E2

∫ t

T
Q(χ)dχ)+, min

{

s(t), E2

∫ t

T
Q(χ)dχ

})

,

• J3 :=

[

(

E2

∫ t

T
Q(χ)dχ

)

+
, s(t)

]

Here we use the convention (.)+ := max{0, .}. Above subintervals physically correspond
to respectively the gel, gel-preflush fluid and preflush fluid region.

Using equation (3.2) and integrated expressions for xL(t), xR(t) we arrive at the fol-
lowing expression which describes the saturation profile for all x > 0 and t > 0:

u1(x, t) =



















































0, x ∈ J1, t > T

√

E2

∫

t

T
Q(χ)dχ

x
− E2

1 − E2

, x ∈ J2, t > T

1, x ∈ J3, t < τ,

0, x ≥ s(t),

where the shock position s(t) is given by

s(t) =















∫ t

0
Q(χ)dχ, t < τ,

(

√

s(τ) +
√

1
E2
{
[

∫ t

T
Q(χ)dχ

]
1

2 −
[∫ τ

T
Q(χ)dχ

]
1

2 }
)2

, t ≥ τ.

The time τ is defined by Proposition 1. Differentiation of s = s(t) with respect to time

near t = τ gives s′(t) → Q(τ) as t → τ− and s′(t) →
√

s(τ)Q(τ)
√

∫ τ

T
Q(χ)dχE2

= Q(τ) as t → τ+,
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hence s′(t) is continuous at t = τ if Q(t) is continuous in t = τ . We see that ṡ(t) = Q(t)

for all 0 < t < T and as t → ∞ we have s(t) → 1

E2

∫ t

T

Q(χ)dχ for Q(t) > 0. Note that

hence s′(t) → Q(t)

E2
as t → ∞. Summarised, this gives:

Proposition 2: Let Q(t) > 0 be integrable over t > 0, then

1. the shock-speed, s′(t), is continuous in t = τ if Q(t) is continuous in t = τ ,

2. let
s(t)

L
< 1, L → ∞ then s′(t) → Q(t)

E2
as t → ∞ 2.

In the second part of above proposition we assume that L is sufficiently large. In subsequent
subsections the procedure to determine τ is pointed out.

3.2 The pressure drop

From integration of the lower equation in system (2.5) we obtain for the pressure difference
for t > 0

∆p = −µ1Q

k0φ
·
∫

Ω̃

dx

(u1(1 − E(u1)) + E(u1))
, (3.5)

where ∆p (Pa) represents the pressure difference between the locations y = rw and y = R

(over the reservoir). Furthermore, note that E = E(u1) in above equation.

3.3 Constant Injection Rate

For this case Q(t) = Q, hence from Proposition 1 we find that τ = E2T
E2−1

= T
1−1/E2

> T and

s(τ) = E2QT
E2−1

. Further, for Q constant the shock position s(t) is given by

s(t) =



















Qt, t < τ,

(

√

s(τ) +

√

Q

E2

{

(t − T )
1

2 − (τ − T )
1

2

}

)2

, t ≥ τ.

We note that the shock speed is continuous at t = τ (see also Proposition 2). We give an
example of the solution in Figure 3. Input parameters are E2 = 2, T = 4. The curves
correspond to times t = 2, 6, 10 and 20. In this example we set Q(t) = 1 at all times. Note
that the figure corresponds to linear (planar) geometry. The shock speed stays constant
for 0 < t ≤ τ and subsequently decreases for t > τ . Note further that the shock speed is
continuous. Furthermore, it is clear that s(t) → Q

E2
as t → ∞.
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Figure 3: Saturation profiles at consecutive times for the case of constant injection rate.

3.4 Constant Pressure Condition

For the case that ∆p(t) = ∆p, one obtains from equation (3.5) for t > 0

Q(t) = −k0∆pφ

µ1I
,

I :=

∫

Ω̃

dx

(u1(x, t)(1 − E(u1)) + E(u1))

(3.6)

This can be applied to the case of several parallel layers with different permeability over
which a pressure drop, which is equal over all layers, is applied.

To determine I when E > 1, we split the time into three respective intervals: the
’preflush injection interval’ (0 < t ≤ T ), the ’early gel injection interval’ (T < t ≤ τ) and
the ’late gel injection interval’ (t > τ). The saturation profile and shock speed during these
time intervals are obtained from the preceding analysis. These time intervals are treated
subsequently.

3.4.1 The Preflush Injection Interval

During this interval (0 < t ≤ T ) viscous fluid is injected and we notice from the preceding
subsection that there is a stable shock travelling with speed Q(t) in the x, t-plane. Since
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there is no mixing we have E = E1. Hence combining equation (3.6) with

u1(x, t) =







1, x < s(t)

0, x > s(t),

yields

I = s(t) + (L − s(t))
1

E1

(3.7)

Substitution of above expession into equation (3.6) gives, with s ′(t) = Q(t)

−k0∆pφ

µ1s′(t)
= s(t)(1 − 1

E1
) +

L

E1
. (3.8)

Separation of variables and subsequent solving of the algebraic equation yields

s =
−L +

√

L2 − 2E1(E1 − 1)αt

E1 − 1
,

where α := k0∆pφ
µ1

. Above expression relates the shock position directly to time.

3.4.2 The Early Gel Injection Interval

During this interval (T < t ≤ τ) water with gel is injected and fingering takes place. The
subintervals J1, J2 and J3 are now given by

• J1 =
[

0, 1
E2

∫ t

T
Q(χ)dχ

]

• J2 =
(

1
E2

∫ t

T
Q(χ)dχ, E2

∫ t

T
Q(χ)dχ

)

• J3 =
[

E2

∫ t

T
Q(χ)dχ, s(t)

]

Now the saturation S1(x, t) is given by for E(S1) 6= 1

u1(x, t) =



















































0, x ∈ J1,

√

E2

∫

t

T
Q(χ)dχ

x
− E2

1 − E2
, x ∈ J2,

1, x ∈ J3,

0, x ≥ s(t),
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with s(t) =
∫ t

0
Q(χ)dχ.

Using above saturation relation the integral I can be computed using straightforward
integration, yielding

I =

∫ t

T

Q(χ)dχ ·
{

1

E1E2
+

2(E3
2 − 1)

3E2
2

− E2

}

+
L − s

E1
+ s(t).

When we define, for convenience, f(t) :=

∫ t

T

Q(χ)dχ, β :=
E1 − 1

E1
+

1

E1E2
+

2(E3
2 − 1)

3E2
2

− E2

and γ :=
L − s(T )

E1
+ s(T ), then

− α

f ′
= βf + γ.

Separation of variables gives a quadratic equation in f . Using f(T ) = 0 gives as solution

f = f(t) =
−γ +

√

γ2 − 2αβ(t − T )

β
=

∫ t

T

Q(χ)dχ

The shock position is determined by s(t) = s(T ) + f(t). The velocity Q(t) is determined
by differentiation of above equation with respect to t. Furthermore, from the equations
follows the value of τ , which is the time at which the shock is overtaken by the rarefaction:

τ = T +
γ2 − (

s(T )

E2 − 1
β + γ)2

2αβ
.

3.4.3 The Late Gel Injection Interval

During this interval (t ≥ τ) still water with gel is injected. However, this interval differs
from preceding interval since the fingering zone overtook the shock, i.e. E2(s(t)− s(T )) >

s(t) and ṡ(t) < Q(t) for t > τ . The subintervals J1, J2 and J3 become

• J1 =
[

0, 1
E2

∫ t

T
Q(χ)dχ

)

• J2 =
[

1
E2

∫ t

T
Q(χ)dχ, s(t)

]

For this case the saturation profile is given by:

u1(x, t) =



































0, x ∈ J1,

√

E2

∫

t

T
Q(χ)dχ

x
− E2

1 − E2
, x ∈ J2,

0, x ≥ s(t),
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The shock position s(t) is related to Q(t) by equation (3.4). Defining again f(t) :=
∫ t

T
Q(χ)dχ, gives for the integral I:

I =
f

E1E2
+

L

E1
−

(

√

s(τ) +
√

1
E2

(
√

f −
√

f(τ))
)2

E1
+

+
2

3
√

E2f

{

(
√

s(τ) +

√

1

E2
(
√

f −
√

f(τ)))3 − (
f

E2
)3/2

}

Substitution of this expression into equation (3.6) gives following ordinary differential equa-
tion in f .

− α

I(f)
= f ′(t), t > τ.

Here the integral I is a function of f . Subsequently above equation can be solved by
separation of variables. An implicit solution in terms of an algebraic equation is then
obtained. We do not give this solution due to its complexity. A zero-point iteration
method is necessary to solve the algebraic equation.

We see that when xL(t) > L then u1 = 0 for x ∈ Ω̃ and hence Q(t) = −αE1

L
.

4 Experiments

In Figure 4 we show the shock-position s(t), rare-faction bounds xL(t), xR(t) (see Section
2) as a function of time. The time τ is here the position at which the curves for s(t) and
xR(t) intersect. Note that the curve for xR(t) loses its use after intersection with the curve
for s(t).

In the figures that follow we use L = 40, µ1 = 250, µ2 = 1, k0 = 1, ∆p = −1, φ = 0.5,
T = 2000, unless stated otherwise.

In Figure 5 we show the shock position as a function of time for different values of
the viscosity of the preflush fluid. It is clear that a high viscosity gives little penetration.
However, the relation between the shock position at a certain time and the preflush viscosity
is non-linear.

In Figure 6 we plot the shock position as a function of time for different values of the
permeability of the porous medium. This situation reflects the case where several layers
with different permeabilities are treated simultaneously with the same pressure drop over
the width of the layer. Again, the relation between the shock position at a certain time
and the permeability of the layer is non-linear.

5 Conclusions and remarks

We presented a simple model for the injection of a highly viscous fluid into a porous medium
where a less viscous fluid was initially present. Furthermore, we describe the case where
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Figure 4: The shock position, s(t), the left and right bounds (xL(t) and xR(t)) as a
function of time. We used L = 40, µ1 = 1, µ2 = 50, k0 = 1, ∆p = −1, φ = 1 and T = 200.
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Figure 5: The shock position s(t) as a function of time for different values of the viscosity
of the preflush fluid µ1. Further input data have been given in the text.
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Figure 6: The shock position s(t) as a function of time for different values of the perme-
ability of the reservoir. Further input data have been given in the text.

subsequently the less viscous fluid is injected again. A semi-explicit analytic solution is
given. This solution can be used as a test-case for numerical computations to solve first
order hyperbolic equations.

The solution consists of a shock, a sharp interface, between the viscous fluid and the
less viscous fluid. A rarefaction, a smooth transition, occurs between the less viscous and
viscous fluid. Since the rarefaction holds for the averaged saturation over the height of the
porous medium, it is interpreted as a fingering zone.

The solution as given in this paper is only applicable to rectangular geometries. Curvi-
linear geometries are considered in future. Furthermore, effects due to gravity are neglected
here. These effects are to be taken into account in future numerical modelling.

Acknowledgement: The authors thank dr. ir. C. Vuik for carefully reading the manuscript
and giving advice to improve it.
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