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On an elastic dissipation model for a cantilevered beam

W.T. van Horssen and M.A. Zarubinskaya

Abstract

In this paper we will study an elastic dissipation model for a cantilevered beam.
This problem for a cantilevered beam has been formulated by D.L. Russell as an
open problem in [1, 2]. To determine the relationship between the damping rates
and the frequencies we will use a recently developed, adapted form of the method of
separation of variables. It will be shown that the dissipation model as proposed by
D.L. Russell for the cantilevered beam will not always generate damping. Moreover,
it will be shown that some solutions can become unbounded.

1 Introduction

It is possible to use different approaches to describe energy dissipation in oscillating, elastic
bodies such as beams (see [1, 2]). Many approaches (such as molecular theories) are too
complicate to use and to analyze in practice. So, as a result different phenomenological
theories are used and applied in mechanics. Of course every theory has its pros and cons.
In particular, Russell notes in [1, 2] that it is clear that “viscous” damping models such as

ρ
∂2u

∂t2
+ 2γ

∂u

∂t
+

∂2

∂x2

(

EI
∂2u

∂x2

)

= 0,

which produce uniform damping rates, are inadequate if experimentally observed damping
properties are to be incorporated in the model. Kelvin and Voigt noted at the end of the
nineteenth century that damping rates tend to increase with frequency. Incorporated into
the Euler-Bernoulli beam model their approach yields an equation of the form

ρ
∂2u

∂t2
+ 2γρ

∂3

∂t∂x2

(

EI
∂2u

∂x2

)

+
∂2

∂x2

(

EI
∂2u

∂x2

)

= 0.

In [3] Chen and Russell study models of the form

ẍ + Bẋ + Ax = 0, (1)

where A is an elasticity operator, and B is related in various ways to the positive square
root, A1/2, of A. For beam equations this approach was generalized and developed further
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by Russell in [1, 2]. More recent results on the nonnegative square root of fourth order
derivative operators are obtained by Yao in [4].

In [1, 2] Russell introduces a new phenomenological dissipation model for beams, where
the damping is assumed to be proportional to the bending rate of the beam. In fact the
following equation is considered

utt − δutxx + uxxxx = 0,

where u = u(x, t) is the displacement of the beam in vertical direction, and δ is a positive
damping constant. No derivation of the dissipation term u txx is given in [1, 2]. However,
it is noted in [1, 2] that this new model has good mathematical properties. For instance,
for initial value problems for simply supported beams, such as

utt − δutxx + uxxxx = 0, 0 < x < π, t > 0,

u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0, t ≥ 0,

u(x, 0) = f(x), ut(x, 0) = g(x), 0 < x < π,

the solution for 0 < δ < 2 is given by (for δ ≥ 2 similar formulas can be derived)

u(x, t) =
∞
∑

n=1

e−
δn

2

2
t
(

An sin (
n2

2

√
4 − δ2t) + Bn cos (

n2

2

√
4 − δ2t)

)

sin (nx), (2)

where

An =
4

n2π
√

4 − δ2

π
∫

0

(

g(x) +
n2

2
δf(x)

)

sin(nx)dx, Bn =
2

π

π
∫

0

f(x) sin(nx)dx.

Indeed it can easily be seen that the damping rate in this case increases with the
frequency. Russell [1, 2] and MacCluer [5] observe that the damping operator B in (1) and
the stiffness operator A in (1) often “commute”, that is, B shares the eigenmodes of A,
or equivalently the nonnegative square root of the fourth order derivative operator ∂4u

∂x4 is

−∂2u
∂x2 . Unfortunately for a cantilevered beam it turns out that A and B do not commute.

Russell notes that [2, p.375]: “The apparent necessity of discarding this model for this
reason is a real disappointment ...”, and MacCluer remarks that [5, p.114]: “It is certain
that most remain to be discovered”.

In this paper we will study the following initial value problem for a cantilevered beam

utt − δutxx + uxxxx = 0, 0 < x < π, t > 0

u(0, t) = ux(0, t) = uxx(π, t) = uxxx(π, t) = 0, t ≥ 0, (3)

u(x, 0) = f(x), and ut(x, 0) = g(x), 0 < x < π,

where δ is a positive damping parameter. To find the relationship between the damping
rates and the frequencies we will use the recently developed, adapted form of the method
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of separation of variables (see [6]). This paper is organized as follows. In section 2 of this
paper we will discuss how this adapted version of the method of separation of variables
can be applied to the initial value problem (3) for the cantilevered beam. It will turn out
that we have to consider three different cases: δ = 2, δ > 2, and 0 < δ < 2. These three
cases will be treated in sections 3, 4, and 5 respectively. Finally in section 6 of this paper
some conclusions will be drawn and some remarks will be made.

2 On an adapted version of the method of separation

of variables

The method of separation of variables is the oldest systematic method to find nontrivial
solutions for (linear) partial differential equations. To study waves and vibrations Daniel
Bernoulli, Euler, and D’Alembert used this method in the middle of eighteenth century.
The method has been considerably refined and generalized during the last centuries, and
remains a method of great importance and frequent use today. Recently it has been shown
in [6] that the method can be applied to a much larger class of problems as is generally as-
sumed. After substitution of a separated solution (that is, a solution of the form X(x)T(t))
into the partial differential equation, dividing by X(x)T(t), and after differentiating the
so-obtained equation sufficiently many times with respect to some of the independent vari-
ables, we can finally reduce the problem to ordinary differential equations. This adapted
version of the method of separation of variables seems to be not (well-) known in the litera-
ture on partial differential equations. In this section we will show how the adapted method
can be applied to the initial value problem (3) for the cantilevered beam.

First we are looking for a nontrivial solution in the form X(x)T(t) which satisfies the
partial differential equation (PDE) and the boundary conditions. Substituting this non-
trivial solution into the PDE, and by dividing the so-obtained equation by X(x)T(t), we
find

T̈

T
− δ

Ṫ

T

X ′′

X
+

X ′′′′

X
= 0, (4)

where ′ = ∂(...)
∂x

and ˙= ∂(...)
∂t

. Generally it is assumed that (4) can not be separated because

of the mixed term −δ Ṫ
T

X′′

X
. However, by simply differentiating (4) with respect to x or t

(see also [6]) we can separate the variables in (4). For instance if we differentiate (4) with
respect to t we obtain

d

dt

(

T̈

T

)

− δ
X ′′

X

d

dt

(

Ṫ

T

)

= 0,

which can easily be separated, yielding

X ′′

X
= −β, (5)

3



where β is a complex valued separation constant. From (5) it follows that X ′′′′ = −βX ′′ =
β2X, and then it can easily be deduced from (4) that T(t) has to satisfy

T̈ + δβṪ + β2T = 0. (6)

And so, the problem has been reduced to ordinary differential equations. Finally by substi-
tuting the “separated” solution X(x)T(t) into the boundary conditions we obtain as usual
a boundary value problem for X(x)

X ′′ + βX = 0, 0 < x < π,

X(0) = X ′(0) = X ′′(π) = X ′′′(π) = 0,
(7)

where β is a complex valued separation constant. It turns out that the boundary value
problem (7) only has trivial solutions. We will omit these lengthy but elementary calcula-
tions. So, differentiation of (4) with respect to t leads for the cantilevered beams to trivial
solutions. For a simply supported beam, however, it will lead to the following boundary
value problem for X(x):

X ′′ + βX = 0, 0 < x < π,

X(0) = X ′′(0) = X(π) = X ′′(π) = 0,

which has nontrivial solutions X(x) = sin(nx) for n = 1, 2, 3... . And these solutions
will finally lead to the solution of the initial value problem for the simply supported beam
as for instance given by (2) for 0 < δ < 2.

We can also differentiate (4) with respect to x to obtain

−δ
Ṫ

T

d

dx

(X ′′

X

)

+
d

dx

(X ′′′′

X

)

= 0,

which can also easily be separated yielding

Ṫ

T
= λ, (8)

where λ is a complex valued separation constant. From (8) it follows that T̈ = λṪ = λ2T ,
and then it can easily be deduced from (4) that X(x) has to satisfy the following boundary
value problem

X ′′′′ − δλX ′′ + λ2X = 0, 0 < x < π,

X(0) = X ′(0) = X ′′(π) = X ′′′(π) = 0,
(9)

where λ = λ1 + iλ2 with λ1 and λ2 ∈ R. By considering the characteristic equation

k4 − δλk2 + λ2 = 0 ⇐⇒ (k2 − δλ

2
)2 +

λ2

4
(4 − δ2) = 0 (10)

for the differential equation in (9) it is obvious that we have to consider three cases: δ = 2,
δ > 2, and 0 < δ < 2. These three cases will be studied in the next three sections. It will
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be shown that nontrivial solutions for (9) can be found in all three cases. From (8) the
time-dependent behaviour of a nontrivial solution X(x)T(t) for (3) can be determined. It
is obvious from (8) that arbitrary vibrations of the cantilevered beam can only be damped
out if all eigenvalues λ have a negative real part, that is, λ1 should be negative for all
vibration modes.

3 The case δ = 2

In this section we will study the boundary value problem (9) with δ = 2. The characteristic
equation for the differential equation in (9) becomes in this case

(k2 − λ)2 = 0, (11)

where λ = λ1 + iλ2 with λ1 and λ2 ∈ R. It can be shown elementarily that for λ2 = 0
the boundary value problem (9) has only trivial solutions. For λ 2 6= 0 the characteristic
equation (11) has as roots

ζ1 + iζ2, and − ζ1 − iζ2,

where

ζ1 =

√

√

λ2
1 + λ2

2 + λ1

2
, ζ2 =

√

√

λ2
1 + λ2

2 − λ1

2
. (12)

Each root has multiplicity two. Putting k1 = ζ1+iζ2 the solution of the differential equation
in (9) can now be written as

X(x) = C1 cosh(k1x) + C2 sinh(k1x) + C3x cosh(k1x) + C4x sinh(k1x), (13)

where C1, C2, C3, and C4 are complex valued constants of integration. By substituting
(13) into the boundary conditions in (9) we obtain a system of four linear, homogeneous
equations for C1, C2, C3, and C4. To have a nontrivial solution the determinant of the
coefficient matrix has to be zero, yielding

sinh2(k1π) − k2
1π

2 + 4 = 0. (14)

Taking apart real and imaginary parts in (14) we get a system of two nonlinear equations
for ζ1 and ζ2 (note that k1 = ζ1 + iζ2)

cosh(2πζ1) cos(2πζ2) = 1
2

(

(2πζ1)
2 − (2πζ2)

2
)

− 7,

sinh(2πζ1) sin(2πζ2) = 2πζ12πζ2.

(15)

Using the formula manipulation package Maple numerical approximations of the solu-
tion of (15) can easily be obtained. Using these approximations and (12) the eigenvalues
λ = λ1 + iλ2 can be approximated. The first six approximations of the eigenvalues λ of
the boundary value problem (9) are listed in table 1.
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δ = 2
Nr. λ1 λ2

1 0.072471 0.327553
2 -1.306096 2.005633
3 -4.930357 4.225684
4 -10.658699 6.772424
5 -18.442296 9.470416
6 -28.260886 12.309142

Table 1. Approximations of the first six eigenvalues λ = λ1 + iλ2 for the case δ = 2.

The first eigenvalue has a positive real part. From (8) it can readily be seen that for this
eigenvalue there exists a nontrivial solution X(x)T(t) of (3) which becomes unbounded for
increasing times t. So for this first vibration mode there certainly is no energy dissipation.

4 The case δ > 2

In this section we will study the boundary value problem (9) with δ > 2. The characteristic
equation for the differential equation in (9) is

k4 − λδk2 + λ2 = 0, (16)

where λ = λ1 + iλ2 with λ1 and λ2 ∈ R. It is easy to show that for λ2 = 0 the boundary
value problem (9) has only trivial solutions. For λ 2 6= 0 it follows from the characteristic
equation (16) that

k2 = λ
(δ

2
+

1

2

√
δ2 − 4

)

, or k2 =
λ

(

δ
2

+ 1
2

√
δ2 − 4

) . (17)

Putting a =
(

δ
2

+ 1
2

√
δ2 − 4

)

it follows from (17) that k2 = λa or k2 = λ
a
. And so, the

roots of the characteristic equation (16) are

ap1, −ap1, p1, and p1,

where p1 = ξ1 + iξ2 with

ξ1 =

√

√

λ2
1 + λ2

2 + λ1

2
and ξ2 =

√

√

λ2
1 + λ2

2 − λ1

2
. (18)

For λ2 6= 0 the solution of the differential equation in (9) can now be written as

X(x) = C1 cosh(p1x) + C2 sinh(p1x) + C3 cosh(ap1x) + C4 sinh(ap1x), (19)

where C1, C2, C3, and C4 are complex valued constants of integration. By substituting
(19) into the boundary conditions in (9) we obtain a system of four linear, homogeneous
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equations for C1, C2, C3, and C4. To have a nontrivial solution the determinant of the
coefficient matrix has to be zero, yielding

1 + a4 +
a

2
(a − 1)2 cosh

(

(a + 1)p1π
)

− a

2
(a + 1)2 cosh

(

(a − 1)p1π
)

= 0. (20)

Taking apart the real and imaginary parts in (20) we finally obtain a system of two non-
linear equations for ξ1 and ξ2 (note that p1 = ξ1 + iξ2).

1+a4+
a

2
(a−1)2cosh

(

(a+1)πξ1

)

cos
(

(a+1)πξ2

)

− a

2
(a+1)2cosh

(

(a−1)πξ1

)

cos
(

(a−1)πξ2

)

= 0,

a

2
(a − 1)2 sinh

(

(a + 1)πξ1

)

sin
(

(a + 1)πξ2

)

− a

2
(a + 1)2 sinh

(

(a − 1)πξ1

)

sin
(

(a − 1)πξ2

)

= 0.
(21)

Numerical approximations of the solution of (21) can easily be obtained by using the
formula manipulation package Maple. Using these approximations and (18) we can ap-
proximate the eigenvalues λ = λ1 + iλ2. The first six approximations of the eigenvalues λ

are listed in table 2 for some specific values of the parameter δ > 2.

δ = 2.001 δ = 3 δ = 10
Nr. λ1 λ2 λ1 λ2 λ1 λ2

1 0.071093 0.318035 0.035470 0.058214 0.012281 0.019740
2 -1.266093 1.943048 -0.675846 0.582716 -0.054805 0.055348
3 -4.779897 4.122121 -1.728249 0.623632 -0.197794 0.087744
4 -10.334167 6.553759 -3.707961 1.393278 -0.418701 0.130915
5 -18.384359 9.277380 -6.116124 1.063614 -0.705594 0.202380
6 -27.403149 11.889795 -9.027316 2.169593 -0.994408 0.285117

Table 2. Approximations of the first six eigenvalues λ = λ1 + iλ2 for some specific values
of the parameter δ > 2.

From table 2 it follows that for each specific value δ > 2 (as listed in table 2) the first
eigenvalue always has a positive real part. From (8) it can readily be seen that for these first
eigenvalues there exist nontrivial solutions X(x)T(t) of (3) which become unbounded for
increasing times t. So for this first vibration mode there certainly is no energy dissipation.

5 The case 0 < δ < 2

In this section we will study the boundary value problem (9) with 0 < δ < 2. The
characteristic equation for the differential equation in (9) has the form (16). It can be shown
elementarily that for λ2 = 0 the boundary value problem (9) has only trivial solutions. For
λ2 6= 0 it follows from the characteristic equation (16) that

k2 = λ
(δ

2
+ i

√
4 − δ2

2

)

, or k2 =
λ

δ
2

+ i
√

4−δ2

2

. (22)
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Putting a = δ
2

+ i
√

4−δ2

2
it follows from (22) that k2 = λa, or k2 = λ

a
. And so, the roots of

the characteristic equation (16) are

ap1, −ap1, p1, −p1,

where p1 = η1 + iη2 with

η1 =
1

2

(

√

√

λ2

1
+ λ2

2
+ λ1

2
(2 + δ) −

√

√

λ2

1
+ λ2

2
− λ1

2
(2 − δ)

)

, and

η2 =
1

2

(

√

√

λ2

1
+ λ2

2
− λ1

2
(2 + δ) +

√

√

λ2

1
+ λ2

2
+ λ1

2
(2 − δ)

)

.

(23)

As in section 4 the solution of the differential equation in (9) can be written in the form
(19). Again we obtain a system of four linear, homogeneous equations for C1, C2, C3, and
C4 by substituting (19) into the boundary conditions in (9). To have a nontrivial solution
the determinant of the coefficient matrix has to be zero, yielding (20). The only difference
now with the previous section is that a and p1 are both complex valued. Taking apart the
real and imaginary parts in equation (20) we obtain a system of two nonlinear equations
for η1 and η2 (note that p1 = η1 + iη2)

(δ2−2)2 +

(δ2/2−1)(δ−2) cosh
(

(

(δ/2+1)η1−η2

√

4−δ2/2
)

π
)

cos(
(

(δ/2+1)η2+η1

√

4−δ2/2
)

π
)

−

δ
√

4−δ2(δ−2)/2 sinh
(

(

(δ/2+1)η1−η2

√

4−δ2/2
)

π
)

sin(
(

(δ/2+1)η2+η1

√

4−δ2/2
)

π
)

−

(δ2/2−1)(δ+2) cosh
(

(

(δ/2−1)η1−η2

√

4−δ2/2
)

π
)

cos(
(

(δ/2−1)η2+η1

√

4−δ2/2
)

π
)

+

δ
√

4−δ2(δ+2)/2 sinh
(

(

(δ/2−1)η1−η2

√

4−δ2/2
)

π
)

sin(
(

(δ/2−1)η2+η1

√

4−δ2/2
)

π
)

= 0,

and (24)

δ
√

4−δ2(δ2−2) +

δ
√

4−δ2(δ−2)/2 cosh
(

(

(δ/2+1)η1−η2

√

4−δ2/2
)

π
)

cos(
(

(δ/2+1)η2+η1

√

4−δ2/2
)

π
)

−

(δ2/2−1)(δ−2) sinh
(

(

(δ/2+1)η1−η2

√

4−δ2/2
)

π
)

sin(
(

(δ/2+1)η2+η1

√

4−δ2/2
)

π
)

−

δ
√

4−δ2(δ+2)/2 cosh
(

(

(δ/2−1)η1−η2

√

4−δ2/2
)

π
)

cos(
(

(δ/2−1)η2+η1

√

4−δ2/2
)

π
)

−

(δ2/2−1)(δ+2) sinh
(

(

(δ/2−1)η1−η2

√

4−δ2/2
)

π
)

sin(
(

(δ/2−1)η2+η1

√

4−δ2/2
)

π
)

= 0.

Using the formula manipulation package Maple numerical approximations of the solu-
tion of (24) can easily be obtained. Using these approximations and (23) the eigenvalues
λ = λ1 + iλ2 can be approximated. The first six approximations of the eigenvalues λ of the
boundary value problem (9) are listed in table 3 for some specific values of the parameter
0 < δ < 2.
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δ = 0.01 δ = 1 δ = 1.999
Nr. λ1 λ2 λ1 λ2 λ1 λ2

1 0.000438 0.356246 0.041226 0.347651 0.072445 0.327575
2 -0.006735 2.232556 -0.669480 2.183093 -1.305498 2.005905
3 -0.023255 6.251193 -2.352370 5.821765 -4.927529 4.259369
4 -0.050113 12.249825 -5.049603 11.194332 -10.651827 6.780897
5 -0.086926 20.249820 -13.444049 27.132464 -18.429408 9.490139
6 -0.133743 30.249707 -19.141120 37.699619 -28.239893 12.347001

Table 3. Approximations of the first six eigenvalues λ = λ1 + iλ2 for for some specific
values of the parameter 0 < δ < 2.

From table 3 it follows that for each specific value 0 < δ < 2 (as listed in table 3)
the first eigenvalue always has a positive real part. From (8) it can readily be seen that
for these first eigenvalues there exist nontrivial solutions X(x)T(t) of (3) which become
unbounded for increasing times t. So for this first vibration mode there certainly is no
energy dissipation.

6 Conclusion

In this paper a phenomenological dissipation model for a cantilevered beam has been
studied. This new model has been introduced in [1, 2] as a model for a beam where
the damping is assumed to be proportional to the bending rate of the beam. For the
cantilevered beam the relationship between the damping rates and the frequencies has been
obtained by using the recently developed, adapted version of the method of separation of
variables (see [6]). It should be remarked that this relationship also can be obtained by
applying the Laplace transformation method to (3). The boundary value problem (9) then
also is obtained.

It has been shown that this phenomenological model for the cantilevered beam does
not always generate damping. For some significant values of the “damping” parameter δ it
has been shown numerically that the first (that is, the lowest) vibration mode is unstable.
So for this mode there certainly is no energy dissipation. From this point of view we have
to conclude that the elastic dissipation model (as proposed in [1, 2]) for the cantilevered
beam is not an adequate dissipation model.
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