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Abstract. In this paper a system of weakly nonlinear, coupled harmonic oscillators will be stud-
ied. It will be shown that the recently developed perturbation method based on integrating vectors
can be used to approximate first integrals and periodic solutions. To show how this perturbation
method works the method is applied to a system of weakly nonlinear, coupled harmonic oscillators
with 1:3 and 3:1 internal resonances. Not only approximations of first integrals will be given, but it
will also be shown how, in rather efficient way, the existence and stability of time-periodic solutions
can be obtained from these approximations. In addition some bifurcation diagrams for a set of values
of the parameters will be presented.

Key words. Integrating factor, integrating vector, first integral, perturbation method, asymp-
totic approximation of first integral, periodic solution, coupled harmonic oscillators, bifurcation point.

1. Introduction. In [14, 15, 16] a perturbation method based on integrating
factors and vectors has been presented for regularly perturbed systems of ordinary
differential equations (ODEs). When approximations of integrating vectors have been
obtained an approximation of a first integral can be given. Also an error-estimate for
this approximation of a first integral can be given on a time-scale. It has also been
shown in [11, 15, 16] how in a rather efficient way the existence and stability of time-
periodic solutions can be obtained from these approximations for the first integrals. In
this paper it will be shown how the perturbation method can be applied to systems of
weakly nonlinear, coupled harmonic oscillators. In the literature many mathematical
models have been considered describing the dynamics of systems with two degrees of
freedom. Verros and Natsiavas [6] considered the dynamics of symmetric self-excited
oscillators with an one-to-two internal resonance. Natsiavas [12] studied also the free
vibrations of a weakly nonlinear oscillator using a multiple time scales perturbation
method. Haaker and van der Burgh [13] used an averaging method to study nonlinear
rational galloping for two mechanically coupled seesaw oscillators in steady cross-
flow. Mitsi, Natsiavas and Tsiafis [9] considered a class weakly nonlinear oscillators
with symmetric restoring forces. The weakly nonlinear resonant response of systems
with multiple degrees of freedom to simple harmonic excitations has been extensively
studied by Nayfeh and Mook [1]. Bajaj, Chang and Johnson [2], and others have
studied forced weakly nonlinear oscillations with two degrees of freedom as model
for autoparametric vibration absorbers with resonant excitations. In this paper the
recently developed perturbation method based on integrating factors and vectors will
be used to approximate first integrals and periodic solutions for the following weakly
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nonlinear system















Ẍ +
(

ω2
1 + εδ1

)

X = ε
[

−a1,0Ẋ + a0,1Ẏ + a2,0Ẋ
2 − a1,1ẊẎ + a0,2Ẏ

2 − a0,3Ẏ
3
]

,

Ÿ +
(

ω2
2 + εδ2

)

Y = ε
[

−b1,0Ẋ + b0,1Ẏ + b2,0Ẋ
2 − b1,1ẊẎ − b0,2Ẏ

2 − b0,3Ẏ
3
]

,

(1.1)
where X = X(t), Y = Y (t), and where ε is a small parameter satisfying 0 < ε � 1.
The constants ai,j , bi,j have the following properties: a1,0, a2,0, a0,2, b0,1, b1,1, b0,3 are
positive, and a0,1, a1,1, a0,3, b1,0, b2,0, b0,2 have the same sign. As follows from mea-
surements of aerodynamic coefficients in a wind-tunnel these signs are relevant for
the description of a galloping phenomenon. The dot represents differentiation with
respect to t. The constants δ1, δ2 are detuning parameters. We consider in this paper
the 1:3 and 3:1 internal resonances, that is, ω1 : ω2=1:3 or 3:1. The frequencies ω1 and
ω2 are assumed to be constants. In this paper not only asymptotic approximations
of first integrals are constructed but also asymptotic approximations of periodic so-
lutions. The presented results include existence, uniqueness, and stability properties
of the periodic solutions. In [4] van der Beek uses (1.1) without detuning parame-
ters δ1, δ2 as mathematical model to describe flow-induced vibrations of two weakly
non-linear, coupled harmonic oscillators in a uniform windfield. The model problem
originates from the phenomenon of galloping of overhead transmission lines on which
ice has accreted. These conductors can become aerodynamically unstable, resulting
in large amplitude oscillations with low frequencies. The oscillator consists of a rigid
cylinder with small ridge and a number of springs mounted in a frame. The oscillator
is constructed in such a way that the cylinder-spring system has two degrees of free-
dom, i.e. oscillation in the direction and oscillations perpendicular to the windfield.
A more detailed description is given in [4], whereas a short summary is included in
the Appendix A. The internal resonances that will be studied in this paper have not
been studied in [4]. This paper is organized as follows. In section 2 of this paper the
perturbation method based on integrating vectors and an asymptotic theory will be
given briefly. It will be shown in section 3 of this paper how approximations of first
integrals can be constructed for systems of weakly nonlinear, coupled harmonic oscil-
lators. In section 4 it will be shown how the existence and stability of time-periodic
solutions can be obtained. We will also present some bifurcation diagrams for a set
of values of the parameters. Finally in section 5 of this paper some conclusions will
be drawn and some remarks will be made.

2. Integrating vectors and an asymptotic theory. In this section we briefly
outline the perturbation method based on integrating vectors as given in [11, 15, 16].
We consider the following system of n first order ODEs

dy

dt
= f(y, t; ε),(2.1)

where ε is a small parameter, and where the function f has the form f(y, t; ε) =
f

0
(y, t) + εf

1
(y, t). An integrating vector µ = µ(y, t; ε) for system (2.1) has to satisfy











∂µi

∂yj
=

∂µj

∂yi
, 1 ≤ i < j ≤ n,

∂µ

∂t
= −∇(µ · f).

(2.2)
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Assume that µ can be expanded in a power series in ε, that is, µ(y, t; ε) = µ
0
(y, t) +

εµ
1
(y, t) + . . . + εmµ

m
(y, t) + . . . . We determine an integrating vector up to O(εm).

An approximation Fapp of F in the first integral F = constant can be obtained from:











∇Fapp = µ
0

+ εµ
1
+ . . .+ εmµ

m
,

∂Fapp

∂t
= −

[(

µ
0
+ εµ

1
+ . . .+ εmµ

m

)

· f
]

∗
,

(2.3)

where the * indicates that terms of order εm+1 and higher have been neglected. Then
we obtain Fapp(y, t; ε) = F0(y, t) + εF1(y, t) + . . .+ εmFm(y, t). It should be observed
that an approximation up to O(εm) of an integrating vector µ has been used to obtain

an exact ODE up to O(εm+1), that is,

dFapp

dt
=

[(

µ
0

+ ε · µ
1

+ . . .+ εmµ
m

)

· f
]

∗∗

= εm+1Rm+1(y, t, µ0
, . . . , µ

m
; ε),(2.4)

where the ** indicates that only terms of order εm+1 and higher are included. How
well Fapp approximates F (y, t; ε) = constant can be determined from (2.4), that is,
error estimates can be given on time-scales depending on the boundedness properties
of Rm+1.

3. Approximations of First Integrals. In this section we will show how the
perturbation method based on integrating vectors can be applied to approximate first
integrals for a system of weakly nonlinear, coupled harmonic oscillators. In the first
part of this section we will consider system (1.1) with a 1:3 internal resonance and
the second part with a 3:1 internal resonance.

3.1. The 1:3 internal resonance case. Consider the mathematical model
which describes the flow-induced vibrations of an oscillator with two degrees of free-
dom in a uniform windfield with a 1:3 internal resonance














Ẍ + (1 + εδ1)X = ε
[

−a1,0Ẋ + a0,1Ẏ + a2,0Ẋ
2 − a1,1ẊẎ + a0,2Ẏ

2 − a0,3Ẏ
3
]

,

Ÿ + (9 + εδ2)Y = ε
[

−b1,0Ẋ + b0,1Ẏ + b2,0Ẋ
2 − b1,1ẊẎ − b0,2Ẏ

2 − b0,3Ẏ
3
]

.

(3.1)
To analyze system (3.1) the equations are first written as a system of first order ODEs.
Let X = X1, Ẋ = X2, Y = X3, Ẏ = X4, from (3.1) we then obtain















































































Ẋ1 = X2,

Ẋ2 = −X1 + ε [−δ1X1 − a1,0X2 + a0,1X4

+a2,0X
2
2 − a1,1X2X4 + a0,2X

2
4 − a0,3X

3
4

]

,

Ẋ3 = X4,

Ẋ4 = −9X3 + ε [−δ2X3 − b1,0X2 + b0,1X4

+b2,0X
2
2 − b1,1X2X4 − b0,2X

2
4 − b0,3X

3
4

]

.

(3.2)
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By using the transformation X1 = r1 cos(θ1), X2 = r1 sin(θ1), X3 = r2 cos(3θ2) and
X4 = 3r2 sin(3θ2), system (3.2) then becomes







































dr1

dt
= εg1(r1, r2, θ1, θ2) = f1(r1, r2, θ1, θ2),

dθ1

dt
= −1 + εg2(r1, r2, θ1, θ2) = f2(r1, r2, θ1, θ2),

dr2

dt
= εg3(r1, r2, θ1, θ2) = f3(r1, r2, θ1, θ2),

dθ2

dt
= −1 + εg4(r1, r2, θ1, θ2) = f4(r1, r2, θ1, θ2),

(3.3)

where g1, g2, g3, and g4, are given in Appendix B formula (B.2). Multiplying the
first, the second, the third, and the fourth equation in (3.3) by µ1, µ2, µ3, and µ4

respectively, it follows from (2.2) that the integrating factors µ1, µ2, µ3, and µ4 have
to satisfy (µi = µi(r1, r2, θ1, θ2, t) for i = 1, 2, 3, and 4)































































































∂µ1

∂θ1
= ∂µ2

∂r1
,

∂µ1

∂r2
= ∂µ3

∂r1
, ∂µ2

∂r2
= ∂µ3

∂θ1
,

∂µ1

∂θ2
= ∂µ4

∂r1
, ∂µ2

∂θ2
= ∂µ4

∂θ1
, ∂µ3

∂θ2
= ∂µ4

∂r2
,

∂µ1

∂t
= − ∂

∂r1
(µ1f1 + µ2f2 + µ3f3 + µ4f4) ,

∂µ2

∂t
= − ∂

∂θ1
(µ1f1 + µ2f2 + µ3f3 + µ4f4) ,

∂µ3

∂t
= − ∂

∂r2

(µ1f1 + µ2f2 + µ3f3 + µ4f4) ,

∂µ4

∂t
= − ∂

∂θ2

(µ1f1 + µ2f2 + µ3f3 + µ4f4) .

(3.4)

Expanding µ1, µ2, µ3, and µ4 in powers series in ε, that is, µi(r1, r2, θ1, θ2, t) =
µi,0(r1, r2, θ1, θ2, t)+εµi,1(r1, r2, θ1, θ2, t)+. . . (for i=1,2,3, and 4), substituting f1, f2, f3, f4,
and the expansions for µ1, µ2, µ3, and µ4 into (3.4), and by taking together terms of
equal powers in ε, we finally obtain the O(ε0)-problem































































































∂µ1,0

∂θ1

=
∂µ2,0

∂r1

,

∂µ1,0

∂r2

=
∂µ3,0

∂r1

,
∂µ2,0

∂r2

=
∂µ3,0

∂θ1

,

∂µ1,0

∂θ2

=
∂µ4,0

∂r1

,
∂µ2,0

∂θ2

=
∂µ4,0

∂θ1

,
∂µ3,0

∂θ2

=
∂µ4,0

∂r2

,

∂µ1,0

∂t
= − ∂

∂r1

(−µ2,0 − µ4,0) ,

∂µ2,0

∂t
= − ∂

∂θ1

(−µ2,0 − µ4,0) ,

∂µ3,0

∂t
= − ∂

∂r2
(−µ2,0 − µ4,0) ,

∂µ4,0

∂t
= − ∂

∂θ2
(−µ2,0 − µ4,0) ,

(3.5)
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the O(ε1)-problem































































































∂µ1,1

∂θ1
=

∂µ2,1

∂r1
,

∂µ1,1

∂r2
=

∂µ3,1

∂r1
,

∂µ2,1

∂r2
=

∂µ3,1

∂θ1
,

∂µ1,1

∂θ2
=

∂µ4,1

∂r1
,

∂µ2,1

∂θ2
=

∂µ4,1

∂θ1
,

∂µ3,1

∂θ2
=

∂µ4,1

∂r2
,

∂µ1,1

∂t
= − ∂

∂r1
(µ1,0g1 + µ2,0g2 − µ2,1 + µ3,0g3 + µ4,0g4 − µ4,1) ,

∂µ2,1

∂t
= − ∂

∂θ1
(µ1,0g1 + µ2,0g2 − µ2,1 + µ3,0g3 + µ4,0g4 − µ4,1) ,

∂µ3,1

∂t
= − ∂

∂r2
(µ1,0g1 + µ2,0g2 − µ2,1 + µ3,0g3 + µ4,0g4 − µ4,1) ,

∂µ4,1

∂t
= − ∂

∂θ2
(µ1,0g1 + µ2,0g2 − µ2,1 + µ3,0g3 + µ4,0g4 − µ4,1) ,

(3.6)

and for n ≥ 2 the O(εn)-problems































































































∂µ1,n

∂θ1
=

∂µ2,n

∂r1
,

∂µ1,n

∂r2
=

∂µ3,n

∂r1
,

∂µ2,n

∂r2
=

∂µ3,n

∂θ1
,

∂µ1,n

∂θ2
=

∂µ4,n

∂r1
,

∂µ2,n

∂θ2
=

∂µ4,n

∂θ1
,

∂µ3,n

∂θ2
=

∂µ4,n

∂r2
,

∂µ1,n

∂t
= − ∂

∂r1

(µ1,n−1g1 + µ2,n−1g2 − µ2,n + µ3,n−1g3 + µ4,n−1g4 − µ4,n) ,

∂µ2,n

∂t
= − ∂

∂θ1

(µ1,n−1g1 + µ2,n−1g2 − µ2,n + µ3,n−1g3 + µ4,n−1g4 − µ4,n) ,

∂µ3,n

∂t
= − ∂

∂r2

(µ1,n−1g1 + µ2,n−1g2 − µ2,n + µ3,n−1g3 + µ4,n−1g4 − µ4,n) ,

∂µ4,n

∂t
= − ∂

∂θ2

(µ1,n−1g1 + µ2,n−1g2 − µ2,n + µ3,n−1g3 + µ4,n−1g4 − µ4,n) .

(3.7)

The O(ε0)-problem (3.5) can easily be solved, yielding µ1,0 = h1,0(r1, r2, θ1 + t, θ2+ t),
µ2,0 = h2,0(r1, r2, θ1 + t, θ2 + t), µ3,0 = h3,0(r1, r2, θ1 + t, θ2 + t), µ4,0 = h4,0(r1, r2, θ1 +

t, θ2 + t) with
∂h1,0

∂θ1

=
∂h2,0

∂r1

,
∂h1,0

∂r2

=
∂h3,0

∂r1

,
∂h1,0

∂θ2

=
∂h4,0

∂r1

,
∂h2,0

∂r2

=
∂h3,0

∂θ1

,
∂h2,0

∂θ2

=
∂h4,0

∂θ1

,
∂h3,0

∂θ2
=

∂h4,0

∂r2
. The functions h1,0, h2,0, h3,0, and h4,0 are still arbitrary and will now

be chosen as simple as possible. First we choose h1,0 = 1, and h2,0 = h3,0 = h4,0 = 0
or equivalently (µ1,0, µ2,0, µ3,0, µ4,0) = (1, 0, 0, 0). The O(ε1)-problem (3.6) can also
readily be solved, yielding

µ1,1 = 1
2a1,0t+ 1

4δ1 cos(2θ1) + 1
4a1,0 sin(2θ1) − 3

2a2,0r1 cos(θ1) + 1
6a2,0r1 cos(3θ1)

+ 1
2a1,1r2 cos(3θ2) − 3

20a1,1r2 cos(3θ2 + 2θ1) − 3
4a1,1r2 cos(3θ2 − 2θ1)

+h1,1(r1, r2, θ1 + t, θ2 + t),
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µ2,1 = − 1
2δ1r1 sin(2θ1) + 1

2a1,0 cos(2θ1) − 3
4a0,1r2 cos(−θ1 + 3θ2)

− 3
8a0,1r2 cos(θ1 + 3θ2) + 3

4a2,0r
2
1 sin(θ1) − 1

4a2,0r
2
1 sin(3θ1)

+ 3
10a1,1r1r2 sin(3θ2 + 2θ1) − 3

2a1,1r1r2 sin(3θ2 − 2θ1) + 9
2a0,2r

2
2 sin(θ1)

− 9
28a0,2r

2
2 sin(θ1 + 6θ2) − 9

20a0,2r
2
2 sin(−θ1 + 6θ2) + 81

16a0,3r
3
2 cos(−θ1 + 3θ2)

+ 81
32a0,3r

3
2 cos(θ1 + 3θ2) − 27

64a0,3r
3
2 cos(9θ2 − θ1) − 27

80a0,3r
3
2 cos(9θ2 + θ1)

+h2,1(r1, r2, θ1 + t, θ2 + t),

µ3,1 = 3
4a0,1 sin(−θ1 + 3θ2) − 3

8a0,1 sin(θ1 + 3θ2) + 1
2a1,1r1 cos(3θ2)

− 3
20a1,1r1 cos(3θ2 + 2θ1) − 3

4a1,1r1 cos(3θ2 − 2θ1) − 9a0,2r2 cos(θ1)

+ 9
14a0,2r2 cos(θ1 + 6θ2) − 9

10a0,2r2 cos(θ1 − 6θ2) − 243
16 a0,3r

2
2 sin(−θ1 + 3θ2)

+ 243
32 a0,3r

2
2 sin(θ1 + 3θ2) + 81

64a0,3r
2
2 sin(9θ2 − θ1) − 81

80a0,3r
2
2 sin(9θ2 + θ1)

+h3,1(r1, r2, θ1 + t, θ2 + t),

µ4,1 = 9
4a0,1r2 cos(−θ1 + 3θ3) − 9

8a0,1r2 cos(θ1 + 3θ3) − 3
2a1,1r1r2 sin(3θ2)

+ 9
20a1,1r1r2 sin(3θ2 + 2θ1) + 9

4a1,1r1r2 sin(3θ2 − 2θ1) − 27
14a0,2r

2
2 sin(θ1 + 6θ2)

+ 27
10a0,2r

2
2 sin(−θ1 + 6θ2) − 243

16 a0,3r
3
2 cos(−θ1 + 3θ2) + 243

32 a0,3r
3
2 cos(θ1 + 3θ2)

+ 243
64 a0,3r

3
2 cos(9θ2 − θ1) − 243

80 a0,3r
3
2 cos(9θ2 + θ1) + h4,1(r1, r2, θ1 + t, θ2 + t),

(3.8)

where h1,1, h2,1, h3,1, and h4,1 have to satisfy
∂h1,1

∂θ1
=

∂h2,1

∂r1
,

∂h1,1

∂r2
=

∂h3,1

∂r1
,

∂h1,1

∂θ2
=

∂h4,1

∂r1

,
∂h2,1

∂r2

=
∂h3,1

∂θ1

,
∂h2,1

∂θ2

=
∂h4,1

∂θ1

,
∂h3,1

∂θ2

=
∂h4,1

∂r2

. The functions h1,1, h2,1, h3,1, and
h4,1 are still arbitrary and will now be chosen as simple as possible: h1,1 = h2,1 =
h3,0 = h4,0 = 0. The O(εn)-problems with n ≥ 2 can also be solved. By using
(2.3) and the approximation (1 + εµ1,1, εµ2,1, εµ3,1, εµ4,1) for the integrating vector
(µ1, µ2, µ3, µ4) we can construct an approximation F1 of a first integral F = constant,
yielding

F1 = r1 + ε F1,1,(3.9)

where

F1,1 =
1

2
a1,0r1t+

1

4
δ1r1 cos(2 θ1) +

1

4
a1,0r1 sin(2 θ1) −

3

4
a2,0r

2
1 cos(θ1)

+
1

12
a2,0r

2
1 cos(3 θ1) +

1

2
a1,1r1r2 cos(3 θ2) −

3

20
a1,1r1r2 cos(3 θ2 + 2 θ1)

−3

4
a1,1r1r2 cos(−3 θ2 + 2 θ1) −

3

4
a0,1r2 sin(θ1 − 3 θ2) −

3

8
a0,1r2 sin(θ1 + 3 θ2)
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−9

2
a0,2r

2
2 cos(θ1) +

9

28
a0,2r

2
2 cos(θ1 + 6 θ2) −

9

20
a0,2r

2
2 cos(θ1 − 6 θ2)

+
81

16
a0,3r

3
2 sin(θ1 − 3 θ2) +

81

32
a0,3r

3
2 sin(θ1 + 3 θ2)

−27

64
a0,3r

3
2 sin(−9 θ2 + θ1) −

27

80
a0,3r

3
2 sin(9 θ2 + θ1).

(3.10)

How well F1 approximates F in a first integral F = constant follows from (2.4). In
this case we have

dF1

dt
= [f1 + εµ1,1f1 + εµ2,1f2 + εµ3,1f3 + εµ4,1f4]∗∗

= ε2R2,1(r1, θ1, r2, θ2),(3.11)

where f1 , f2 , f3, f4 are given by (3.3) and µ1,1, µ2,1, µ3,1, µ4,1 are given by (3.8)
respectively. From the existence and uniqueness theorems for ODEs we know that an
initial-value problem for (3.2) is well-posed on a time-scale of order 1

ε
. This implies

that also an initial-value problem for system (3.3) is well-posed on this time-scale.
From (3.3) it then follows on this time-scale that if r1(0), r2(0) are bounded then
r1(t), r2(t) are bounded, and θ1(t), θ2(t) are bounded by constants plus t. Since
|R2,1| ≤ c0 + c1t on a time scale of order 1

ε
, where c0, c1 are constants, it follows that

F1(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε2) for 0 ≤ t ≤ T1 <∞, and

F1(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε), for 0 ≤ t ≤ L1√
ε
,

(3.12)

where T1 and L1 are ε-independent constants. By putting (µ1,0, µ2,0, µ3,0, µ4,0) =
(0, 1, 0, 0), or (0, 0, 1, 0), or (0, 0, 0, 1) we can construct a second, a third, and a
fourth (functionally independent) approximation F2, F3, and F4 of a first integral
F = constant. After some elementary calculations we then obtain























F2 = (θ1 + t) + εF2,1,

F3 = r2 + εF3,1,

F4 = (θ2 + t) + εF4,1,

(3.13)

where F2,1, F3,1, and F4,1 are given in Appendix B formula (B.3). How well F2, F3,

and F4 (as given by (3.13)) approximate F in a first integral F = constant can be
determined similar to (3.11)-(3.12). It can be shown that

F2(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε2) for 0 ≤ t ≤ T2 <∞, and

F2(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε), for 0 ≤ t ≤ L2√
ε
,

(3.14)

where T2 and L2 are ε-independent constants,

F3(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε2) for 0 ≤ t ≤ T3 <∞, and



APPROXIMATIONS OF FIRST INTEGRALS FOR A WEAKLY NONLINEAR 8

F3(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε), for 0 ≤ t ≤ L3√
ε
,

(3.15)

where T3 and L3 are ε-independent constants, and

F4(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε2) for 0 ≤ t ≤ T4 <∞, and

F4(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε), for 0 ≤ t ≤ L4√
ε
,

(3.16)

where T4 and L4 are ε-independent constants.

3.2. The 3:1 internal resonance case. We consider in this subsection














Ẍ + (9 + εδ1)X = ε
[

−a1,0Ẋ + a0,1Ẏ + a2,0Ẋ
2 − a1,1ẊẎ + a0,2Ẏ

2 − a0,3Ẏ
3
]

,

Ÿ + (1 + εδ2)Y = ε
[

−b1,0Ẋ + b0,1Ẏ + b2,0Ẋ
2 − b1,1ẊẎ − b0,2Ẏ

2 − b0,3Ẏ
3
]

.

(3.17)
Putting X = X1, Ẋ = X2, Y = X3,and Ẏ = X4, it follows from (3.17) that







































































Ẋ1 = X2,

Ẋ2 = −9X1 + ε [−δ1X1 − a1,0X2 + a0,1X4

+a2,0X
2
2 − a1,1X2X4 + a0,2X

2
4 − a0,3X

3
4

]

,

Ẋ3 = X4,

Ẋ4 = −X3 + ε [−δ2X3 − b1,0X2 + b0,1X4

+b2,0X
2
2 − b1,1X2X4 − b0,2X

2
4 − b0,3X

3
4

]

.

(3.18)

By using the transformation X1 = r1 cos(3θ1), X2 = 3r1 sin(3θ1), X3 = r2 cos(θ2) and
X4 = r2 sin(θ2) system (3.18) then becomes







































dr1

dt
= εh1(r1, r2, θ1, θ2),

dθ1

dt
= −1 + εh2(r1, r2, θ1, θ2),

dr2

dt
= εh3(r1, r2, θ1, θ2),

dθ2

dt
= −1 + εh4(r1, r2, θ1, θ2),

(3.19)

where h1, h2, h3, and h4 are given in Appendix C formula (C.2). In a similar way as
in subsection (3.1) we can obtain after some elementary calculations approximations
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G1, G2, G3, and G4 of first integrals for system (3.19):






































G1 = r1 + εG1,1,

G2 = (θ1 + t) + εG2,1,

G3 = r2 + εG3,1,

G4 = (θ2 + t) + εG4,1,

(3.20)

where G1, G2, G3, and G4 are given explicitly in Appendix C formula (C.3). How
well Gi(i = 1, 2, 3, or4) approximates G in a first integral G = constant follows from
(2.4) (see also (3.11)-(3.12)). It can be shown that for i = 1, 2, 3, and4

Gi(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε2) for 0 ≤ t ≤ Ti <∞, and

Gi(r1(t), θ1(t), r2(t), θ2(t), t; ε) = constant+ O(ε), for 0 ≤ t ≤ Li√
ε
,

(3.21)

where Ti and Li for i = 1, 2, 3, and4 are ε-independent constants.

4. Approximations for time-periodic solutions and analysis of bifurca-

tions. In section 3 we constructed asymptotic approximations of first integrals. In
this section we will show how the existence, the stability, and the approximations of
non-trivial, time-periodic solutions can be determined from these asymptotic approx-
imations of first integrals. We will also give some bifurcation diagrams for a set of
values of the parameters.

4.1. The 1:3 internal resonance case. The asymptotic approximations (3.13)
for the first integrals of the weakly nonlinear, coupled harmonic oscillators with a 1:3
internal resonance can be used to determine the existence and stability of time-periodic
solutions. Let T < ∞ be the period of a periodic solution and let c1 be a constant
in the first integrals F (r1, θ1, r2, θ2, t ; ε) = constant for which a periodic solution
exists. Consider F = c1 for t = nT and t = (n− 1)T with n ∈ N+, then






F (r1(nT ), θ1(nT ), r2(nT ), θ2(nT ), nT ; ε) = c1,

F (r1 ((n− 1)T ) , θ1((n− 1)T ), r2 ((n− 1)T ) , θ2((n− 1)T ), (n− 1)T ; ε) = c1.

(4.1)
For the autonomous system (3.1) we may assume that θ1(0) = α and θ2(0) = β, where
α and β are arbitrary constants. From (3.3) it follows that







































r1(nT ) = r1 ((n− 1)T ) + O(ε),

θ1(nT ) = θ1 ((n− 1)T )− T + O(ε),

r2(nT ) = r2 ((n− 1)T ) + O(ε),

θ2(nT ) = θ2 ((n− 1)T )− T + O(ε).

(4.2)

Approximating F by F1 (given by (3.9)), eliminating c1 from (4.1) by subtraction,
and using (4.2), we obtain

r1(nT ) =

(

1 − 1

2
εTa1,0

)

r1 ((n− 1)T ) + O(ε2t),(4.3)
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on a time scale of order 1
ε
. Since a1,0 > 0 we can see from (4.3) that r1(nT ) decreases

for increasing n. Hence, the only possible candidate for a periodic solution is r1 ≡ 0.
However, for r1 = 0 the approximation F2 in (3.13) is not valid. From (3.1), it can
readily be seen that the only resonance term in the right hand side of the equation
for X is −εa1,0Ẋ , and this is a damping term. So, if X(0) is O(ε) then X(t) will be
at most O(ε) for t > 0. So we only have to study

Ÿ + (9 + εδ2)Y = ε
[

b0,1Ẏ − b0,2Ẏ
2 − b0,3Ẏ

3
]

(4.4)

when we are interested in periodic solutions. Approximations of first integrals can be
obtained by taking r1 = 0 in F3 and F4 (see (3.13)), yielding

F3 = r2 + ε
[

1
36 δ2r2 cos(6 θ2) − 1

2 b0,1r2t+
27
8 b0,3r

3
2t− 1

12 b0,1r2 sin(6 θ2)

+ 3
4 cos(3 θ2)b0,2r

2
2 − 1

12 b0,2r
2
2 cos(9 θ2) + 3

4 b0,3r
3
2 sin(6 θ2) − 3

32 b0,3r
3
2 sin(12 θ2)

]

,

F4 = θ2 + t+ ε
[

1
18 δ2t− 1

12 b0,2r2 sin(3 θ2) + 1
36 b0,2r2 sin(9 θ2) + 1

8 b0,3r
2
2 cos(6 θ2)

− 1
32 b0,3r

2
2 cos(12 θ2) − 1

108 δ2 sin(6 θ2) − 1
36 b0,1 cos(6 θ2)

]

.

(4.5)
Let again T <∞ be the period of a periodic solution and let c2 be a constant in a first
integral F (r1, θ1, r2, θ2, t; ε) = contant for which a periodic solution exists. Consider
F = c2 for t = nT and t = (n− 1)T with n ∈ N+, then







F (r1(nT ), θ1(nT ), r2(nT ), θ2(nT ), nT ; ε) = c2,

F (r1 ((n− 1)T ) , θ1((n− 1)T ), r2 ((n− 1)T ) , θ2((n− 1)T ), (n− 1)T ; ε) = c2.

(4.6)
Approximating F by F3 (given by (4.5)), eliminating c2 from (4.6) by subtraction,
and using (4.2), we obtain

r2(nT ) = r2 ((n− 1)T ) + εT
(

1
2b0,1r2((n− 1)T ) − 27

8 b0,3r2((n− 1)T )3
)

+ O(ε2t),
(4.7)
on a time scale of order 1

ε
. In fact (4.7) defines a map Q : r2 → Q(r2) ⇔ r2n =

Q(r2n−1) with r2n = r2(nT ). We define a new map P by neglecting the term of
O(ε2t) in (4.7). That is, P : r̃2 → P (r̃2) ⇔ r̃2n = P (r̃2n−1) with r̃2n = r̃2(nT ). It
will be shown that for r2 > 0:

(i) If |r20 − r̃20| = O(ε) for ε ↓ 0 then |r2n − r̃2n| = O(ε) for n = O
(

1√
ε

)

, that

is, for n ∼ 1√
ε

and ε ↓ 0, r2n and r̃2n remain ”ε-close”.

(ii) The map P has a unique, hyperbolic fixed point r̃2 = 2
3

√

b0,1

3b0,3
, which is

asymptotically stable.
(iii) There exists an ε0 > 0 such that for all 0 < ε ≤ ε0 the map Q has a unique

hyperbolic fixed point r2 = 2
3

√

b0,1

3b0,3
+ O(ε) with the same stability property

as the fixed point r̃2 = 2
3

√

b0,1

3b0,3
of the map P .

Proof of (i): From |r20 − r̃20| = O(ε) for ε ↓ 0 it follows that there exists a positive
constant M0 such that |r20 − r̃20| = M0ε. We have

|r2n − r̃2n| = |P (r2n−1) − P (r̃2n−1) + O(ε2n)|
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≤ |P (r2n−1) − P (r̃2n−1)| +M1ε
2n

≤ L|r2n−1 − r̃2n−1| +M1ε
2n,(4.8)

whereM1 and L are positive constants, with L = 1+ε2M2 and M2 a positive constant.
So, we have

|r2n − r̃2n| ≤ (1 + εM2)|r2n−1 − r̃2n−1| +M1ε
2n ≤ . . .

≤ ε(M0 + εn2M1)e
εnM2 ,(4.9)

and so for n = O( 1√
ε
) we conclude that |r2n − r̃2n| = O(ε).

P roof of (ii): The fixed points of the map P follow from r̃2n = P (r̃2n−1) for n→ ∞
or equivalent from r̃2 = r̃2 + εT

(

1
2b0,1r̃2 − 27

8 b0,3r̃2
3
)

⇔ 1
2 r̃(b0,1 − 27

4 b0,3r̃
2) = 0. For

r̃2 > 0 we have a unique fixed point r̃2 = 2
3

√

b0,1

3b0,3
. The fixed point of the map P

is hyperbolic if the linearized map around this fixed point has no eigenvalues of unit
modulus. Let DP be this linearized map, then DP = 1 − εT b0,1. Since 0 < ε << 1
and b0,1 > 0, we have |λ| < 1, and so the fixed point is hyperbolic and stable.

Proof of (iii): For the proof of (iii) we refer to [15] for a similar proof.

So far we can conclude that there exists an asymptotically stable, nontrivial, T -
periodic solution for system (3.1). We can conclude that the periodic solution for
system (3.1) is a combination of a trivial periodic solution in X-direction (that is,
r1 ≡ 0) and a nontrivial periodic solution in Y -direction. It has been shown that the
nontrivial time-periodic solution of the weakly nonlinear, coupled harmonic oscilla-
tors with a 1:3 internal resonance can be determined from the first integrals (3.9) and

(3.13), yielding X(t) ≡ 0, and Y (t) = A2 cos(3θ2(t)), where A2 = 2
3

√

b0,1

3b0,3
and where

θ2(t) can be approximated from (3.3) or (3.16) by θ2(0) −
(

1 + ε δ2

18

)

t.

4.2. The 3:1 internal resonance case. The four functionally independent
asymptotic approximations (3.20) for first integrals of system (3.17) can be used to
determine the existence and stability of non-trivial time-periodic solutions for this
system. Let T < ∞ be the period of a periodic solution and let ci(for i = 1, 2, 3,
and 4) be constants in the first integrals G(r1, θ1, r2, θ2, t ; ε) = constant for which
a periodic solution exists. Approximate G by Gi (as given by (3.20)) and consider
Gi + O(ε2t) = ci i = 1, 2, 3, 4 for t = nT and t = (n − 1)T with n ∈ N+, then for
i = 1, 2, 3, and 4 we have























Gi (r1(nT ), θ1(nT ), r2(nT ), θ2(nT ), nT ; ε) + O(ε2t) = ci,

Gi (r1 ((n− 1)T ) , θ1((n− 1)T ), r2 ((n− 1)T ) , θ2((n− 1)T ), (n− 1)T ; ε)

+O(ε2t) = ci,

(4.10)
where Gi for i = 1, 2, 3, and 4 are given explicitly in Appendix C by formula (C.3). By
eliminating the constants ci for i = 1, 2, 3, and 4 from (4.10) by simple subtractions
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we obtain










































































r1(nT ) = r1 ((n− 1)T ) + εT
(

− 1
2a1,0r1 ((n− 1)T )

+ 1
24a0,3r2((n− 1)T )3 cos(3θ1 ((n− 1)T )− 3θ2 ((n− 1)T ))

)

+ O(ε2t),

θ1(nT ) = θ1 ((n− 1)T )− T + ε
(

− 1
18δ1T

− 1
72a0,3T

r2((n−1)T )3

r1((n−1)T ) sin(3θ1 ((n− 1)T ) − 3θ2 ((n− 1)T ))
)

+ O(ε2t),

r2(nT ) = r2 ((n− 1)T ) + εT
(

1
2b0,1r2((n− 1)T )− 3

8b0,3r2((n− 1)T )3
)

+ O(ε2t),

θ2(nT ) = θ2 ((n− 1)T )− ε 1
2δ2T + O(ε2t).

(4.11)
By letting ψ = θ1 − θ2, we then obtain











































































r1(nT ) = r1 ((n− 1)T ) + εT
(

− 1
2a1,0r1 ((n− 1)T )

+ 1
24a0,3r2((n− 1)T )3 cos(3ψ ((n− 1)T ))

)

+ O(ε2t),

r2(nT ) = r2 ((n− 1)T ) + εT
(

1
2b0,1r2((n− 1)T )

− 3
8b0,3r2((n− 1)T )3

)

+ O(ε2t),

ψ(nT ) = ψ ((n− 1)T ) + εT
((

1
2δ2 − 1

18 δ1
)

− 1
72a0,3

r2((n−1)T )3

r1((n−1)T ) sin(3ψ ((n− 1)T ))
)

+ O(ε2t).

(4.12)

In fact (4.12) defines a map which we will use to determine the nontrivial periodic
solution(s) of system (3.17). First it should be remarked that the trivial periodic
solution of system (3.17) (that is, X(t) ≡ 0 and Y (t) ≡ 0) is unstable. This can readily
be deduced from (3.17) or (3.18) by linearizing the system around the trivial solution.
Since the only resonant term in the equation forX is −εa0,3Ẏ

3 (see (3.17)) it is obvious
that there can not be a nontrivial periodic solution for which X(t) ≡ 0 unless a0,3 = 0.
As in section 4.1 (see also (4.7)) we can now study the map as defined by (4.12). A
completely similar analysis as given in section 4.1 then yields that the map as defined
by (4.12) has a unique, stable, nontrivial, hyperbolic fixed point (r1, r2, ψ) which

up to O(ε) is equal to (A1, A2, θ0), where A1 =
2b0,1a0,3

27b2
0,3

√

3b0,3b0,1

36δ2+a2

1,0

, A2 = 2
3

√

3b0,1

b0,3
,

δ = 1
2δ2 − 1

18δ1, and where θ0 is given by cos(3θ0) =
12a1,0A1

a0,3A3

2

and sin(3θ0) = 72δA1

a0,3A3

2

.

From this it follows that the system of weakly nonlinear, coupled harmonic oscillators
with a 3:1 internal resonance has a nontrivial periodic solution X(t) = A1 cos(3θ1(t))
and Y (t) = A2 cos(θ2(t)), where θ1(t) and θ2(t) can be approximated from (3.19)
or (3.20) by θ1(0) − (1 + ε(δ + 1

18 δ1))t and θ2(0) − (1 + ε( 1
2δ2))t respectively with

θ1(0) − θ2(0) = θ0.

4.3. Analysis of Bifurcations. In the weakly nonlinear system (1.1) the coeffi-
cients ai,j and bi,j depend on the quasi-static drag and lift forces acting on a conductor
in uniform windfield. These quasi-static forces CD(α) and CL(α), where α is the angle
between the virtual windvelocity and the axis of symmetry of the conductor, can be
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measured in a wind-tunnel. According to the Den Hartog criterion (a linear instability
criterion for the equilibrium position) galloping may set in if CD(α) + ∂

∂α
CL(α) < 0

for α = αs, where αs is the static angle of attack, that is, αs is the angle between the
direction of the uniform windflow (in this case the X-direction) and the axis of sym-
metry of the conductor. Typical results from windtunnel measurements for a certain
range of values α are:(see also [3, 4, 13])

CD(α) = CD,0,

CL(α) = CL,1(α− α0) + CL,3(α− α0)
3,

where CD,0, CL,1, and CL,3 are constants and where α0 is usually the angle of attack
for which galloping sets in and for which CD(α)+ ∂

∂α
CL(α) is as negative as possible.

In this paper we will use the parameter values CD,0 = 1
2 , CL,1 = −3, andCL,3 = 6

(see also [4]). Furthermore, we define ᾱs = αs − α0. How the coefficients ai,j and
bi,j depend on ᾱs is given in [4] and in appendix A. Generally it is assumed that for
ᾱs = 0 the largest oscillation amplitudes due to galloping occur. In this section we
will show how this assumption can be verified. It should be remarked that in order
to have galloping b0,1 = −(CD,0 + CL,1 + 3CL,3ᾱ

2
s) has to be positive, implying that

ᾱs should satisfy in this case : |ᾱs| < 1
6

√
5.

4.3.1. The 1:3 internal resonance case. Since a1,0 is independent of ᾱs it
follows from (4.3) thatX(t) tends to zero for increasing time. And from (4.7) it follows
that r2 = 0 is unstable for |ᾱs| < 1

6

√
5. So, the trivial periodic solution is unstable for

|ᾱs| < 1
6

√
5. For the nontrivial periodic solution X(t) = 0, and Y (t) = A2 cos(3θ2(t))

it follows easily from proof (ii) in section 4.1 that this nontrivial periodic solution
is stable for |ᾱs| < 1

6

√
5. A plot of the amplitude A2 as function of ᾱs is given in

figure (4.1). This plot confirms the assumption that for ᾱs = 0 the largest vibration

0

0.05

0.1

0.15

0.2

0.25

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

αs

A
2

Fig. 4.1. Plot of amplitude A2 as fuction of ᾱs.

amplitudes occur. In figure (4.2) the oscillations for t→ ∞ in (X,Y )-plane are given.

4.3.2. The 3:1 internal resonance case. As in the previous subsection 4.3.1
it can easily be shown that the trivial periodic solution is unstable for |ᾱs| < 1

6

√
5.
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0

X

Y

A 2

Y = A  Cos(3    (t))2 θ2

X = 0

A 2

Fig. 4.2. Plot of the stable periodic solution for the 1:3 internal resonance case.

For the nontrivial periodic solution X(t) = A1 cos(3θ1(t)), and Y (t) = A2 cos(θ2(t))
it follows from the (reduced) linearized map (4.12) around this periodic solution that
the eigenvalues of this map of (4.12) are : −b0,1, − 1

2a1,0 + 3i
(

− 1
18δ1 + 1

2δ2
)

, and

− 1
2a1,0 − 3i

(

− 1
18δ1 + 1

2δ2
)

. Since b0,1 and a1,0 are positive for |ᾱs| < 1
6

√
5 it follows

that the nontrivial periodic solution is stable for |ᾱs| < 1
6

√
5. In figure (4.3) and

in figure (4.4) plots are given of the amplitudes A1 and A2 of the stable, periodic
solutions as functions of ᾱs and the detuning parameter δ = − 1

18δ1 + 1
2δ2. In

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

αs

2

1

Amplitude

A

A

Fig. 4.3. Plot of amplitudes A1 and A2 as function of ᾱs for δ = 0.

figure (4.5) plots in the (X,Y )-plane are given for the stable periodic solutions of the
oscillator for different values of the phase difference θ0 = θ1(0) − θ2(0). It should
be remarked that from figure (4.3) it follows that the largest vibration amplitudes in
X-direction do not occur for ᾱs = 0.
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(a) A1 as function of ᾱs and δ. (b) A2 as function of ᾱs and δ.

Fig. 4.4. Plots of amplitudes as functions of ᾱs and δ.
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√
5

20
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Fig. 4.5. Plots of the stable periodic solution for the 3:1 internal resonance case.

5. Conclusions and remarks. In this paper it has been shown that the per-
turbation method based on integrating factors can be used efficiently to approximate
first integrals for a system of weakly nonlinear, coupled harmonic oscillators. In sec-
tion 2 (and 3) of this paper a justification of the presented perturbation method has
been given. It has also been shown how the existence and stability of time-periodic
solutions can be deduced from the approximations of the first integrals for a system of
weakly nonlinear, coupled harmonic oscillators with a 1:3 or a 3:1 internal resonance.
The presented perturbation methods can easily be applied to other systems of weakly
nonlinear, coupled harmonic oscillators. In [4] system (1.1) has been studied for the
1:1, 1:2, and 2:1 internal resonance cases. First order normal form techniques and
averaging techniques have been used in [4] to determine the existence and stability of
nontrivial, periodic solutions. In this paper we used the recently developed perturba-
tion method based on integrating vectors to study system (1.1) with a 1:3 and a 3:1
internal resonance. This paper in fact completes the study of system (1.1). It should
be remarked that system (1.1) is a model that describes galloping of conductor lines
(in a windfield) on which ice has accreted. As is well-known galloping is an almost
purely vertical oscillation of conductor lines. Our results imply that the system of
oscillators will eventually oscillate in an almost purely vertical direction (that is, in
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Y -direction).
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Appendix

A. An oscillator with two degrees of freedom in a uniform windfield.

In [4] a model has been developed to describe the dynamics of an oscillator with two
degrees of freedom in a uniform windfield. The following system of a weakly nonlinear,
coupled harmonic oscillators has been derived















Ẍ +
(

ω2
1 + εδ1

)

X = ε
[

−a1,0Ẋ + a0,1Ẏ + a2,0Ẋ
2 − a1,1ẊẎ + a0,2Ẏ

2 − a0,3Ẏ
3
]

,

Ÿ +
(

ω2
2 + εδ2

)

Y = ε
[

−b1,0Ẋ + b0,1Ẏ + b2,0Ẋ
2 − b1,1ẊẎ − b0,2Ẏ

2 − b0,3Ẏ
3
]

,

(A.1)
where X = X(t), Y = Y (t),˙= d

dt
, and where ε is a small parameter with 0 < ε << 1,

and where the coefficients ai,j and bi,j ∈ R are given by

a1,0 = 2CD,0 > 0,
a0,1 = CL,1ᾱs + CL,3ᾱ

3
s ,

a2,0 = CD,0 > 0,
a1,1 = CL,1ᾱs + CL,3ᾱ

3
s ,

a0,2 = 1
2CD,0 − CL,1 + 3CL,3ᾱ

2
s > 0,

a0,3 = − 1
2 ᾱsCL,1 − 3CL,3ᾱs − CL,3

ᾱ3

s

2 ,

b1,0 = 2
(

CL,1ᾱs + CL,3ᾱ
3
s

)

,

b0,1 = −(CD,0 + CL,1 + 3CL,3ᾱ
2
s) > 0,

b2,0 = CL,1ᾱs + CL,3ᾱ
3
s ,

b1,1 = −CD,0 − CL,1 − 3CL,3ᾱ
3
s > 0,

b0,2 = −3CL,3ᾱs − CL,3

2 ᾱ3
s − CL,1

2 ᾱs,

b0,3 =
CD,0

2 +
CL,1

6 +(1+ 1
2 ᾱ

2
s)CL,3 > 0.

The quasi-static drag and lift forces CD(α) and CL(α) acting on a cylinder with ridge
can be obtained from wind-tunnel experiments. The coefficients CD,0, CL,1, and CL,3

can be derived from these forces (see also section 4.3). The angles α, αs, and ᾱs are
defined in section 4.3. In figure (A.1) a sketch of the oscillator is presented. The oscil-
lator consists of a cylinder with a small ridge. In figure (A.2) the drag and lift forces
acting on the cylinder are given. For more (and complete) details we refer to [3, 4, 13].

B. The 1:3 internal Resonance. In polar coordinates, we can rewrite system
(3.2) as follows:







































dr1

dt
= ε g1(r1, r2, θ1, θ2),

dθ1

dt
= −1 + ε g2(r1, r2, θ1, θ2),

dr2

dt
= ε g3(r1, r2, θ1, θ2),

dθ2

dt
= −1 + ε g4(r1, r2, θ1, θ2),

(B.1)

where

g1 =
1

2
δ1r1 sin(2 θ1) −

1

2
a1,0r1 +

1

2
a1,0r1 cos(2 θ1) +

3

2
a0,1r2 cos(θ1 − 3 θ2)
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Fig. A.1. The aeroelastic oscillator as viewed from above.
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uniform

Fig. A.2. Windvelocities and aerodynamic forces acting on the cross section of the cylinder

with ridge.

−

3

2
a0,1r2 cos(θ1 + 3 θ2) +

3

4
a2,0r1

2 sin(θ1) −
1

4
a2,0r1

2 sin(3 θ1)

−

3

2
a1,1r1r2 sin(3 θ2) +

3

4
a1,1r1r2 sin(3 θ2 + 2 θ1) −

3

4
a1,1r1r2 sin(−3 θ2 + 2 θ1)

+
9

2
a0,2r2

2 sin(θ1) −
9

4
a0,2r2

2 sin(θ1 + 6 θ2) −
9

4
a0,2r2

2 sin(θ1 − 6 θ2)

−

81

8
a0,3r2

3 cos(θ1 − 3 θ2) +
81

8
a0,3r2

3 cos(θ1 + 3 θ2) +
27

8
a0,3r2

3 cos(−9 θ2 + θ1)

−

27

8
a0,3r2

3 cos(9 θ2 + θ1),
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g2 = −

1

2
δ1 cos(2 θ1) −

1

2
δ1 −

1

2
a1,0 sin(2 θ1) +

3

2
a0,1

r2

r1

sin(θ1 + 3 θ2)

−

3

2
a0,1

r2

r1

sin(θ1 − 3 θ2) +
1

4
a2,0r1 cos(θ1) −

1

4
a2,0r1 cos(3 θ1)

−

3

4
a1,1r2 cos(−3 θ2 + 2 θ1) +

3

4
a1,1r2 cos(3 θ2 + 2 θ1) +

9

2
a0,2

r2
2

r1

cos(θ1)

−

9

4
a0,2

r2
2

r1

cos(θ1 − 6 θ2) −
9

4
a0,2

r2
2

r1

cos(θ1 + 6 θ2) −
81

8
a0,3

r2
3

r1

sin(θ1 + 3 θ2)

+
81

8
a0,3

r2
3

r1

sin(θ1 − 3 θ2) +
27

8
a0,3

r2
3

r1

sin(9 θ2 + θ1) −
27

8
a0,3

r2
3

r1

sin(−9 θ2 + θ1),

g3 = −

1

6
δ2r2 sin(6 θ2) −

1

6
b1,0r1 cos(θ1 − 3 θ2) +

1

6
b1,0r1 cos(θ1 + 3 θ2)

+
1

2
b0,1r2 −

1

2
b0,1r2 cos(6 θ2) +

1

6
b2,0r1

2 sin(3 θ2) −
1

12
b2,0r1

2 sin(3 θ2 + 2 θ1)

+
1

12
b2,0r1

2 sin(−3 θ2 + 2 θ1) −
1

2
b1,1r1r2 sin(θ1) +

1

4
b1,1r1r2 sin(θ1 + 6 θ2)

+
1

4
b1,1r1r2 sin(θ1 − 6 θ2) −

9

4
b0,2r2

2 sin(3 θ2) +
3

4
b0,2r2

2 sin(9 θ2)

−

27

8
b0,3r2

3 +
9

2
b0,3r2

3 cos(6 θ2) −
9

8
b0,3r2

3 cos(12 θ2),

g4 = −

1

18
δ2 cos(6 θ2) −

1

18
δ2 −

1

18
b1,0

r1

r2

sin(θ1 + 3 θ2) −
1

18
b1,0

r1

r2

sin(θ1 − 3 θ2)

+
1

6
b0,1 sin(6 θ2) +

1

18
b2,0

r1
2

r2

cos(3 θ2) −
1

36
b2,0r1

2 cos(−3 θ2 + 2 θ1)

−

1

36
b2,0r1

2 cos(3 θ2 + 2 θ1) −
1

12
b1,1r1 cos(θ1 − 6 θ2) +

1

12
b1,1r1 cos(θ1 + 6 θ2)

−

1

4
b0,2r2 cos(3 θ2) +

1

4
b0,2r2 cos(9 θ2) −

3

4
b0,3r2

2 sin(6 θ2) +
3

8
b0,3r2

2 sin(12 θ2).

(B.2)

The approximations of first integrals in the 1:3 internal resonance case are

F1 = r1 + ε

�

1

2
a1,0r1t +

1

4
δ1r1 cos(2 θ1) +

1

4
a1,0r1 sin(2 θ1) −

3

4
a2,0r

2

1 cos(θ1)

+
1

12
a2,0r

2

1 cos(3 θ1) +
1

2
a1,1r1r2 cos(3 θ2) −

3

20
a1,1r1r2 cos(3 θ2 + 2 θ1)

−

3

4
a1,1r1r2 cos(−3 θ2 + 2 θ1) −

3

4
a0,1r2 sin(θ1 − 3 θ2) −

3

8
a0,1r2 sin(θ1 + 3 θ2)

−

9

2
a0,2r

2

2 cos(θ1) +
9

28
a0,2r

2

2 cos(θ1 + 6 θ2) −
9

20
a0,2r

2

2 cos(θ1 − 6 θ2)

+
81

16
a0,3r

3

2 sin(θ1 − 3 θ2) +
81

32
a0,3r

3

2 sin(θ1 + 3 θ2) −
27

64
a0,3r

3

2 sin(−9 θ2 + θ1)
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−

27

80
a0,3r

3

2 sin(9 θ2 + θ1)

�

,

F2 = θ1 + t + ε

�

δ1t

2
−

δ1 sin(2 θ1)

4
+

a1,0

4
cos(2 θ1) +

a2,0r1

4
sin(θ1) −

a2,0r1

12
sin(3 θ1)

−

3

8

a0,1r2 cos(θ1 + 3 θ2)

r1

−

3

4

a0,1r2 cos(θ1 − 3 θ2)

r1

+
9

2

a0,2r
2

2 sin(θ1)

r1

+
9

20

a0,2r
2

2 sin(θ1 − 6 θ2)

r1

−

9

28

a0,2r
2

2 sin(θ1 + 6 θ2)

r1

+
81

32

a0,3r
3

2 cos(θ1 + 3 θ2)

r1

+
81

16

a0,3r
3

2 cos(θ1 − 3 θ2)

r1

−

27

80

a0,3r
3

2 cos(9 θ2 + θ1)

r1

−

27

64

a0,3r
3

2 cos(−9 θ2 + θ1)

r1

+
3a1,1r2

4
sin(−3 θ2 + 2 θ1) +

3a1,1r2

20
sin(3 θ2 + 2 θ1)

�

,

F3 = r2 + ε

�

1

12
b1,0r1 sin(θ1 − 3 θ2) +

1

24
b1,0r1 sin(θ1 + 3 θ2) −

1

18
b2,0r

2

1 cos(3 θ2)

+
1

60
b2,0r

2

1 cos(3 θ2 + 2 θ1) +
1

12
b2,0r

2

1 cos(−3 θ2 + 2 θ1) +
1

2
b1,1r1r2 cos(θ1)

−

1

28
b1,1r1r2 cos(θ1 + 6 θ2) +

1

20
b1,1r1r2 cos(θ1 − 6 θ2) +

1

36
δ2r2 cos(6 θ2)

−

1

2
b0,1r2t +

27

8
b0,3r

3

2t −
1

12
b0,1r2 sin(6 θ2) +

3

4
b0,2r

2

2 cos(3 θ2)

−

1

12
b0,2r

2

2 cos(9 θ2) +
3

4
b0,3r

3

2 sin(6 θ2) −
3

32
b0,3r

3

2 sin(12 θ2)

�

,

F4 = θ2 + t + ε

�

1

18
δ2t +

1

72

b1,0r1 cos(θ1 + 3 θ2)

r2

−

1

36

b1,0r1 cos(θ1 − 3 θ2)

r2

+
1

54

b2,0r
2

1 sin(3 θ2)

r2

+
1

36

b2,0r
2

1 sin(−3 θ2 + 2 θ1)

r2

−

1

180

b2,0r
2

1 sin(3 θ2 + 2 θ1)

r2

+
1

60
b1,1r1 sin(θ1 − 6 θ2) +

1

84
b1,1r1 sin(θ1 + 6 θ2) −

1

12
b0,2r2 sin(3 θ2) +

1

36
b0,2r2 sin(9 θ2)

+
1

8
b0,3r

2

2 cos(6 θ2) −
1

32
b0,3r

2

2 cos(12 θ2) −
1

108
δ2 sin(6 θ2) −

1

36
b0,1 cos(6 θ2)

�

.

(B.3)
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C. The 3:1 internal resonance case. In polar coordinates, system (3.18)
becomes







































dr1

dt
= εh1(r1, r2, θ1, θ2),

dθ1

dt
= −1 + εh2(r1, r2, θ1, θ2),

dr2

dt
= εh3(r1, r2, θ1, θ2),

dθ2

dt
= −1 + εh4(r1, r2, θ1, θ2),

(C.1)

where

h1 = −

δ1r1

6
sin(6θ1) −

a1,0r1

2
+

a1,0r1

2
sin(6θ1) +

a0,1r2

6
cos(3θ1 − θ2) −

a0,1r2

6
cos(3θ1 + θ2)

+
9

4
a2,0r

2

1 sin(3θ1) −
3

4
a2,0r

2

1 sin(9θ1) −
1

2
a1,1r1r2 sin(θ2) +

1

4
a1,1r1r2 sin(θ2 + 6θ1)

−

1

4
a1,1r1r2 sin(−θ2 + 6θ1) +

1

6
a0,2r

2

2 sin(3θ1) −
1

12
a0,2r

2

2 sin(3θ1 + 2θ2)

−

1

12
a0,2r

2

2 sin(3θ1 − 2θ2) −
1

12
a0,3r

3

2 cos(3θ1 − θ2) +
1

8
a0,3r

3

2 cos(3θ1 + θ2)

+
1

24
a0,3r

3

2 cos(−3θ1 + 3θ2) −
1

24
a0,3r

3

2 cos(3θ1 + 3θ2) −
1

24
a0,3r

3

2 cos(θ2 − 3θ1),

h2 = −

1

18
δ1 cos(6θ1) −

1

18
δ1 −

1

6
a1,0 sin(6θ1) +

1

18
a0,1

r2

r1

sin(3θ1 + θ2) −
1

18
a0,1

r2

r1

sin(3θ1 − θ2)

+
1

4
a2,0r1 cos(3θ1) −

1

4
a2,0r1 cos(9θ1) −

1

12
a1,1r2 cos(−θ2 + 6θ1) +

1

12
a1,1r2 cos(θ2 + 6θ1)

+
1

18
a0,2

r2

2

r1

cos(3θ1) −
1

36
a0,2

r2

2

r1

cos(3θ1 − 2θ2) −
1

36
a0,2

r2

2

r1

cos(3θ1 + 2θ2)

−

1

24
a0,3

r3

2

r1

sin(3θ1 + θ2) +
1

24
a0,3

r3

2

r1

sin(3θ1 − θ2) +
1

72
a0,3

r3

2

r1

sin(3θ1 + 3θ2)

−

1

72
a0,3

r3

2

r1

sin(3θ1 − 3θ2),

h3 = −

1

2
δ2r2 sin(2θ2) −

3

2
b1,0r1 cos(3θ1 − θ2) +

3

2
b1,0r1 cos(3θ1 + θ2) +

1

2
b0,1r2

−

1

2
r2 cos(2θ2) +

9

2
b2,0r

2

1 sin(θ2) −
9

4
b2,0r

2

1 sin(θ2 + 6θ1) +
9

4
b2,0r

2

1 sin(−θ2 + 6θ1)

−

3

2
b1,1r1r2 sin(3θ1) +

3

4
b1,1r1r2 sin(3θ1 + 2θ2) +

3

4
b1,1r1r2 sin(3θ1 − 2θ2)

−

3

4
b0,2r

2

2 sin(θ2) +
1

4
b0,2r

2

2 sin(3θ2) −
3

8
b0,3r

3

2 +
1

2
b0,3r

3

2 cos(2θ2) −
1

8
b0,3r

3

2 cos(4θ2),

h4 = −

1

2
δ2 cos(2θ2) −

1

2
δ2 −

3

2
b1,0

r1

r2

sin(3θ1 + θ2) −
3

2
b1,0

r1

r2

sin(3θ1 − θ2)
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+
1

2
b0,1 sin(2θ2) +

9

2
b2,0

r2

1

r2

cos(θ2) −
9

4
b2,0

r2

1

r2

cos(−θ2 + 6θ1) −
9

4
b2,0

r2

1

r2

cos(θ2 + 6θ1)

−

3

4
b1,1r1 cos(3θ1 − 2θ2) +

3

4
b1,1r1 cos(3θ1 + 2θ2) −

1

4
b0,2r2 cos(θ2) +

1

4
b0,2r2 cos(3θ2)

−

1

4
b0,3r

2

2 sin(2θ2) +
1

8
b0,3r

2

2 sin(4θ2).

(C.2)

The approximations of first integrals in the 3:1 internal resonance case are

G1 = r1 + ε

�

1

36
δ1r1 cos(6 θ1) +

1

2
a1,0tr1 +

1

12
a1,0r1 sin(6 θ1) −

3

4
a2,0r

2

1 cos(3 θ1)

+
1

12
a2,0r

2

1 cos(9 θ1) +
1

2
a1,1r1r2 cos(θ2) −

1

28
a1,1r1r2 cos(θ2 + 6 θ1)

+
1

20
a1,1r1r2 cos(−θ2 + 6 θ1) +

1

12
a0,1r2 sin(3 θ1 − θ2) −

1

24
a0,1r2 sin(3 θ1 + θ2)

−

1

18
a0,2r

2

2 cos(3 θ1) +
1

60
a0,2r

2

2 cos(3 θ1 + 2 θ2) +
1

12
a0,2r

2

2 cos(3 θ1 − 2 θ2)

−

1

16
a0,3r

3

2 sin(3 θ1 − θ2) +
1

32
a0,3r

3

2 sin(3 θ1 + θ2) −
1

24
a0,3r

3

2t cos(−3 θ2 + 3 θ1)

−

1

144
a0,3r

3

2 sin(3 θ2 + 3 θ1)

�

,

G2 = θ1 + t + ε

�

1

18
δ1t +

1

12
a2,0r1 sin(3 θ1) −

1

36
a2,0r1 sin(9 θ1) −

1

72

a0,1r2 cos(3 θ1 + θ2)

r1

+
1

36

a0,1r2 cos(3 θ1 − θ2)

r1

+
1

54

a0,2r
2

2 sin(3 θ1)

r1

−

1

36

a0,2r
2

2 sin(3 θ1 − 2 θ2)

r1

−

1

180

a0,2r
2

2 sin(3 θ1 + 2 θ2)

r1

+
1

96

a0,3r
3

2 cos(3 θ1 + θ2)

r1

−

1

48

a0,3r
3

2 cos(3 θ1 − θ2)

r1

−

1

432

a0,3r
3

2 cos(3 θ2 + 3 θ1)

r1

+
1

72

ta0,3r
3

2 sin(−3 θ2 + 3 θ1)

r1

−

1

108
δ1 sin(6 θ1)

+
1

36
a1,0 cos(6 θ1) −

1

60
a1,1r2 sin(−θ2 + 6 θ1) +

1

84
a1,1r2 sin(θ2 + 6 θ1)

�

,

G3 = r2 + ε

�

−

3

4
b1,0r1 sin(3 θ1 − θ2) +

3

8
b1,0r1 sin(3 θ1 + θ2) −

9

2
b2,0r

2

1 cos(θ2)

+
9

28
b2,0r

2

1 cos(θ2 + 6 θ1) −
9

20
b2,0r

2

1 cos(−θ2 + 6 θ1) +
1

2
b1,1r1r2 cos(3 θ1)

−

3

20
b1,1r1r2 cos(3 θ1 + 2 θ2) −

3b1,1r1r2

4
cos(3 θ1 − 2 θ2) +

δ2r2

4
cos(2 θ2) −

b0,1tr2

2

−

1

4
b0,1r2 sin(2 θ2) +

3

4
b0,2r

2

2 cos(θ2) −
1

12
b0,2r

2

2 cos(3 θ2) +
3

8
b0,3r

3

2t

+
1

4
b0,3r

3

2 sin(2 θ2) −
1

32
b0,3r

3

2 sin(4 θ2)

�

,
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G4 = θ2 + t + ε

�

1

2
δ2t +

3

8

b1,0r1 cos(3 θ1 + θ2)

r2

+
3

4

b1,0r1 cos(3 θ1 − θ2)

r2

+
9

2

b2,0r
2

1 sin(θ2)

r2

−

9

20

b2,0r
2

1 sin(−θ2 + 6 θ1)

r2

−

9

28

b2,0r
2

1 sin(θ2 + 6 θ1)

r2

−

3

4
b1,1r1 sin(3 θ1 − 2 θ2)

+
3

20
b1,1r1 sin(3 θ1 + 2 θ2) −

1

4
b0,2r2 sin(θ2) +

1

12
b0,2r2 sin(3 θ2) +

1

8
b0,3r

2

2 cos(2 θ2)

−

1

32
b0,3r

2

2 cos(4 θ2) −
1

4
δ2 sin(2 θ2) −

1

4
b0,1 cos(2 θ2)

�

.
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