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Abstract

We investigate the influence of the value of deflation vectors at interfaces on the rate of

convergence of preconditioned conjugate gradient methods. Our set-up is a Laplace problem

in two dimensions with continuous or discontinuous coefficients that vary in several orders

of magnitude. In the continuous case we are interested in the convergence acceleration of

deflation on block preconditioners. The finite volume discretization gives a matrix with very

distinct eigenvalues and hence many iterations are needed to obtain a solution using conjugate

gradients. We use an incomplete Choleski preconditioning for the symmetric discretization

matrix. Subsequently, deflation is applied to eliminate the disadvantageous effects to conver-

gence caused by the remaining small eigenvalues. Here we show the effects of several variants

of algebraic deflation and we propose an optimal choice for the deflation vectors.

Mathematics Classification: 65F10 (Iterative methods for linear systems), 76S05 (Flow in Porous Media)

Keywords: porous media, Laplace equation, finite differences, conjugated gradients, preconditioning, deflation

1 Introduction

1.1 Scope

Large linear systems occur in many scientific and engineering applications. Often these systems
result from a discretization of model equations using Finite Elements, Finite Volumes or Finite
Differences. The systems tend to become very large for three dimensional cases. Some models
involve both time and space as independent parameters and therefore it is necessary to solve such
a linear system efficiently at all time-steps.

Presently, direct methods (such as a LU-decomposition) and iterative methods are available
to solve such a linear system. When systems get very large and when a discretization has a band-
structure, direct methods do not preserve the matrix structure and fill-in causes a loss of efficiency
(in computer memory and number of floating point operations). For this case iterative methods
are a good alternative. Furthermore, when a time integration is necessary, then the solution of
the preceding time-step can be used as a starting vector for the algorithm to get the result on the
next time-step. This too supports the use of iterative methods.

Iterative methods such as Gauss-Seidel, Jacobi, SOR and Chebyshev-methods can be used,
however, convergence is in general slow and it is often very expensive to determine good estimates
of parameters on which they depend. To avoid this problem, the conjugate gradient method, based
on steepest descent, is used on the symmetric positive definite (SPD) discretization matrix. We
deal with an application from transport in porous media where we encounter extreme contrasts
in the coefficients of the partial differential equation. Here a preconditioning is necessary and we
use a standard incomplete Choleski factorization as a preconditioner for the conjugate gradient
method (ICCG) to improve convergence behavior. Furthermore, deflation is applied to get rid
of remaining eigenvalues that delay convergence. Vuik et al. [11] proposed a scheme based on
physical deflation in which the deflation vectors are continuous and satisfy the Laplace equation.
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A different variant involves the so-called algebraic deflation with discontinuous deflation vectors.
Here convergence is speeded up. This was also subject of [10]. They investigate a comparison
between physical deflation vectors and algebraic deflation vectors. In their paper two ways of
algebraic deflation vectors are applied:

• algebraic deflation vectors restricted to high permeability layers,

• algebraic deflation vectors for each layer.

From numerical experiments it follows that the second choice gives faster convergence. Further-
more, this option turned out to be more efficient for many applications than the use of physical
deflation vectors. Therefore, we limit ourselves to the use of algebraic projection vectors for each

layer.
For references related to the Deflated ICCG method we refer to the overview given in [11]. The

DICCG method has already been successfully used for complicated magnetic field simulations [2].
A related method is recently presented in [8]. In [3] deflation is used to accelerate block-IC
preconditioners combined with Krylov subspace methods in a parallel computing environment.

The DICCG method is related to coarse grid correction, which is used in domain decomposition
methods [4, 8]. Therefore insight in a good choice of the deflation vectors can probably be used
to devise comparable strategies for coarse grid correction approaches.

Since the deflation technique has been successfully used to solve Poisson type problems with
strong contrasts in the coefficients and in combination with a parallel block IC preconditioner we
aim to generalize the method to a parallel solver for the discretized (in)compressible Navier-Stokes
equations. We assume that the domain Ω consists of a number of disjoint sets Ωj , j = 1, ..., m such
that ∪m

j=1Ω̄j = Ω̄. The division in subdomains is motivated by jumps in the coefficients and/or
the data distribution used to parallelize the solver. For the construction of the deflation vectors
it is important which type of discretization is used: cell centered or vertex centered.

Cell centered
For this discretization the unknowns are located in the interior of the finite element or finite
volume. The domain decomposition is straightforward as can be seen in Figure 1. The algebraic
deflation vectors zj are uniquely defined as:

zj(xi) =

{

1, for xi ∈ Ωj

0, for xi ∈ Ω \ Ωj .

Vertex centered
If a vertex centered discretization is used the unknowns are located at the boundary of the finite
volume or finite element. Two different ways for the data distribution are known [9]:

• Element oriented decomposition: each finite element (volume) of the mesh is contained in a
unique subdomain. In this case interface nodes occur.

• Vertex oriented decomposition: each node of the mesh is an element of a unique subdomain.
Now some finite elements are part of two or more subdomains.

Note that the vertex oriented decomposition is not well suited to combine with a finite element
method. Furthermore for interface points it is not uniquely defined to which subdomain they
belong. Therefore we restrict ourselves to the element oriented decomposition, see Figure 2. As a
consequence of this the deflation vectors overlap at interfaces.

In our previous work we always use non-overlapping deflation vectors. In [11, 12] the interface
vertices are elements of the high permeability subdomains, whereas in [3] no interface vertices
occur due to a cell centered discretization. The topic of this paper is: how to choose the value of
the deflation vectors at interface points in order to obtain an efficient, robust and parallelizable
black-box deflation method.

First we briefly present the mathematical model that we use to compare the various deflation
vectors. Subsequently we give the algorithm and describe different versions of deflation. This is
followed by a description of the numerical experiments.
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original domain

subdomain 1 subdomain 2

Figure 1: Domain decomposition for a cell centered discretization.

original domain

subdomain 1 subdomain 2

Figure 2: Domain decomposition for a vertex centered discretization. The grey nodes are the
interface nodes.



4

1.2 The mathematical model

We denote the horizontal and vertically downward pointing coordinates by x and y. Flow in
porous media is often modelled by the following coupled scaled problem:

(P0)



























∂S

∂t
+ ∇ · (qS) = ∇ · (D(S)∇S),

∇ · q = 0,

q + σ∇p − Sg = 0.

Above equations are supplemented with appropriate initial and boundary conditions. In above
equations S (-), q (m/s) and p (Pa) are the unknown saturation, discharge and pressure. The
time is denoted by t (s) and σ is the (known) mobility. Porous media mostly consist of several
layers where the mobility varies between several orders of magnitude. In this work we take σ as
a (piecewise) constant function. For an overview of the equations that occur in modeling flow in
porous media we refer to the books of among others Bear [1] and Lake [6].

The third equation of (P0) is substituted into the second equation to give

∇ ·
{

Sg − σ∇p
}

= 0. (1)

In the present work we focus on the solution of equation (1) on a square domain. We disregard
gravity since it does not complicate the numerical scheme. Then we have to solve the following
problem in the open square domain Ω := {(x, y) ∈ R

2 : (x, y) ∈ (0, 1) × (0, 1)}:

(P1)



























−∇ · (σ∇p) = 0, for (x, y) ∈ Ω

p = 1, for y = 0,

∂p

∂n
= 0, for y = 1 or x ∈ {0, 1}.

Furthermore, suppose that the closed domain Ω consists of m horizontal closed subdomains,
Ω1, ..., Ωm. Clearly, the exact solution of (P1) is given by p(x, y) = 1 for (x, y) ∈ [0, 1] × [0, 1]. In
our set-up we let σ be discontinuous and we suppose σ ∈ {10−7, 1}, i.e. for j ∈ N : 2j, 2j + 1 ≤ m

and (x, y) ∈ Ω:

σ(x, y) =







σmax = 1, (x, y) ∈ Ω2j+1

σmin = 10−7, (x, y) ∈ Ω2j .

To deal with the discontinuities we look for weak solutions of problem (P1). We define the set of
functions V where for each element v we require that ∇v is square integrable over Ω and where
v = 0 over y = 0, i.e.

V := {v ∈ L2(Ω) : v|y=0 = 0}.

Multiplication of (P1)1 with a test-function v ∈ V and integration over Ω, gives

−

∫

Ω

∇ · (σ∇p)vdA = 0.

Partial integration and application of the Two-dimensional Divergence Theorem and use of both

v|y=0 = 0 and
∂u

∂n
= 0 for y = 1 or x ∈ {0, 1} gives the following variational (weak) formulation:

(WF )













Find u ∈ L2(Ω) with u|y=0 = 1, such that

∫

Ω σ∇u · ∇vdA = 0, ∀v ∈ V,

where V := {v ∈ L2(Ω) : v|y=0 = 0}.
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It can be shown that smooth solutions of (WF) also satisfy problem (P1). We refine the class of
functions V to continuous functions in Ω with compact support near the interface `j := Ωj ∩Ωj+1

in a region Dj ⊂ Ω, i.e.
V ′ := {v ∈ C(Ω) : v|Ω\Dj

= 0},

where we define Dj as the region within Ω where the distance to the interface `j is less than δ, i.e.

Dj := {(x, y) ∈ Ω : dist((x, y), `j) < δ}.

Combination of (P1)1 and partial integration of (WF) gives
∫

Dj

∇ · (σ∇uv)dA = 0.

We split the region Dj into two complimentary subregions DT and DB separated by `j , where

σ =

{

σT , (x, y) ∈ DT

σB , (x, y) ∈ DB
for (x, y) ∈ Dj . With v ∈ V ′, hence v|∂Dj

= 0, follows, using the

two-dimensional Divergence Theorem
∫

`j

nT · (σT∇pT )vds = −

∫

`j

nB · (σB∇pB)vds. (2)

Here nT and nB are unit normal vectors on ` outward from DT and DB . Using Dubois-lemma, it
follows from 2

σT
∂pT

∂n
= σB

∂pB

∂n
.

This is the condition that we use to discretize (P1) and for convenience we consider a medium
with straight horizontal layers and hence horizontal discontinuities. We solve system (P1) with
finite differences. The resulting linear system has a symmetric coefficient matrix.

To solve above problem with large contrasts of σ, Vuik et al. [11] proposed and analyzed an
efficient algorithm based on a preconditioned conjugated gradient (CG) method. Unfortunately,
the presence of very small eigenvalues delays the convergence rate significantly. The main con-
tribution of their algorithm is the use of deflation to annihilate this delay due to the very small
eigenvalues. Furthermore, a classical termination criterion becomes robust again. An incomplete
Choleski (IC) matrix factorization is used as a preconditioner. New in this report is the definition
and analysis of various values of the algebraic deflation vectors at the interfaces.

1.3 Discretization of (P1) and the discretization matrix

As mentioned in Section 1.1 we solve problem (P1) using a Finite Difference method. We divide
the domain [0, 1] × [0, 1] into n × n equidistant grid cells. Let i and j be respectively the ith and
jth horizontal and vertical gridnode, so that

• the Dirichlet boundary contains grid-nodes (j = 0) and

• the Neumann boundaries lie in the middle of subsequent gridnodes (i.e. between i = 0 and
i = 1, i = n and i = n + 1, j = n and j = n + 1).

The remainder of the gridnodes are within the domain [0, 1] × [0, 1]. The geometry is shown in
Figure 3.

As a result from discretization we obtain the following system of equations

Ax = b,

where A ∈ R
n2×n2

, x ∈ R
n2

, b ∈ R
n2

respectively represent the discretization matrix, vector with
unknown pressures and vector with the right-hand side. The matrix A is symmetric and positive
definite. Furthermore, the discretization is chosen such that the interfaces between subsequent
layers coincide with gridpoints.
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σ = σmin
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y

Figure 3: The geometry of the layered domain.

2 Solution of the matrix equation

Since A is symmetric and positive definite, the conjugate gradient method is a natural candidate
to solve the matrix equation.

Vuik et al. [11] observe that the number of small eigenvalues (order 10−7) of A is equal to the
number of gridnodes in the low mobility layer (σ = 10−7) plus the number of high permeability
layers that have a low permeability layer on top. The conjugate gradient method converges to the
exact solution only once all small eigenvalues have been ’discovered’. The number of eigenvalues
is reduced by the use of a preconditioner (Incomplete LU or Choleski or even a diagonal scaling).
However, still a number of small eigenvalues remain for the preconditioned matrix. These small
eigenvalues persist due to the fact that at each interface between low-and high permeability layers
a homogeneous Neumann condition is effectively adopted by the sand-layer. This makes the blocks
of the discretization matrix that correspond to the sandwiched sandlayers almost singular. The
following theorem is proven by Vuik et al. [11]:

Theorem 1: Let ε be small enough and D = diag(A) and let q be the number of layers with

σ of order one between low σ layers, then the diagonally scaled matrix D−1/2AD−1/2 has exactly

q eigenvalues of order ε. 2

The preconditioning aims at improving the condition of the matrix. However, for this case q small
eigenvalues persist. In experiments we use a diagonal preconditioner for the one-dimensional cases,
whereas for our two-dimensional experiments an incomplete Choleski decomposition is used as a
preconditioner for the symmetric positive definite discretization matrix.

The DICCG-method was proposed by Vuik et al. [11] for the Laplace problem with extreme
contrasts of the coefficients. The aim is to get rid of the remaining eigenvalues of the preconditioned
matrix Ã = L−T L−1A, where L−T L−1 ≈ A−1 is the IC-preconditioner.

2.1 Deflation

In this subsection we analyze the elimination of the small eigenvalues of Ã by deflation. Suppose
that λi and zi, i ∈ {1, . . . , m} respectively represent eigenvalues and orthonormal eigenvectors of
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the symmetric discretization matrix A ∈ R
n2×n2

(such that zT
j zi = δij), and define the operator

P ∈ R
n2×n2

P := I −

m
∑

j=1

zjz
T
j , m ≤ n2

then

PAzi = Azi −

m
∑

j=1

zjz
T
j Azi = Azi − λi

m
∑

j=1

zjz
T
j zi = 0, ∀ i ∈ {1, . . . , m}

PAzk = Azk −

m
∑

j=1

zjz
T
j Azk = Azk − λk

m
∑

j=1

zjz
T
j zk = λkzk, ∀ k ∈ {m + 1, . . . , n2}.

Hence, we state the following result:

Proposition 2: Let P := I −

m
∑

i=1

ziz
T
i , where zi and λi are respectively orthogonal eigenvectors

and eigenvalues of the matrix A, then

1. PA and A have the same eigenvalues λj , j > m and the corresponding eigenvalues of A

given by λi for i ≤ m are all zero for the matrix PA;

2. the matrix P is a projection.

Proof: The first statement is proven by the argument above proposition 1. To prove the second
statement, we compute

P
2

= (I −
m

∑

i=1

ziz
T
i )(I −

m
∑

i=1

ziz
T
i ) = I − 2

m
∑

i=1

ziz
T
i + (

m
∑

i=1

ziz
T
i )(

m
∑

i=1

ziz
T
i ) = I −

m
∑

i=1

ziz
T
i = P .

The second last equality results from orthonormality of the eigenvectors. Hence, the matrix P is
a projection. 2

From above proposition follows that P and PA are singular. The matrix P can be re-written:

Proposition 3: Let Z ∈ R
n2×m : Z = (z1 . . . zm) where zi are the orthonormal eigenvec-

tors with eigenvectors λi of the matrix A, then the projection P can be re-written as P =
I − AZ(ZT AZ)−1ZT .

Proof: Let P = I − AZ(ZT AZ)−1ZT , then

P = I − A(z1 . . . zm)









zT
1

. . .

zT
m



A(z1 . . . zm)





−1 



zT
1

. . .

zT
m



 =

= I − (Az1 . . . Azm)





zT
1 Az1 . . . zT

1 Azm

. . . . . . . . .

zT
mAz1 . . . zT

mAzm





−1 



zT
1

. . .

zT
m



 =

= I − (λ1z1 . . . λmzm)diag

(

1

λ1
, . . . ,

1

λm

)





zT
1

. . .

zT
m



 = I −

m
∑

i=1

ziz
T
i

This proves the statement. 2
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Corollary 4: The matrix PA is symmetric positive semi-definite.

Proof: Symmetry of PA is established by, using Proposition 3,

(PA)T = (A − AZ(ZT AZ)−1ZT A)T = A − AZ(ZT AZ)−1ZT A (AT = A).

Furthermore, from Proposition 2 and since A is symmetric positive definite, it follows that all
eigenvalues of PA are nonnegative. Combining symmetry of PA and absence of negative eigen-
values, it follows that PA is symmetric positive semi-definite. 2

Furthermore, the matrix PA, where P := I − AZ(ZT AZ)−1ZT , is singular for general Z:

PAZ = AZ − AZ(ZT AZ)−1ZT AZ = AZ − AZ = 0.

The columns of Z are eigenvectors of PA with zero value. When we take eigenvectors of A,
associated with small eigenvalues of A, for the columns of Z, then the small eigenvalues vanish for
PA.

Proposition 5: Let P ∈ R
n2×n2

be defined by P := I −AZ(ZT AZ)−1ZT , with Z = (z1, . . . , zm),
then

1. the operator P is a projection for all Z ∈ R
n2×m;

2. the null-space of P is spanned by the independent set {Az1, . . . , Azm}, i.e. nul(P ) =
Span{Az1, . . . , Azm}.

Proof:

1. P 2 = I − 2AZ(ZT AZ)−1ZT + AZ(ZT AZ)−1ZT AZ(ZT AZ)−1ZT = P.

2. Since PAZ = 0, it follows that Azi ∈ nul P and hence dim nul P ≥ m. Let V :=

Span{z1, . . . , zm}, then from the Direct Sum Theorem (see for instance [5]) follows R
n2

=

V ⊕ V ⊥, where V ⊥ = {y ∈ R
n2

: y ⊥ V }, hence dim V ⊥ = n2 − m. Suppose y ∈ V ⊥, then

Py = y − AZ(ZT AZ)−1ZT y = y, ∀y ∈ V ⊥.

Hence dim col P ≥ n2−m. Since dim nul P +dim col P = n2, this implies dim nul P ≤ m.
Hence, using dim nul P ≥ m, we have dim nul P = m. Since {Az1, . . . , Azm} represents
a linearly independent set of n vectors in nul P and dim nul P = n, it follows from the
Basis-Theorem (see for instance [7]) that

nul P = Span{Az1, . . . , Azm}.

This proves the Proposition 5. 2

For completeness we present the eigenvalues of the preconditioned matrix Ã = L−T L−1A in Figure
4 for a one-dimensional case, where L = diag(A) and n = 99, m = 10 (99 internal gridnodes and
10 subdomains). The condition number of Ã is improved by elimination of the smaller eigenvalues.
The matrix P is referred to as the deflation matrix / operator and the matrix P is chosen such
that the small eigenvalues are eliminated. The vectors z1, . . . , zm are referred to as the projection
vectors and they are chosen such that their span approaches the span of the small eigenvectors
of Ã. The advantage of working with the matrix P Ã rather than with Ã is that the smaller
eigenvalues of Ã are transferred to zero eigenvalues of PA which do not influence the convergence
of the CG-method.
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Figure 4: The eigenvalues of the matrix Ã for the case of high contrasts of the permeability. Above
data are given for a one-dimensional example. For more dimensional cases the results are similar.

2.2 Deflated Incomplete Choleski Preconditioned Conjugate Gradients

The elimination of the small eigenvalues of A takes place by using the projection matrix P . We
then solve

PAx = Pb, (3)

with the ICCG-method, where PA is singular. The solution of above equation is not unique. We
obtain the solution of the matrix-equation Ax = b by

x = (I − P T )x̃ + P T x̃,

where x̃ is the solution of equation (3). In this paragraph we first establish uniqueness of the
above x, given any x̂ that satisfies equation (3). Equation (3) is written as P (Ax̃ − b) = 0, where
Ax̃ − b ∈ nul P . Since PAZ = 0, the vectors Azi are in the null-space of P , i.e. Azi ∈ nul P .
Since, we know from Proposition 5 that nul P = Span{Az1, . . . , Azm}, the vectors in the null-

space of P can be written as linear combinations w =

m
∑

i=1

αiAzi ∈ nul P . Therefore, it can be

seen that one can write for the vector x̃:

x̃ = A−1b + A−1w = A−1b +

m
∑

i=1

αizi. (4)

Since A is not singular, the first term in the right-hand side is uniquely determined. We investigate
the result obtained from multiplication of the second term in the right-hand side with the matrix
P T . For convenience we look at the product P T Z:

P T Z = (I − Z(ZT AZ)T ZT A)Z = Z − Z(ZT AZ)−1ZT AZ = 0.

Hence, this product is zero and the second term of the right-hand side of equation (4) vanishes,
since Z = (z1 . . . zm). Hence, the vector P T x̃ is unique. This implies that the solution of the
matrix equation Ax = b is uniquely determined from

x = (I − P T )x̃ + P T x̃ = Z(ZT AZ)−1ZT b + P T x̃ = Z(ZT AZ)−1Zb + P T x̃.
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After determination of x̃ by solving equation (3), we obtain a unique solution of Ax = b for x. For
completeness, we present the algorithm of the deflated ICCG.

Algorithm 1 (DICCG [11]):
k = 0, r̃0 = Pr0, p1

= z0 = L−T L−1r̃0

while ||r̃k||2 > ε

k = k + 1

αk =
r̃T

k−1 zk−1

pT
k
PAp

k
xk = xk−1 + αp

k
r̃k = r̃k−1 − αkPAp

k
zk = L−T L−1r̃k

βk =
r̃T

k zk

r̃T
k−1 zk−1

p
k−1

= zk + βkp
k

end while

2.3 Choice of deflation vectors

We define ∂Ωj := Ωj\Ωj . Let zj be the deflation vector corresponding to the jth layer (subdomain),
then we choose the deflation vectors for j ∈ {1, ..., m} as follows

zj(x) =











0, for x ∈ Ω \ Ωj

∈ [0, 1], for x ∈ (∂Ωj ∩ ∂Ωj−1) ∪ (∂Ωj ∩ ∂Ωj+1)

1, for x ∈ Ωj .

Here ∂Ω0 and ∂Ωn+1 are the horizontal top y = 0 and bottom y = 1 boundaries of the square
domain Ω. In above expression the value for zj at positions on the boundaries of Ωj can be chosen
in the range [0, 1]. We investigate the following choices at the boundaries between subsequent
subdomains:

1. no overlapping projection vectors of the subdomains:











z2j(x) = 0, for x ∈ (∂Ω2j ∩ ∂Ω2j−1) ∪ (∂Ω2j ∩ ∂Ω2j+1) (even, low permeable layer),

z2j+1(x) = 1, for x ∈ (∂Ω2j+1 ∩ ∂Ω2j) ∪ (∂Ω2j+1 ∩ ∂Ω2j+2) (odd, high permeable layer)

2. complete overlapping projection vectors of the subdomains:

zj(x) = 1, for x ∈ (∂Ωj ∩ ∂Ωj−1) ∪ (∂Ωj ∩ ∂Ωj+1) (for all layers).

3. average overlapping projection vectors of the subdomains:

zj(x) =
1

2
, for x ∈ (∂Ωj ∩ ∂Ωj−1) ∪ (∂Ωj ∩ ∂Ωj+1) (for all layers).

4. weighted overlapping projection vectors of the subdomains:















z2j(x) =
σmin

σmax + σmin
, for x ∈ (∂Ω2j ∩ ∂Ω2j−1) ∪ (∂Ω2j ∩ ∂Ω2j+1) (even),

z2j+1(x) =
σmax

σmax + σmin
, for x ∈ (∂Ω2j+1 ∩ ∂Ω2j) ∪ (∂Ω2j+1 ∩ ∂Ω2j+2) (odd).
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Figure 5: Convergence behavior of the deflated CG-method for σ = 1 and 10 subdomains.

3 Numerical experiments

We have done experiments with the different overlapping between subsequent subdomains for a
one- and two dimensional case. The parameter σ and the number of subdomains have also been
varied. We start to report the results from the one-dimensional experiments.

3.1 One dimensional experiments

We start with the case that σ = 1 for x ∈ Ω. The solution is calculated with non-overlapping,
average overlapping, and completely overlapping projection vectors. Note that for this choice of
σ the case of weighted projection vectors coincides with average overlapping. The convergence
results have been plotted in Figure 5. The experiments were done for 99 internal gridpoints and
10 subdomains. From Figure 5 it can be seen that the average overlap gives fastest convergence.
Whereas complete overlapping produces the slowest convergence.

The eigenvalues of the matrix L−T L−1PA (note that L is here a diagonal matrix) for complete
overlapping projection vectors are shown in Figure 6. We see that the smallest eigenvalues are
in the range of 10−15, which is within the roundoff errors and therefore these eigenvalues can be
considered as zero. Hence these eigenvalues are referred as being not significant. It can be seen
that the significant eigenvalues range between less then 10−2 and more than 1. The eigenvalues
for the same case but with average overlapping are plotted in Figure 7. Here the eigenvalues range
between more than 10−2 and more than 1. Hence for the case of average (weighted) overlapping the
effective condition number of the matrix L−T L−1PA is smaller than for the case of the complete
overlapping. We also computed the eigenvalues for the case of no overlapping: the difference found
was negligible. This supports the observations from Figure 5.

Figure 8 displays the results that have been obtained for the case that σ varies abruptly: σ ∈
{1, 10−7}. Here the results are given for the cases of no overlap, complete overlap, weighted overlap
and average overlap. It can be seen that the results of weighted overlap and no overlap almost
coincide and give the highest convergence rate. Furthermore, the case of average overlapping
produces the worst convergence behavior. The convergence rate using completely overlapping
projection vectors do not produce any good results either. The observations in Figure 8 differ
completely from the observations in Figure 5. However, it can be seen that the use of weighed
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Figure 6: The eigenvalues of the matrix L−T L−1PA for the case of complete overlapping projection
vectors and no contrasts for the permeability.
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Figure 7: The eigenvalues of the matrix L−T L−1PA for the case of weighted overlapping projection
vectors and no contrasts for the permeability.
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Figure 8: Convergence behavior of the deflated CG-method for the case of permeability contrasts
(10−7 − 1) and 10 subdomains. Crosses correspond to average overlapping projection vectors.
Large dots represent the results for complete overlapping.

overlapping projection vectors produces good results for both cases.
First we show the eigenvalue profile of the case in which we do not apply deflation in Figure

4. It can be seen, consistent to Theorem 1 (Vuik et al. [11]), that four eigenvalues in the order
of 10−9 persist. This would delay convergence very much. We do not present the results for the
residual or error for this case. We computed the eigenvalues of the matrix L−T L−1PA for the
cases of complete, average and weighted overlapping projection vectors. The results for complete
overlapping are shown in Figure 9. It can be seen that for the case of complete overlapping the
significant eigenvalues are in the range between about 10−3 and 1, which gives an effective condition
number κeff ≈ 9.08 · 102. Whereas for the case of average overlapping still four eigenvalues of the
order of 10−7 persist, giving an effective condition number κeff ≈ 2.41 · 107. The slow convergence
and initial divergence is attributed to these eigenvectors (see Figure 10). Finally we show the
profile of the eigenvalues for the case of weighted overlapping in Figure 11. Here it can be seen
that the significant eigenvalues range between more than 10−2 and 1, and the effective condition
number κeff ≈ 4.09 · 10. Hence the effective condition number is smallest for this case. The
large difference between the effective condition numbers from no overlapping / weighted overlap
and complete overlap explains the difference in speed of convergence in spite of the absence of
significant eigenvalues in the order 10−8 − 10−6. A continuation, not shown in Figure 8, of the
calculation for average overlap towards 100 iterations gives four plateaus for the norm of the
error. This number corresponds to exactly four small Ritz-values to be found (see Figure 10).
We also computed the eigenvalues for the case of no overlapping and the eigenvalues do not differ
significantly from those as plotted in Figure 11. This supports the observations made in Figure 8.

Figure 12 shows the results for σ = 1. Here we vary the number of subdomains (layers) for 99
internal gridpoints. The results are for weighted overlap (hence coincide with average overlap). It
can be seen that convergence speeds up as more sub-domains are used. However, the work per
iteration increases as well. A similar behavior is observed for the case of complete overlapping,
see Figure 13.

In Figure 14 and 15 we show some results for different numbers of subdomains for the case of
large contrasts σ ∈ {1, 10−7} and respectively weighted (≈ no overlap) and completely overlapping
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Figure 9: The eigenvalues of the matrix L−T L−1PA for the case of complete overlapping projection
vectors and high contrasts for the permeability.
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Figure 10: The eigenvalues of the matrix L−T L−1PA for the case of average overlapping projection
vectors and high contrasts for the permeability.
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Figure 11: The eigenvalues of the matrix L−T L−1PA for the case of weighted overlapping projec-
tion vectors and high contrasts for the permeability.
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Figure 12: Convergence behavior of the deflated CG-method for σ = 1. The overlap is weighted
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Figure 13: Convergence behavior of the deflated CG-method for σ = 1. The overlap is complete.

projection vectors. The observations are similar to the preceding curves.
Figure 16 and 17 display results for different contrasts of the permeability. Figures 16 and 17

respectively correspond to complete and weighted overlapping. It can be seen that the convergence
rate is very sensitive to the permeability contrasts for the case that complete overlapping projection
vectors are used. Higher contrasts delay convergence significantly. Whereas, the dependency of the
convergence rate almost vanishes for the case where weighted overlapping is used. Experiments
in which the permeability contrast is varied for average overlapping deflation vectors reveal a
qualitatively similar and quantitatively stronger behavior as for the case of complete overlap.
We show these experiments in Figure 18. Finally we did some experiments for the case of no
overlapping projection vectors. The results are shown in Figure 19. We see that the largest
convergence speed is reached for high contrasts, although this difference is not large. From an
oblivious point of view one would expect that the introduction of larger abrupt contrasts implies
that more iterations are necessary for convergence.

3.1.1 Three different permeabilities

The final one-dimensional calculations involve a setting with 10 subdomains. The total number
of internal gridpoints is again 99. Instead of two different permeabilities, we have three different
permeabilities, such that for j ∈ N : 3j, 3j + 1, 3j + 2 ≤ m

σ =











1, for x ∈ Ω3j+1,

10−3, for x ∈ Ω3j+2,

10−7, for x ∈ Ω3j .

Figure 20 shows the convergence of deflated CG-method for the cases of no overlapping, completely
overlapping, weighted overlapping and averaged overlapping deflation vectors. It can be seen that
the case of weighted overlapping exhibits the fastest convergence. Due to high contrasts this
closely resembles the case of no overlapping deflation vectors. Furthermore, the cases of average
and complete overlapping deflation vectors give slow convergence.

In Figure 21 the eigenvalues of the matrix L−T L−1PA for the case of no overlapping deflation
vectors are shown. The smallest eigenvectors in the range of 10−13 or smaller are within the
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Figure 14: Convergence behavior of the deflated CG-method with permeability contrasts (10−7 −
1). The overlap is weighted (hence almost equal to no overlapping).
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Figure 15: Convergence behavior of the deflated CG-method with permeability contrasts (10−7 −
1). The overlap is complete.
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Figure 20: Convergence behavior of the deflated CG-method for different overlapping of deflation
vectors.

machine precision and hence we assume that these eigenvectors do not delay convergence, see
Figure 20. The eigenvalues for weighted overlapping deflation vectors have been plotted in Figure
22, they do not differ much from the case of no overlapping deflation vectors. The cases of complete
and average overlapping deflation vectors are plotted in Figures 23 and 24. Here some eigenvalues
are in the order of 10−7 and 10−5.

3.2 Two-dimensional experiments

Figure 25 displays the convergence of the deflated ICCG method for 41×41 internal gridnodes and
7 horizontal subdomains. The subdomains have large contrasts for the parameter σ. The calcula-
tions have been done with the different overlaps. It can be seen that the data for no overlapping
and weighted overlapping almost coincide, as to be expected. Furthermore, average overlapping
produces the worst results. This is attributed to the spectrum of the matrix L−T L−1PA. Com-
plete overlapping, however, gives convergence. In Figure 9 it can be seen that the eigenvalue
pattern does not contains any small eigenvalues for the one-dimensional case. Nevertheless, the
speed of convergence is lower than the case of no overlapping and weighted overlapping. The
observations are similar to the one-dimensional case.

The results for 41 × 41 internal gridnodes and 7 horizontal subdomains and absence of large
contrasts in the parameter α have been shown in Figure 26. The calculations have been done
for different overlaps. Now, the results for weighted overlap and average overlap coincide. These
results do not differ much from the results obtained by no overlap. The results for complete overlap
are worst but converge and here the difference is not as striking as for the case where we have
large contrasts in the parameter σ.

We varied the number of subdomains for a grid of 41× 41 internal gridnodes. The results are
shown in Figures 27 and 28 for high and no permeability contrasts. It can be seen that the speed
of convergence is less sensitive to the number of subdomains than for the one-dimensional case.
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Figure 21: The eigenvalues of the matrix L−T L−1PA for the case of no overlapping deflation
vectors.

0 10 20 30 40 50 60 70 80 90 100
10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

index of eigenvalue

ei
ge

nv
al

ue

Figure 22: The eigenvalues of the matrix L−T L−1PA for the case of weighted overlapping deflation
vectors.
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Figure 23: The eigenvalues of the matrix L−T L−1PA for the case of completely overlapping
deflation vectors.
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Figure 24: The eigenvalues of the matrix L−T L−1PA for the case of average overlapping deflation
vectors.
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Figure 25: Convergence of the Deflated ICCG method for 41 x 41 internal nodes and high contrasts
(σmin = 10−7, σmax = 1). The computations are done with average, weighted, complete overlap
and without overlap.
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Figure 26: Convergence of the Deflated ICCG method for 41 x 41 internal nodes and no contrasts
(σmin = 1, σmax = 1). The computations are done with average, weighted, complete overlap and
without overlap.
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Figure 27: Convergence of the Deflated ICCG method for 41 x 41 internal nodes and high contrasts
(σmin = 10−7, σmax = 1). The computations are done with weighted (no) overlap. The number
of subdomains is varied: 3, 7 and 21.
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Figure 28: Convergence of the Deflated ICCG method for 41 x 41 internal nodes and no contrasts
(σmin = 1, σmax = 1). The computations are done with weighted (average) overlap. The number
of subdomains is varied: 3, 7 and 21.
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4 Conclusions

We investigated various choices of deflation vectors, which are used in the Deflated CG method.
It is found that the choice of the deflation vectors at the interfaces plays a crucial role in the
convergence rate. Summarized, the following is concluded so far:

• As the domain is divided into more subdomains, the number of iterations needed for con-
vergence decreases. This effect has been observed for σ = 1. Furthermore, this observation
does not depend on the choice of the values of the deflation vectors at the boundaries. A
drawback in sequential calculations is that more subdomains (more deflation vectors) give
larger computation times per iteration. However, for parallel computing wall clock time can
be gained.

• We introduce the method of ’weighted overlap’, which mimics average and no overlap for
respectively the cases of no contrasts and very large contrasts of the permeability. It is
observed that this choice gives the best convergence behavior until now.
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