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On Boundary Damping for a Weakly Nonlinear Wave

Equation

Darmawijoyo∗ and W.T. van Horssen†

Abstract

In this paper an initial-boundary value problem for a weakly nonlinear string (or
wave) equation with non-classical boundary conditions is considered. One end of the
string is assumed to be fixed and the other end of the string is attached to a spring-
mass-dashpot system, where the damping generated by the dashpot is assumed to be
small. This problem can be regarded as a rather simple model describing oscillations
of flexible structures such as suspension bridges or overhead transmission lines in a
wind field. A multiple time-scales perturbation method will be used to construct
formal asymptotic approximations of the solution. It will also be shown that all so-
lutions tend to zero for a sufficiently large value of the damping parameter.

Keywords: wave equation, boundary damping, asymptotics, two-timescales pertur-
bation method.

1 Introduction

There are a number of examples of flexible structures such as suspension bridges, overhead
transmission lines, dynamically loaded helical springs that are subjected to oscillations due
to different causes. Simple models which describe these oscillations can be expressed in
initial-boundary value problems for wave equations like in [2], [5], [6], [10], [12], [13] or for
beam equations like in [3], [4], [14], [15]. Simple models which describe these oscillations
can involve linear or nonlinear second and fourth order partial differential equations with
classical or non-classical boundary conditions. These problems have been studied in [2],
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[3],[4],[5], [6], [10], [12], [13] using a two-timescales perturbation method or a Galerkin-
averaging method to construct approximations.

In most cases simple, classical boundary conditions are applied ( such as in [2], [3], [4],
[10], [12], [13], [14]) to construct approximations of the oscillations. More complicated,
non-classical boundary conditions ( see for instance [5], [6], [11], [15], [16], [17], [18]) have
been considered only for linear partial differential equations. In this paper we will study
an initial-boundary value problem for a weakly nonlinear partial differential equation for
which one of the boundary conditions is of non-classical type. Asymptotic approximations
of the solution will be constructed. In fact, we will consider the vibrations of a string which
is fixed at x = 0 and is attached to a spring-mass-dashpot system at x = π (see also figure
1). This problem can be considered as a rather simple model to describe wind-induced
vibrations of an overhead transmission line or a bridge (see [3,13]).

0 π

γ

m

α

p 2

Figure 1: A Simple model of a suspension bridge.

It is assumed that ρ ( the mass-density of the string), T (the tension in the string), m̃
(the mass in the spring-mass-dashpot system), γ̃ (the stiffness of the spring), ε̃ (the damping
coefficient of the dashpot with 0 < ε̃� 1 ), and p2 (for instance the spring constant of the
the stays of the bridge) are all positive constants. Moreover, we only consider the vertical
displacement ũ(x, t̃) of the string, where x is the place along the string, and t̃ is time. We
neglect internal damping and consider the weight W of the string per unit length to be
constant (W = µg , g is the gravitational acceleration). We consider a uniform wind flow,
which causes nonlinear drag and lift forces (FD, FL) to act on the structure per unit length.
After some scalings, the equation describing the vertical displacement of the string is:

ūtt − ūxx + p2ū = −µg + FD + FL. (1.1)

After some calculations (see also [13]) the following initial-boundary value problem is ob-
tained as simple model to describe the wind-induced oscillations of the string(or bridge)

utt − uxx + p2u = ε

(

ut −
1

3
u3

t

)

, 0 < x < π, t > 0, (1.2)
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u(0, t) = 0, t ≥ 0, (1.3)

ux(π, t) = −ε (mutt(π, t) + γu(π, t) + αut(π, t)) , t ≥ 0, (1.4)

u(x, 0) = φ(x), 0 < x < π, (1.5)

ut(x, 0) = ψ(x), 0 < x < π, (1.6)

where φ and ψ are the initial displacement and the initial velocity of the string respectively,
and where p2, m, γ, and α are positive constants, and where 0 < ε� 1. In this paper formal
approximations (that is, functions that satisfy the differential equation and the initial and
boundary values up to some order in ε) will be constructed for the initial-boundary value
problem (1.2) - (1.6).

The outline of this paper is as follows. In section 2 we apply a two-timescales pertur-
bation method to construct formal approximations for the solution of the initial-boundary
value problem (1.2) - (1.6) and we analyze this solution. Also in section 2 we show that for
all values of p2 mode interactions occur only between modes with non-zero initial energy
(up to O(ε) ). Moreover, it will be shown in section 2 that for α ≥ π

2
all solutions tend to

zero. In section 3 we make some remarks and draw some conclusions.

2 The construction of asymptotic approximations

To construct formal asymptotic approximations for the solution of the initial-boundary
value problem (1.2) - (1.6) a two-timescales perturbation method (see [1,7,8]) will be used
in this section. Since an approximation in the form of an infinite series will be constructed
we will impose some additional conditions on the initial values in order to get a convergent
series representation for which summation and differentiation may be interchanged. The
additional conditions on the initial values are: φ(0) = φ ′(π) = φ′′(0) = φ′′′(π) = ψ(0) =
ψ′(π) = ψ′′(0) = 0, φ ∈ C4 ([0, π], <) , ψ ∈ C3 ([0, π], <) . By using a two-timescales
perturbation method the function u(x, t) is supposed to be a function of x, t, and τ , where
τ = εt. We put

u(x, t) = v(x, t, τ ; ε). (2.1)

By substituting (2.1) into the initial-boundary value problem (1.2) - (1.6) we obtain

vtt − vxx + p2v + 2εvtτ + ε2vττ = ε

(

vt + εvτ −
1

3
(vt + εvτ )

3

)

, (2.2)

0 < x < π, t > 0,

v(0, t, τ ; ε) = 0, t ≥ 0, (2.3)

vx(π, t, τ ; ε) = −ε
(

m(vtt(π, t) + 2εvtτ (π, t) + ε2vττ (π, t)) (2.4)

+γv(π, t) + α(vt(π, t) + εvτ (π, t))) , t ≥ 0,

v(x, 0, 0; ε) = φ(x), 0 < x < π, (2.5)

vt(x, 0, 0; ε) + εvτ (x, 0, 0; ε) = ψ(x), 0 < x < π. (2.6)

By expanding v into a power series with respect to ε around ε = 0, that is,

v(x, t, τ ; ε) = vo(x, t, τ) + εv1(x, t, τ) + ε2...+ · · · , (2.7)
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and by substituting (2.7) into (2.2)-(2.6), and by equating the coefficients of like powers in
ε, it follows from the power 0 and 1 of ε respectively, that v0 should satisfy

vott
− voxx

+ p2vo = 0, 0 < x < π, t > 0, (2.8)

vo(0, t, τ) = 0, t ≥ 0, (2.9)

vox
(π, t, τ) = 0, t ≥ 0, (2.10)

vo(x, 0, 0) = φ(x), 0 < x < π, (2.11)

vot
(x, 0, 0) = ψ(x), 0 < x < π, (2.12)

and that v1 should satisfy

v1tt
− v1xx

+ p2v1 = vot
− 2votτ

− 1

3
v3

ot
, 0 < x < π, t > 0, (2.13)

v1(0, t, τ) = 0, t ≥ 0, (2.14)

v1x
(π, t, τ) = − (mvott

(π, t) + γvo(π, t) + αvot
(π, t)) , t ≥ 0, (2.15)

v1(x, 0, 0) = 0, 0 < x < π, (2.16)

v1t
(x, 0, 0) = −voτ

(x, 0, 0), 0 < x < π. (2.17)

The solution of (2.8) - (2.12) is given by

vo(x, t, τ) =
∞
∑

n=0

(

An cos(
√

λnt) +Bn sin(
√

λnt)
)

sin(( 1
2

+ n)x), (2.18)

where λn =
(

1
2

+ n
)2

+ p2, and where An and Bn are still arbitrary functions of τ which
can be used to avoid secular terms in v1. From (2.11), (2.12), and (2.18) it follows that
An(0) and Bn(0) have to satisfy

An(0) =
2

π

∫ π

0

φ(x) sin(( 1
2

+ n)x) dx, (2.19)

Bn(0) =
2

π

∫ π

0

ψ(x) sin(( 1
2

+ n)x) dx, (2.20)

for n = 0, 1, 2, · · · .
Next, we solve the initial-boundary value problem (2.13)-(2.17). In order to solve this

problem we will make the boundary condition (2.15) homogeneous. For that reason we
define the following transformation

v1(x, t, τ) = w(x, t, τ) − x(mvott
(π, t, τ) + γvo(π, t, τ) + αvot

(π, t, τ)). (2.21)

Substituting (2.21) into the initial-boundary value problem (2.13)-(2.17) we obtain

wtt − wxx + p2w = vot
− 2votτ

− 1

3
v3

ot
(2.22)

+x
(

ftt(t, τ) + p2f(t, τ)
)

, 0 < x < π, t > 0,

4



w(0, t, τ) = 0, t ≥ 0, (2.23)

wx(π, t, τ) = 0, t ≥ 0, (2.24)

w(x, 0, 0) = xf(0, 0), (2.25)

wt(x, 0, 0) = −voτ
(0, 0) + xft(0, 0), (2.26)

where f(t, τ) = mvott
(π, t, τ) + γvo(π, t, τ) + αvot

(π, t, τ). It should be observed that
ftt(t, τ) + p2f(t, τ) =

∑

∞

n=0(−1)n(1
2

+ n)2
(

A∗

n cos(
√
λnt) +B∗

n sin(
√
λnt)

)

, where A∗

n =
mλnAn − γAn − α

√
λnBn, and B∗

n = mλnBn − γBn + α
√
λnAn.

To solve the initial-boundary value problem (2.22) - (2.26) the eigenfunction expansion
method will be applied. For that reason, the function w is expanded into the Fourier series

w(x, t, τ) =

∞
∑

n=0

wn(t, τ) sin(( 1
2

+ n)x). (2.27)

The function as defined in (2.27) satisfies the boundary conditions at x = 0 and x = π.
By substituting (2.27) into (2.22) the left-hand side of (2.22) becomes,

wtt − wxx + p2w =
∞
∑

n=0

(wntt
+ λnwn) sin(( 1

2
+ n)x). (2.28)

By multiplying (2.22) with sin
(

(1
2

+ n)x
)

, and by integrating the so-obtained equation
with respect to x from 0 to π, it follows that wn(t, τ) has to satisfy

wntt
+ λnwn =

2(−1)n

π(n+ 1
2
)2

∞
∑

k=0

(−1)k(1
2

+ n)2
(

A∗

k cos(
√

λkt) +B∗

k sin(
√

λkt)
)

+
√

λn

(

[2A′

n − An] sin(
√

λnt) + [Bn − 2B′

n] cos(
√

λnt)
)

(2.29)

−1

4







∞
∑

k,l,m=0

k+l−m=n

−
∞
∑

k,l,m=0

k−l−m−1=n

−1

3

∞
∑

k,l,m=0

k+l+m+1=n






HkHlHm,

where Hn =
√
λn

(

−An sin(
√
λnt) +Bn cos(

√
λnt)

)

. The last terms in the right-hand side
of (2.29) (that is, the terms involving the sums) contain products of trigonometric func-
tions. These products can be equal to sin(

√
λt) or cos(

√
λt), which are solutions of the

homogeneous equation wntt
+ λnwn = 0. Obviously these products can give rise to secular

terms in w, and so in v1. To determine the terms in the products of the trigonometric
functions that give rise to secular terms we have to solve the following Diophantine-like
problems:

k +l −m = n, or k − l −m− 1 = n, or k + l +m+ 1 = n, (2.30)

where

±
√
λn =

√
λk +

√
λl −

√
λm, or (2.31)
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±
√
λn =

√
λk −

√
λl +

√
λm, or (2.32)

±
√
λn =

√
λk −

√
λl −

√
λm, or (2.33)√

λn =
√
λk +

√
λl +

√
λm, (2.34)

with k,m, l, and n in N , and p2 > 0. Note that λj = (1
2
+ j)2 + p2. To solve these problems

(2.30) - (2.34) we use a technique similar to the one used in [12].
By substituting (2.30) (that is, k+ l−m = n,, or k− l−m−1 = n, or k+ l+m+1 = n)

into (2.31), or (2.32), or (2.33), or (2.34), by squaring the so-obtained equation twice, by
rearranging terms and by using some elementary algebraic manipulations we find that the
Diophantine-like problems (2.30) - (2.34) only have solutions for

1. n = k + l −m and
√
λn =

√
λk +

√
λl −

√
λm. In this case the solution is given by:

l = m and n = k, or k = m and n = l.

2. n = k+ l−m and
√
λn =

√
λk−

√
λl +

√
λm. In this case the solution of the equation

is given by l = m and n = k.

3. n = k + l − m and
√
λn = −

√
λk +

√
λl +

√
λm. In this case the solution of the

equation is given by k = m and n = l.

We rewrite (2.29) by taking apart those terms in the right-hand side of (2.29) that give
rise to secular terms in w, yielding

wntt
+ λn wn =

(

2
√

λnA
′

n −
√

λnAn − 2

π
(−mλnBn + γBn − α

√

λnAn)

−1

4

(

1

4
λn

√

λnAn(A2
n +B2

n) −
√

λnAn

∞
∑

m=0

λm(A2
m +B2

m)

))

sin(
√

λnt)

+

(

−2
√

λnB
′

n +
√

λnBn − 2

π
(−mλnAn + γAn + α

√

λnBn) (2.35)

−1

4

(

−1

4
λn

√

λnBn(A2
n +B2

n) +
√

λnBn

∞
∑

m=0

λm(A2
m +B2

m)

))

cos(
√

λnt)

−1

4







∞
∗

∑

k,l,m=0

k+l−m=n

−
∞
∑

k,l,m=0

k−l−m−1=n

−1

3

∞
∑

k,l,m=0

k+l+m+1=n






HkHlHm

+
2(−1)n

π(n+ 1
2
)2

∞
∑

k=0

k 6=n

(−1)k(k + 1
2
)2
(

A∗

k cos(
√

λkt) +B∗

k sin(
√

λkt)
)

,

where the * in
∑

∗ indicates that terms in this sum giving rise to secular terms are excluded.
In order to avoid secular terms in w (and in v1) we have to take the coefficients of sin(

√
λnt)
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and cos(
√
λnt) in the right-hand side of (2.35) to be equal to zero, yielding

2
√

λnA
′

n −
√

λnAn =
2

π
(−mλnBn + γBn − α

√

λnAn(τ))

+
1

4

(

1

4
λn

√

λnAn(A2
n +B2

n) −
√

λnAn

∞
∑

m=0

λm(A2
m +B2

m)

)

, (2.36)

2
√

λnB
′

n −
√

λnBn = − 2

π
(−mλnAn + γAn + α

√

λnBn(τ))

+
1

4

(

1

4
λn

√

λnAn(A2
n +B2

n) −
√

λnAn

∞
∑

m=0

λm(A2
m +B2

m)

)

(2.37)

for n = 0, 1, 2, · · ·. By taking
√
λnAn = Ān,

√
λnBn = B̄n system (2.36) - (2.37) simplifies

to

2Ā′

n − Ān =
2

π

(

(−m
√

λn +
γ√
λn

)B̄n − αĀn

)

(2.38)

+
1

4

(

1

4
Ān(Ā2

n + B̄2
n) − Ān

∞
∑

m=0

(Ā2
m + B̄2

m)

)

,

2B̄′

n − B̄n = − 2

π

(

(−m
√

λn +
γ√
λn

)Ān + αB̄n

)

(2.39)

+
1

4

(

1

4
B̄n(Ā2

n + B̄2
n) − B̄n

∞
∑

m=0

(Ā2
m + B̄2

m)

)

for n = 0, 1, 2, · · ·. From (2.38) and (2.39) it can easily be seen that if An(0) = Bn(0) = 0
then An(τ) = Bn(τ) = 0 for τ = εt > 0. So if we start with no initial energy in the n-th
mode then there will be no energy present up to O(ε) on timescales of order ε−1. This
allows us to truncate the infinite dimensional system (2.38) - (2.39) to those modes which
have non-zero initial energy. To study system (2.38) - (2.39) in more detail we will use
polar coordinates as defined by

Ān = Rn cos(φn), (2.40)

B̄n = Rn sin(φn), (2.41)

where Rn and φn are functions of τ .
After substituting (2.40) - (2.41) into (2.38) - (2.39) we obtain

R′

n =
Rn

2

(

1 − 2

π
α +

1

16
R2

n − 1

4

∞
∑

m=0

R2
m

)

, (2.42)

φ′

n =
1

π

(

m
√

λn − γ√
λn

)

(2.43)
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for n = 0, 1, 2, · · ·. From (2.42) it is obvious that R ′

n < 0 for α > π
2
. So for α > π

2
all

solutions of (1.2) - (1.6) will tend to zero for increasing time t. When for instance only
energy is initially present in the first two modes ( that is, R o(0) 6= 0, R1(0) 6= 0, and
Rn(0) = 0 for n ≥ 2) a phase-plane analysis can be performed.

From (2.42) it then follows that Ro and R1 have to satisfy

R′

o =
Ro

2

(

1 − 2

π
α− 3

16
R2

o −
1

4
R2

1

)

, (2.44)

R′

1 =
R1

2

(

1 − 2

π
α− 1

4
R2

o −
3

16
R2

1

)

. (2.45)

The critical points of (2.44) and (2.45) for 0 < α < π
2

are (0, 0),
(

4
3

√

3
π
(π − 2α), 0

)

,
(

0, 4
3

√

3
π
(π − 2α)

)

, and
(

4
7

√

7
π
(π − 2α), 4

7

√

7
π
(π − 2α)

)

. For α ≥ π
2

the only critical point

is (0, 0). By linearizing (2.44) and (2.45) around the critical points for 0 < α < π
2

we find
two stable nodes, one unstable node, and one saddle point. For α > π

2
the critical point is

a stable node (see table 1).

Table 1: The behaviour of the critical points

α Critical point Behaviour

(0,0) unstable node

(

0 , 4
3

√

3
π
(π − 2α)

)

stable node

0 < α < π
2
(

4
3

√

3
π
(π − 2α), 0

)

stable node

(

4
7

√

7
π
(π − 2α), 4

7

√

7
π
(π − 2α)

)

saddle point

α> π
2

(0, 0) stable node

From the table it can readily be seen that if the damping parameter α is increasing
(starting from α = 0) then the two stable nodes and the saddle point are moving to the
unstable node. For α = π

2
the four critical points coincide in (0, 0), and for α > π

2
a stable

node occurs in (0, 0). The behaviour of the solution of (2.44) - (2.45) can also be seen in
figure 2 and in figure 3.

For 0 < α < π
2

it can be seen in figure 2 that the solution (usually) will finally tend to
a single mode vibration as t → ∞. For α > π

2
it can be seen in figure 3 that the string

vibrations will finally come to rest up to O(ε) as t→ ∞.
After removing secular terms in (2.35) we can finally determine wn from (2.35). After
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R0

R1

0

Figure 2: Phase Plane for 0 < α < π
2
.

R

R0

1

0

Figure 3: Phase plane for α> π
2
.

some lengthy, but elementary calculations we obtain

wn (t, τ) = Fn(t, τ) +

∞
∑

k=0

k 6=n

gnk

(

A∗

k cos(
√

λkt) +B∗

k sin(
√

λkt)
)

(2.46)

− 1

4







∞∗
∑

k,l,m=0

k+l−m=n

−
∞
∑

k,l,m=0

k−l−m−1=n

−1

3

∞
∑

k,l,m=0

k+l+m+1=n






Sklm

4
∑

i=1

cos(T i
klmt+ δi

klm)

λn − (T i
klm)2

,

where Fn(t, τ) = Cn(τ) cos(
√
λnt) +Dn(τ) sin(

√
λnt),

A∗

n = mλnAn − γAn − α
√
λnBn,

B∗

n = mλnBn − γAn + α
√
λnAn,

9



gnk = 2
π

(

k+ 1

2

n+ 1

2

)2
(−1)k+n

λn−λk
,

Sklm =
√
λkλlλm

∏

i=k,l,m

√

A2
i (τ) + B2

i (τ),

T 1
klm =

√
λk +

√
λl +

√
λm, δ1

klm = αk + αl + αm,

T 2
klm =

√
λk +

√
λl −

√
λm, δ2

klm = αk + αl − αm,

T 3
klm = T 2

kml, δ3
klm = δ2

kml,

T 4
klm =

√
λk −

√
λl −

√
λm, δ4

klm = αk − αl − αm,

and where αn is defined as follows:

for A2
n +B2

n = 0 : αn = 0,
for A2

n +B2
n 6= 0 : cos(αn) = Bn√

A2
n+B2

n

, and sin(αn) = An√
A2

n+B2
n

.

It should be observed that wn still contains infinitely many free functions Cn and Dn of
τ for n = 0, 1, 2, · · ·. These functions can be used to avoid secular terms in the solution of
the O(ε2)-problem for v2. It is, however, our goal to construct a function ū that satisfies the
partial differential equation, the boundary conditions, and the initial values up to order
ε2. For that reason Cn and Dn are taken to be equal to their initial values Cn(0) and
Dn(0) respectively. So far we constructed a formal approximation ū = vo + εv1 for u that
satisfies the partial differential equation, the boundary conditions, and the initial values up
to order ε2. In [4,10,12,13] asymptotic theories are presented for wave and beam equations
with similar nonlinearities. The formal approximations constructed for those problems
were shown to be asymptotically valid, i.e., the differences between the approximations
and the exact solutions are of order ε on timescales of order ε−1 as ε→ 0. It is beyond the
scope of this paper to give the asymptotic analysis for the wave equation we discussed. We
expect that the asymptotic validity of the constructed approximations can be shown in a
way similar to the analysis presented in [4,10,12,13]. Finally it should be remarked that
from these asymptotic theories it follows that vo + εv1 and vo are both (order ε) asymptotic
approximations of the exact solution on timescales of order ε−1.

3 Conclusions

In this paper an initial-boundary value problem for a weakly nonlinear wave equation with a
non-classical boundary condition has been considered. Formal asymptotic approximations
of the exact solution have been constructed using a two-timescales perturbation method.
For all values of p2 > 0 it has been shown that mode-interactions only occur between
modes with non-zero initial energy up to O(ε). This implies that truncation is allowed
to those modes that have non-zero initial energy up to O(ε). For the damping parameter
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α > π
2

it also has been shown that all solutions tend to zero as t → ∞. For 0 < α < π
2

it
can be shown that the string system usually will oscillate in only one mode (up to O(ε))
as t→ ∞.
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