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On The Transversal Vibrations of A Conveyor Belt with

A Low and Time-Varying Velocity. Part I: The

String-like Case.

G. Suweken and W.T. van Horssen ∗

Abstract

In this paper initial-boundary value problems for a linear wave (string) equation
are considered. These problems can be used as simple models to describe the vertical
vibrations of a conveyor belt, for which the velocity is small with respect to the wave
speed. In this paper the belt is assumed to move with a time-varying speed. Formal
asymptotic approximations of the solutions are constructed to show the complicated
dynamical behavior of the conveyor belt. It also will be shown that the truncation
method can not be applied to this problem in order to obtain approximations valid
on long time scales.

1 Introduction

Investigating transverse vibrations of a belt system is a challenging subject which has been
studied for many years (see [1-4] for an overview) and is still of interest today.

The main purpose of studying the dynamic behavior of a belt system is to know the
natural frequencies of the vibrations. By knowing these natural frequencies, the so-called
resonance-free belt system can be designed (see [3]). Resonances that can cause severe
vibrations can be initiated by some parts of the belt system, such as the varying belt speed,
the roll eccentricities, and other belt imperfections. The occurrence of resonances should be
prevented since they can cause operational and maintenance problems including excessive
wear of the belt and the support component, and the increase of energy consumption of
the system.

Belt vibrations can be classified into two types, i.e. whether it is of a string-like type or
of beam-like type, depending on the bending stiffness of the belt. If the bending stiffness
can be neglected then the system is classified as string (wave)-like, otherwise it is classified
as beam-like. The transverse vibrations of the belt system may be described as:

∗TU Delft etc.
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• string-like by
utt + 2V uxt + Vtux + (κV 2 − c2)uxx = 0, and (1)

• beam-like (with a string effect) by

utt + 2V uxt + Vtux + (κV 2 − c2)uxx +
EbIy

ρA
uxxxx = 0, (2)

where:
u(x, t) : the displacement of the belt in the y (vertical) direction,
V : the time-varying belt speed,
c : the wave speed,
Eb : Young’s modulus,
Iy : the moment of inertia with respect to the x (horizontal) axis,
ρ : the mass density of the belt,
A : the area of the cross section of the belt,
κ : a constant representing the relative stiffness of the belt. Its value is

in [0, 1],
x : coordinate in horizontal direction, and
t : time.

The beam-like system with a low time-varying speed will be considered in the forth
coming paper [5]. In this paper we will study the string-like case where the belt velocity
V (t) is given by

V (t) = ε(V0 + α sin(Ωt)), (3)

where ε is a small parameter with 0 < ε � 1,and V0 and α are constants with V0 > 0
and V0 > |α|. The velocity variation frequency of the belt is given by Ω. In fact the small
parameter ε indicates that the belt speed V (t) is small compared to the wave speed c. The
condition V0 > |α| guarantees that the belt will always move forward in one direction. It
will turn out that certain values of Ω can lead to complicated internal resonances of the
belt system.

While for more accurate results, a non-linear model is required, it is not meaningless
to investigate first a linear model. Knowledge about linear models is important in order to
understand results found in non-linear models, especially for those cases which are weakly
non-linear. For non-linear models describing the dynamic behavior of belts, we refer the
readers to [4], [6], and [7]. In [7] the role played by the external frequency of the non-
constant belt velocity and the bending stiffness is studied. It is found that, as the bending
stiffness tends to zero, the system behaves more like a string and its dynamics becomes
more complicated than the beam-like system.

Most belt studies involve mainly belts moving with a constant velocity. Recently in
a series of papers [8-11] several authors considered the vibrations of belts moving with
time-dependent velocities and the vibrations of tensioned pipes conveying fluid with time-
dependent velocities. In fact in [8-11] the equations (1) or (2) have been studied, where
V (t) as given by (3) belongs to cases that have been studied in [8-11]. To find approxi-
mations of the displacement of the belt in vertical direction the authors use in [8-11] the
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method eigenfunction expansions, the Galerkin truncation method, and the multiple-time-
scales perturbation method as for instance described in [12,13]. To apply the method of
eigenfunction expansions, special attention has to be paid to terms involving u x and uxt

in (1) or (2). To apply the truncation method the internal resonances between the vibra-
tions modes have to be studied. In [8-11] the terms in (1) or (2) involving ux and uxt are
not treated correctly, and it is assumed in [8-11] that truncation to one mode (or a few
modes) is allowed. In this paper we will show that truncation is not allowed. In [8,10]
no instabilities of the belt system (as described by (1)) were found using the truncation
method when the velocity variation frequency Ω is equal to or close to the difference of
two natural frequencies of the constant velocity system. In this paper it will be shown
that also instabilities can occur when Ω is equal to or close to the difference of two natural
frequencies of the constant velocity system. In [4] and in [14-18] several remarks can be
found on how and when truncation is allowed. In those papers weakly nonlinear problems
for wave and for beam equations have been studied.

In this paper we consider the vibrations of a belt modeled by a string moving with
a non-constant velocity V (t) = ε(V0 + α sin Ωt), where V0, α, and Ω are constants with
V0 > |α|. The velocity V (t) can be considered as a periodically changing velocity such that
the belt still moves in one direction. This variation in V (t) can be considered as some kind
of an excitation. In relation to excitations, some results in this area have been obtained
in [19] and in [20]. In [19] problems for a string moving with a constant velocity are
considered for which one of its ends (i.e. x = L) is subjected to an harmonic excitation.
In [21], the vibrations of the string at x = L is forced to be v(x, t) = v0 cos Ωt. In [21]
the author also studied the case where one end of the moving string is subjected to an
harmonic excitation to represent the case of a belt traveling from an eccentric pulley to
a smooth pulley. Whereas the case where both ends of the string are excited is studied
in [22]. In that paper a moving string model is used to study the transverse vibrations of
power transmission chains. In all of these papers[19-22], the belt velocity is assumed to be
constant.

This paper is organized as follows. In section 2, an equation to describe the transversal
vibrations of a belt (which is modeled as a string) is derived. Here we assume that the
belt moves with an arbitrary low velocity which is varied harmonically, i.e. V (t) = ε(V 0 +
α sin Ωt). In section 3 we study the energy and the boundedness of the solution of the
problem as derived in section 2. In section 4 we discuss the application of the two time-
scales perturbation method to solve the equation. It turns out that there are infinitely
many values of Ω that can cause internal resonances. In this paper we only investigate the
resonance case Ω = cπ

L
. All other resonance cases can be studied similarly. In this section

it will also be shown that the truncation method can not be applied to this problem due
to the distribution of energy among all vibration modes. In the last part of section 4 we
also study a detuning case for the value Ω = cπ

L
. Finally, in section 5 some remarks will be

made and some conclusions will be drawn.
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2 A string model

In this section the dynamic behavior of a conveyor belt which is modeled by a moving
string is studied. Since the belt is assumed to move with a speed V (t) (which explicitly
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Figure 1: Conveyor belt system

depends on t) we obtain for the time-derivative of the transversal displacement u(x, t) of
the belt

Du

Dt
=

∂u

∂t
+

∂u

∂x

dx

dt
=

∂u

∂t
+ V (t)

∂u

∂x
, (4)

and for the second order derivative with respect to time

D2u

Dt2
= utt + 2V uxt + V 2uxx + Vtux. (5)

Accordingly, we have the following equation of motion

T0uxx = ρ
D2u

Dt2
,

c2uxx = utt + 2V uxt + V 2uxx + Vtux, (6)

where c =
√

T0

ρ
, in which T0 and ρ are assumed to be the constant tension and the constant

mass-density of the beam, respectively. At x = 0 and x = L we assume that the string is
fixed in vertical direction, where L is the distance between the pulleys.

For V (t) we use V (t) = ε(V0 + α sinΩt) with V0 > 0 and V0 > |α|. This low velocity
should be interpreted as low compared to the wave speed c of the belt. The condition
V0 > |α| guarantees that the belt will always move forward in one direction. Consequently
(6) becomes:

c2uxx − utt = ε [αΩ cos(Ωt)ux + 2(V0 + α sin(Ωt))uxt] +

ε2[V0 + α sin(Ωt)]2uxx, (7)
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where the boundary and initial conditions are given by

u(0, t; ε) = u(L, t; ε) = 0,

u(x, 0; ε) = f(x) and ut(x, 0; ε) = g(x), (8)

where f(x) and g(x) represent the initial displacement and the initial velocity of the belt,
respectively. Throughout this paper it is assumed that f and g are sufficiently smooth
such that a two times continuously differentiable solution for the initial-boundary value
problem (7) - (8) exists. Moreover, it is assumed that all series representations for the
solution u (and its derivatives), and for the functions f and g are convergent.

To satisfy the boundary conditions all functions should be expanded in Fourier- sin-
series. So the solution is of the form u(x, t; ε) =

∑

∞

n=1 un(t; ε) sin(nπx
L

). This is an odd
function in x, both with regard to x = 0 and x = L. All functions in the right hand side
of (7) should be extended properly to make them odd with respect to x = 0 and x = L,

and periodic with period 2L thereof. Note that this extention or expansion process is not
applied in [8-10] causing the occurence of incorrect results in the critical values of Ω.

To make the right hand side of (7) odd, terms which are not already in Fourier-sin-series
form in x are multiplied with (see also [14,17]):

H(x) =

{

1 if 0 < x < L

−1 if −L < x < 0
=

∞
∑

j=0

4

(2j + 1)π
sin

((2j + 1)πx

L

)

. (9)

Substituting (9) into (7) results in

c2uxx − utt = ε
∞
∑

j=0

4

(2j + 1)π
sin

((2j + 1)πx

L

)

[αΩ cos(Ωt)ux+

2(V0 + α sin(Ωt))uxt] + ε2(V0 + α sin(Ωt))2uxx. (10)

Substitution of u(x, t) =
∑

∞

n=1 un(t; ε) sin(nπx
L

) into (10) results in:

∞
∑

n=1

(

−
(

cnπ

L

)2

un − ün

)

sin
(nπx

L

)

= ε
∞
∑

n=1

∞
∑

j=0

4

(2j + 1)π
sin

((2j + 1)πx

L

)

(

αΩ cos(Ωt)
nπ

L
un cos

(nπx

L

)

+ 2 (V0 + α sin(Ωt))
nπ

L
u̇n cos

(nπx

L

)

)

−

ε2
∞
∑

n=1

(V0 + α sin Ωt)2
(

nπ

L

)2

un sin
(nπx

L

)

. (11)

By multiplying (11) with sin( kπx
L

), and by integrating the so-obtained equation with respect
to x from x = −L to x = L, we obtain:

ük +

(

ckπ

L

)2

uk = ε
[

∑

1
−
∑

2
−
∑

3

] 2n

(2j + 1)L
[αΩ cos(Ωt)un+

2(V0 + α sin(Ωt))u̇n] + ε2(V0 + α sin(Ωt))2

(

kπ

L

)2

uk, (12)

where
∑

1 =
∑

k=n−(2j+1),
∑

2 =
∑

k=2j+1+n, and
∑

3 =
∑

k=2j+1−n . Equation (12) will be
studied further in section 4.
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3 Energy and boundedness of the solution

We are going to use the concept of energy in many parts of the next sections. In this
section we shall derive the energy of the moving string as modeled by the wave equation

c2uxx = utt + 2V uxt + V 2uxx + Vtux. (13)

By multiplying (13) with (ut + V ux) we obtain after some elementary calculations

(
1

2
u2

t + utV ux +
1

2
c2u2

x +
1

2
V 2u2

x)t +

(−c2uxut −
1

2
c2V u2

x + V u2
t + V 2uxut +

1

2
V 3u2

x −
1

2
V ut)x = 0. (14)

Integrating (14) with respect to x from x = 0 to x = L, and then integrating the so-
obtained equation with respect to t from t = 0 to t, we obtain:

∫ L

0
(
1

2
u2

t + V utux +
1

2
(c2 + V 2)u2

x)|tt=0dx =
1

2

∫ t

0
(c2 − V 2)V u2

x|Lx=0dt. (15)

The energy E(t) of the moving string is now defined to be:

E(t) =
1

2

∫ L

0
((ut + V ux)

2 + c2u2
x)dx. (16)

So, (15) can be written as

E(t) − E(0) =
1

2

∫ t

0
(c2 − V 2)V u2

x|Lx=0dt

⇔ dE

dt
=

1

2
(c2 − V 2)V

(

u2
x(L, t) − u2

x(0, t)
)

,

≤ MV, (17)

where M is the maximum of 1
2
(c2 − V 2) (u2

x(L, t) − u2
x(0, t)), where we have assumed that

u(x, t) is two times continuously differentiable on 0 ≤ x ≤ L and 0 ≤ t ≤ Tε−1 for some
positive constant T < ∞. It follows from (17) that dE

dt
≤ O(ε) on 0 ≤ t ≤ Tε−1 since V

is O(ε). And so, E(t) − E(0) ≤ O(εt) on 0 ≤ t ≤ Tε−1. The following estimate on u(x, t)
then also holds

|u(x, t)| = |
∫ x

0
ux(x, t)dx| ≤

∫ x

0
|ux(x, t)|dx

≤
∫ L

0
|ux(x, t)|dx

≤
√

∫ L

0
12dx

√

∫ L

0
2 · 1

2
(c2u2

x + (ut + V ux)2)dx

=
√

L
√

2E(t), (18)

on 0 ≤ t ≤ Tε−1. We refer to [23] for more detailed descriptions of energetics of translating
continua.
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4 Application of the two time-scales perturbation

method

Consider again equation (12). The application of a straight-forward expansion method
to solve (12) will result in the occurrence of so-called secular terms which causes the
approximations to become unbounded on long time-scales. To remove those secular terms,
we introduce two time-scales t0 = t and t1 = εt. The introduction of these two time-scales
defines the following transformations:

uk(t; ε) = wk(t0, t1; ε),

duk(t; ε)

dt
=

∂wk

∂t0
+ ε

∂wk

∂t1
,

d2uk(t; ε)

dt2
=

∂2wk

∂t20
+ 2ε

∂2wk

∂t0∂t1
+ ε2 ∂2wk

∂t21
. (19)

By substituting (19) into (12) we obtain:

∂2wk

∂t20
+ 2ε

∂2wk

∂t0∂t1
+ ε2 ∂2wk

∂t21
+

(

ckπ

L

)2

wk =

ε
[

∑

1
−
∑

2
−
∑

3

] 2n

(2j + 1)L
(αΩ cos(Ωt)wn + 2[V0 + α sin(Ωt)

∂wn

∂t0
]) +

O(ε2). (20)

Assuming that wk(t0, t1; ε) = wk0(t0, t1) + εwk1(t0, t1) + ε2wk2(t0, t1) + . . ., then in order
to remove the secular terms up to O(ε), we have to solve the following problems:

O(1) :
∂2wk0

∂t20
+

(

ckπ

L

)2

wk0 = 0,

O(ε) :
∂2wk1

∂t20
+

(

ckπ

L

)2

wk1 = −2
∂2wk0

∂t0∂t1
+
[

∑

1
−
∑

2
−
∑

3

] 2n

(2j + 1)L
(

αΩ cos(Ωt)wn0 + 2(V0 + α sin(Ωt))
∂wn0

∂t0

)

.

The O(1) problem has as solution

wk0(t0, t1) = Ak0(t1) cos
(ckπt0

L

)

+ Bk0(t1) sin
(ckπt0

L

)

, (21)

where Ak0 and Bk0 are still arbitrary functions that can be used to avoid secular terms in
the solution of the O(ε)-problem.

From the O(ε) problem it can readily be seen that there are infinitely many values of Ω
that can cause internal resonance. In fact these values are (n + k) cπ

L
, (n − k) cπ

L
, (k − n) cπ

L
,

and −(n + k) cπ
L

, where k = n − 2j − 1, or k = 2j + 1 − n, or k = n + 2j + 1 (see also the
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summations in (12)). It is also easy to see that these values for Ω are always odd multiples
of cπ

L
(or are in an O(ε)-neighbourhood of these odd multiples). In [8] and [10] the critical

values of Ω are found to be even multiples of the natural frequency. These incorrect results
in [8] and [10] are due to the fact that certain terms in the PDE (that is, terms involving
ux and uxt in (7)) are not extended or expanded correctly.

To show how the secular terms can be eliminated we will consider three cases: Ω =
cπ
L

, Ω = cπ
L

+ εδ, and the case that Ω is not in a neighborhood of an odd multiple of Ω = cπ
L

.

4.1 Case 1: Ω = cπ

L
.

In appendix 1 it has been shown for Ω = cπ
L

what equations Ak0(t1) and Bk0(t1) have to
satisfy such that the approximations of the solution of the problem do not contain secular
terms. It turns out that Ak0 and Bk0 have to satisfy:

dBk0

dt̄1
= −(k + 1)A(k+1)0 − (k − 1)A(k−1)0,

dAk0

dt̄1
= (k + 1)B(k+1)0 + (k − 1)B(k−1)0,

(22)

where t̄1 = α
L
t1, and k = 1, 2, 3, . . .. For Ω = m cπ

L
where m is odd the same analysis as

presented in appendix 1 can be followed. It then follows that Ak0 and Bk0 have to satisfy
(k = 1, 2, 3, . . .):

dAk0

dt̄1
=

(k + m)(2k + 2m − 1)

m(2k + m)
B(k+m)0 +

(k − m)(2k − 2m + 1)

m(2k − m)
B(k−m)0,

dBk0

dt̄1
= −(k + m)(2k + 2m − 1)

m(2k + m)
A(k+m)0 −

(k − m)(2k − 2m + 1)

m(2k − m)
A(k−m)0.

It should be noticed that for m = 1 this system of ordinary differential equations is reduced
to system (22). In this section we will study system (22), which is a coupled system of
infinitely many ordinary differential equations.

4.1.1 Application of the truncation method

First we will try to find an approximation of the solution of system (22) by using Galerkin’s
truncation method. So, we will use just some first few modes and neglect the higher order
modes. For example, in the case we consider the first 3 modes, we obtain from (22):

Ẋ = AX, (23)
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where: X =





















B10

A10

B20

A20

B30

A30





















and A =





















0 0 0 −2 0 0
0 0 2 0 0 0
0 −1 0 0 0 −3
1 0 0 0 3 0
0 0 0 −2 0 0
0 0 2 0 0 0





















,

and where Ẋ represents the derivative of X with respect to t̄1. This system has eigen-
values 2

√
2i,−2

√
2i, and 0, all with multiplicity 2. Their associated eigenvectors are:

(0, 1,
√

2i, 0, 0, 1), (1, 0, 0,−
√

2i, 1, 0), (1, 0, 0,
√

2i, 1, 0), (0, 1,
−
√

2i, 0, 0, 1), (−3, 0, 0, 0, 1, 0) and (0,−3, 0, 0, 0, 1), respectively. The solution of (23) is
then given by:

B10(t1) = C3 cos(2
√

2t1) + C4 sin(2
√

2t1) − 3C5,

A10(t1) = C1 cos(2
√

2t1) + C2 sin(2
√

2t1) − 3C6,

B20(t1) = −
√

2C1 sin(2
√

2t1) +
√

2C2 cos(2
√

2t1) −
√

2C4 cos(2
√

2t1),

A20(t1) =
√

2C3 sin(2
√

2t1) −
√

2C4 cos(2
√

2t1),

B30(t1) = C3 cos(2
√

2t1) + C4 sin(2
√

2t1) + C5,

A30(t1) = C1 cos(2
√

2t1) + C2 sin(2
√

2t1) + C6, (24)

where C1, C2, . . . , C6 are all constants of integration. Note that we have dropped all the
bars in (24).

From the initial conditions (8), that is, u(x, 0) = f(x) and u t(x, 0) = g(x) it follows
that

f(x) =
∞
∑

k=1

uk(0; ε) sin
(kπx

L

)

⇔ uk(0; ε) =
2

L

∫ L

0
f(x) sin

(kπx

L

)

dx,

g(x) =
∞
∑

k=1

u̇k(0; ε) sin
(kπx

L

)

⇔ u̇k(0; ε) =
2

L

∫ L

0
g(x) sin

(kπx

L

)

dx. (25)

Moreover, since uk(0; ε) = wk(0, 0; ε) = wk0(0, 0)+εwk1(0, 0)+. . . and u̇k(0; ε) = ẇk(0, 0; ε) =
ẇk0(0, 0) + εẇk1(0, 0) + . . . it follows that

wk0(0, 0) =
2

L

∫ L

0
f(x) sin

(kπx

L

)

dx,

ẇk0(0, 0) =
2

L

∫ L

0
g(x) sin

(kπx

L

)

dx. (26)

From (21) and (26) we then obtain

Ak0(0) =
2

L

∫ L

0
f(x) sin

(kπx

L

)

dx, and

9



Figure 2: Approximations for u(x, t) with initial displacement f(x) = −8
π3 sin(πx) and initial

velocity g(x) = 0. The graphs are given for x = 0.5, t ∈ [45, 55], and ε = 0.01.

Bk0(0) =
2

ckπ

∫ L

0
g(x) sin

(kπx

L

)

dx. (27)

Equation (27) can be used to calculate the constants in (24).
In summary, after all constants in (24) have been calculated, wk0(t0, t1) can be deter-

mined using (21). Then u(x, t; ε) can be approximated by
∑3

k=1 uk(t; ε)
sin(kπx

L
).

For example, using 1, 2, or 3 modes, respectively, with f(x) = −8
π3 sin(πx),

g(x) = 0, c = L = 1 we find as approximations for u(x, t; ε):

u(x, t; ε) ≈ −8

π3
cos(πt0) sin(πx),

u(x, t; ε) ≈ −8

π3
cos(

√
2t1) cos(πt0) sin(πx) +

4
√

2

π3
sin(

√
2t1) sin(2πt0) sin(2πx),

u(x, t; ε) ≈ (− 2

π3
cos(2

√
2t1) −

6

π3
) cos(πt0) sin(πx) +

2
√

2

π3
sin(2

√
2t1) sin(2πt0)

sin(2πx) + (
−2

π3
cos(2

√
2t1) +

2

π3
) cos(3πt0) sin(3πx). (28)

The graphs of these approximations for u(x, t) for x = 0.5 and ε = 0.01 are depicted in
Figure 2.

For more than three modes, eigenvalues and eigenvectors become more and more dif-
ficult to compute by just using pencil and paper. Using the computer software package
Maple , the eigenvalues of system (22) have been computed up to 20 modes and are listed
in Table 1. From the table, it can be seen that the eigenvalues of the truncated system are
always purely imaginary, each has multiplicity two, and for an odd numbers of modes we
get an additional pair of zero eigenvalues. From the approximations (28) and from table

10



1 it can readily be seen that the truncation method will not give accurate results on long
time-scales, that is, on time-scales of order ε−1.

4.1.2 Analysis of the infinite dimensional system (22)

In the previous subsection we found that if system (22) is truncated then the eigenvalues
of the truncated system are always purely imaginary or zero. In this section we shall show
that the results obtained by applying the truncation method are not valid on time-scales
of order ε−1.

By putting kBk0(t1) = Yk0(t1) and kAk0(t1) = Xk0(t1), system (22) becomes:

dYk0

dt1
= k[−X(k+1)0 − X(k−1)0],

dXk0

dt1
= k[Y(k+1)0 + Y(k−1)0], (29)

for k = 1, 2, 3, . . . , and X00 = Y00 = 0.
Accordingly we also have:

Yk0Ẏk0 = −k[Yk0X(k+1)0 + Yk0X(k−1)0],

Xk0Ẋk0 = k[Xk0Y(k+1)0 + Xk0Y(k−1)0]. (30)

By adding both equations in (30), and then by taking the sum from k = 1 to ∞ we
obtain:

1

2

∞
∑

k=1

d

dt1
(Y 2

k0 + X2
k0) =

∞
∑

k=1

[X(k+1)0Yk0 − Y(k+1)0Xk0]. (31)

By differentiating (31) with respect to t1 we find (see also appendix 2)

1

2

∞
∑

k=1

d2

dt21
(Y 2

k0 + X2
k0) = 2

∞
∑

k=1

(X2
k0 + Y 2

k0), (32)

and so, by putting
∑

∞

k=1(X
2
k0 + Y 2

k0) = W (t1) we finally obtain:

d2W (t1)

dt21
− 4W (t1) = 0. (33)

The solution of (33) is W (t1) = K1e
2t1 + K2e

−2t1 , where K1 and K2 are constants. Note
that W (t1) is a first integral of system (22). K1 and K2 are both positive numbers as is
shown in the following calculation. From W (t1) =

∑

∞

k=1[X
2
k0 + Y 2

k0] it follows that

W (0) =
∞
∑

k=1

[X2
k0(0) + Y 2

k0(0)] ≥ 0 ⇒ K1 + K2 ≥ 0 (34)

Differentiating W (t1) with respect to t1 and then putting t1 = 0 we get:

K1 − K2 =
∞
∑

k=1

[Yk0(0)X(k+1)0(0) − Xk0(0)Y(k+1)0(0)]. (35)

11



From (34) and (35) it then follows that

2K1 =
∞
∑

k=1

[X2
k0(0) + Y 2

k0(0) + Yk0(0)X(k+1)0(0) − Xk0(0)Y(k+1)0(0)]

=
1

2
X2

10(0) +
1

2
Y 2

10(0) +
1

2
(X10(0) − Y20(0))2 +

1

2
(Y10(0) + X20(0))2 +

1

2
(X20(0) − Y30(0))2 +

1

2
(Y20(0) + X30(0))2 + . . . +

1

2
(Xn0(0) − Y(n+1)0(0))2 +

1

2
(Yn0(0) + X(n+1)0(0))2 + . . .

≥ 0. (36)

So, K1 ≥ 0 and 0 if and only if Xk0(0) = Yk0(0) = 0 for each k = 1, 2, 3, . . .. Using a
similar method, K2 also can be shown to be a non-negative number. Consequently, W (t1)
is, in general, non-negative and increases as t1 increases. This behavior is different from
the behavior of Ak0(t1) and Bk0(t1) as obtained by applying the truncation method. If
we apply the truncation method, we merely obtain sin and cos functions for Ak0 and Bk0

while the energy (see next subsection) is described by exponential functions. This means
that the approximations obtained by applying the truncation method to system (22) are
not accurate on long time-scales, that is, on time-scales of order ε−1.

4.1.3 The energy

The energy E(t) of the conveyor belt system can also be approximated using the function
W (t1). Since

u(x, t) =
∞
∑

k=1

uk(t) sin
(kπx

L

)

=
∞
∑

k=1

[

Ak0(t1) cos
(ckπt

L

)

+ Bk0(t1) sin
(ckπt

L

)

]

sin
(kπx

L

)

+ O(ε) (37)

it follows that the energy E(t) satisfies

E(t) =
1

2

∫ L

0

[

(ut + vux)
2 + c2u2

x

]

dx

=
c2π2

4L

∞
∑

k=1

k2





(

−Ak0 sin
(kπt

L

)

+ Bk0 cos
(kπt

L

)

)2

+

(

Ak0 cos
(ckπt

L

)

+ Bk0 sin
(ckπt

L

)

)2


+ O(ε)

=
c2π2

4L

∞
∑

k=1

[

(kAk0)
2 + (kBk0)

2
]

+ O(ε)

=
c2π2

4L

∞
∑

k=1

[X2
k0 + Y 2

k0] + O(ε)
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=
c2π2

4L
W (t1) + O(ε) (38)

=
c2π2

4L
(K1e

2t1 + K2e
−2t1) + O(ε). (39)

So, the energy increases, although it is bounded on a time-scale of order 1
ε
.

4.2 Case 2: Ω = cπ

L
+ εδ

In this section we will consider the detuning from Ω = cπ
L

, that is we will study the case
Ω = cπ

L
+ εδ where δ = O(1). In order to avoid secular terms in the approximation, it can

be shown (the calculation are similar to those in section 4.1) that A k0(t1) and Bk0(t1) have
to satisfy:

dAk0

dt̄1
= (k + 1)[B(k+1)0 cos(δt̄1) + A(k+1)0 sin(δt̄1)] + (k − 1)[B(k−1)0 cos(δt̄1) −

A(k−1)0 sin(δt̄1)],

dBk0

dt̄1
= −(k + 1)[A(k+1)0 cos(δt̄1) − B(k+1)0 sin(δt̄1)] − (k − 1)[A(k−1)0 cos(δt̄1) +

B(k−1)0 sin(δt̄1)], (40)

for k = 1, 2, 3, . . .. It should be noticed that for δ = 0 we obtain again system (22). For
convenience, we will drop the bar from t̄1.

The calculations as given in section 4.1.2 can be followed again, and we obtain:

d2W (t1)

dt21
+ (δ2 − 4)W (t1) = D1δ

2, (41)

where W (t1) is defined as in section 4.1.2, and D1 = W (0). Elementary calculations then
yield:

for |δ| < 2 : W (t1) =
D1

4 − δ2
[4 cosh(t1

√
4 − δ2) − δ2] +

D2√
4 − δ2

sinh(t1
√

4 − δ2),

for |δ| = 2 : W (t1) = D1 + D2t1 +
1

2
D1δ

2t21,

for |δ| > 2 : W (t1) =
D1

δ2 − 4
[δ2 − 4 cos(t1

√
δ2 − 4)] +

D2√
δ2 − 4

sin(t1
√

δ2 − 4),

where D2 = dW (0)
dt1

. The interesting features of these solutions are, that for |δ| < 2, W (t1)
(and so the energy) increases exponentially. For |δ| = 2, W (t1) increases polynomally, and
finally for |δ| > 2, W (t1) is bounded due to the trigonometric functions.
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4.3 Case 3: The non-resonant case

If Ω is not within an order ε-neighborhood of the frequencies that cause internal resonance,
that is, not within an order ε−neighborhood of m cπ

L
(with m odd) then Ak0(t1) and Bk0(t1)

have to satisfy
dAk0

dt1
= 0,

dBk0

dt1
= 0, (42)

in order to avoid secular terms. Consequently, Ak0(t1) and Bk0(t1) are constants, say K1k0

and K2k0. So, we have uk0(t0, t1) = K1k0 cos( ckπt0
L

) + K2k0 sin( ckπt0
L

). Since u(x, t) =
∑

∞

k=1 uk(t) sin( kπx
L

), where uk(t) is approximated by wk0(t0, t1), it follows from the initial
conditions u(x, 0) = f(x) and ut(x, 0) = g(x) that

K1k0 =
2

L

∫ L

0
f(x) sin

(kπx

L

)

dx, and

K2k0 =
2

ckπ

∫ L

0
g(x) sin

(kπx

L

)

dx. (43)

The energy E(t) of the conveyor belt system for this case can be approximated from:

u(x, t) ≈
∞
∑

k=1

(

K1k0 cos
(ckπt0

L

)

+ K2k0 sin
(ckπt0

L

)

)

sin
(kπx

L

)

+ O(ε), (44)

where K1k0 and K2k0 are given by (43). Then,

E(t) =
∫ L

0
(u2

t + c2u2
x)dx + O(ε),

=
∞
∑

k=1

(ckπ)2

2L

(

K12
k0 + K22

k0

)

+ O(ε),

=
c2π2

2L

∞
∑

k=1

k2(K12
k0 + K22

k0) + O(ε). (45)

Using (43), we finally obtain:

E(t) =
2c2L

π2

∞
∑

k=1

1

k2

[

∫ L

0
f ′′ sin

(kπx

L

)

dx

]2

+

2L3

π4

∞
∑

k=1

1

k4

[

∫ L

0
g′′ sin

(kπx

L

)

dx

]2

+ O(ε)

= constant + O(ε). (46)

5 Conclusions

In this paper we studied initial-boundary value problems which can be used as models to
describe transversal vibrations of belt systems. The belt is assumed to move with a non-
constant velocity V (t), that is, V (t) = ε(V0 + α sin(Ωt)), where 0 < ε � 1 and V0, α, Ω are
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constants. Formal approximations of the solution of the initial-boundary value problem
have been constructed. Also explicit approximations of the energy of the belt system
are given. It turns out that there are infinitely many values of Ω giving rise to internal
resonances in the belt system. These values for Ω are m cπ

L
+ εδ where m is an arbitrary

odd integer, cπ
L

is the lowest natural frequency of the constant velocity system, and δ is a
detuning parameter of O(1). For Ω = cπ

L
+εδ (that is, m = 1) the problem has been studied

completely. The following interesting results have been found: for |δ| < 2 the energy of
the belt system increases exponentially, for |δ| = 2 the energy increases polynomally, and
for |δ| > 2 the energy is bounded and varies trigonometrically. When Ω is not in an order
ε−neighborhood of m cπ

L
(with m odd) the energy of the belt system is constant up to order

ε. All the results found are valid on long time-scales, that is, on time-scales of order ε−1.
One major conclusion in this paper is that the truncation method can not be applied

to obtain asymptotic results on long time-scales (that is, on time-scales of order ε−1) when
Ω is in an order ε−neighborhood of an odd multiple of the lowest natural frequency of the
constant velocity system. Moreover, in this paper we improve the (incorrect) results and
applied methods as for instance given and used in [8-11].

Appendix 1

To avoid secular terms in the approximation for u(x, t; ε) we will show in this appendix
that the function Ak0(t1) and Bk0(t1) have to satisfy:

dAk0(t1)

dt1
= (k + 1)B(k+1)0(t1) + (k − 1)B(k−1)0(t1),

dBk0(t1)

dt1
= −(k + 1)A(k+1)0(t1) − (k − 1)A(k−1)0(t1) (A-1)

for k = 1, 2, 3, . . .. This can be derived as follows. After introducing a slow and a fast time
in section 4, we obtain:

O(1) :
∂2uk0

∂t20
+ (

ckπ

L
)2uk0 = 0,

O(ε) :
∂2uk1

∂t20
+ (

ckπ

L
)2uk1 = −2

∂2uk0

∂t0∂t1
+
[

∑

1
−
∑

2
−
∑

3

] 2n

(2j + 1)L

(αΩ cos(Ωt)un0 + 2(V0 + α sin(Ωt))
∂un0

∂t0
,

where
∑

1 =
∑

k=n−(2j+1),
∑

2 =
∑

k=n+2j+1, and
∑

3 =
∑

k=2j+1−n, and where Ω = cπ
L

. The

solution of the O(1) problem is uk0(t0, t1) = Ak0(t1) cos( ckπt0
L

) + Bk0(t1) sin( ckπt0
L

), where
Ak0 and Bk0 can be determined from the O(ε) equation by removing terms in the right
hand side of this equation that cause secular terms in uk1(t0, t1).

The first term in the right hand side of the O(ε) equation causing secular terms is

−2 ∂2uk0

∂t0∂t1
= 2 ckπ

L
[dAk0

dt1
sin( ckπt0

L
) + dBk0

dt1
cos( ckπt0

L
)].
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Taking apart those terms in the second term of the right hand side the O(ε) equation
that cause secular terms, we find:

[

∑

1
−
∑

2
−
∑

3

] 2nαΩ

(2j + 1)L
cos(Ωt0)un0 =

[

∑

1
−
∑

2
−
∑

3

] 2nαΩ

(2j + 1)L
cos(Ωt0)[An0(t1) cos(

cnπt0

L
) + Bn0(t1) sin(

cnπt0

L
)]

=
αcπ

L2
cos

(ckπt0

L

)

[

(k + 1)A(k+1)0 − (k − 1)A(k−1)0 −
k + 1

2k + 1
A(k+1)0−

k − 1

2k − 1
A(k−1)0

]

+
αcπ

L2
sin

(ckπt0

L

)[

(k + 1)B(k+1)0 − (k − 1)B(k−1)0 −

k + 1

2k + 1
B(k+1)0 −

k − 1

2k − 1
B(k−1)0

]

+ ”terms not giving rise to

secular terms in uk1”

Similarly we find for the third term:

[

∑

1
−
∑

2
−
∑

3

] 4n

(2j + 1)L
(V0 + α sin(Ωt0))

∂un0

∂t0
=

[

∑

1
−
∑

2
−
∑

3

] 4n

(2j + 1)L
(V0 + α sin(Ωt0))

cnπ

L

[

Bn0 cos
(cnπt0

L

)

−

An0 sin
(cnπt0

L

)

]

=
αcπ

L2
cos

(ckπt0

L

)[

− 2(k + 1)2A(k+1)0 − 2(k − 1)2A(k−1)0 +

2(k + 1)2

2k + 1
A(k+1)0 −

2(k − 1)2

2k − 1
A(k−1)0

]

+
αcπ

L2
sin

(ckπt0

L

)

[

− 2(k + 1)2B(k+1)0 − 2(k − 1)2B(k−1)0 +
2(k + 1)2

2k + 1
B(k+1)0 −

2(k − 1)2

2k − 1
B(k−1)0

]

+ ”terms not giving rise to secular terms in uk1”.

Collecting all terms in the right hand side of the O(ε) equation containing cos( ckπt0
L

)
and all terms containing sin( ckπt0

L
) and then setting their coefficients equal to 0 in order to

remove the secular terms, we obtain (A-1).

Appendix 2

In this appendix we will show that:

1

2

∞
∑

k=1

d2

dt21
(Y 2

k0 + X2
k0) = 2

∞
∑

k=1

(X2
k0 + Y 2

k0). (A-2)
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From (4.12) and (4.13) it follows that

1

2

∞
∑

k=1

d

dt1
(Y 2

k0 + X2
k0) =

∞
∑

k=1

[Yk0Ẏk0 + Xk0Ẋk0]

=
∞
∑

k=1

[X(k+1)0Yk0 − Y(k+1)0Xk0].

Differentiating this expression with respect to t1, and using (4.11) we find:

1

2

∞
∑

k=1

d2

dt21
(Y 2

k0 + X2
k0) =

∞
∑

k=1

[Ẋ(k+1)0Yk0 + X(k+1)0Ẏk0 − Ẏ(k+1)0Xk0 − Y(k+1)0Ẋk0]

=
∞
∑

k=1

(k + 1)[X2
k0 + Y 2

k0] −
∞
∑

m=2

(m − 1)[X2
m0 + Y 2

m0]

= 2(X2
10 + Y 2

10) +
∞
∑

k=2

(k + 1)[X2
k0 + Y 2

k0] −
∞
∑

m=2

(m − 1)[X2
m0 + Y 2

m0]

= 2(X2
10 + Y 2

10) +
∞
∑

k=2

[(k + 1) − (k − 1)][X2
k0 + Y 2

k0]

= 2(X2
10 + Y 2

10) +
∞
∑

k=2

2[X2
k0 + Y 2

k0]

= 2
∞
∑

k=1

[X2
k0 + Y 2

k0].

And so, (A-2) has been proved.
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No. of Eigenvalues of matrix A Dimensi-
modes (all multiplicity 2) on eigen-

space of A

1 0 2

2 ±
√

2i 4

3 0,±2
√

2i 6
4 ±1.13i,±4.33i 8
5 0,±2.30i,±5.89i 10
6 ±7.50i,±1.00i,±3.56i 12
7 0,±9.15i,±2.05i,±4.90i 14
8 ±10.83i,±0.93i,±3.18i,±6.30i, 16
9 0,±12.54i,±1.89i,±4.38i,±7.74i 18
10 ±14.26i,±0.87i,±5.65i,±9.23i,±2.93i 20
11 0,±16.01i,±1.78i,±4.05i,±6.97i,±10.76i 22
12 ±17.76i,±0.83i,±2.76i,±5.22i,±8.33i,±12.31i 24
13 0,±19.53i,±1.70i,±3.81i,±6.45i,±9.73i,±13.88i,±19.53i 26
14 ±21.31i,±15.48i,±0.80i,±2.63i,±4.92i,±7.72i,±11.16i 28
15 0,±23.11i,±17.10i,±1.64i,±3.63i,±6.07i,±9.03i,±12.63i 30
16 ±24.91i,±18.73i,±0.78i,±2.53i,±4.68i,±7.28i,±10.38i, 32

±14.11i
17 0,±26.71i,±20.38i,±1.58i,±3.49i,±5.79i,±8.52i,±11.75i, 34

±15.62i
18 ±28.53i,±22.05i,±0.75i,±2.45i,±4.50i,±6.93i,±9.79i, 36

±13.16i,±17.15i
19 0,±30.35i,±23.72i,±1.54i,±3.37i,±5.55i,±8.12i,±11.10i, 38

±14.58i,±18.70i
20 ±32.18i,±25.41i,±0.73i,±2.38i,±4.34i,±6.65i,±9.33i, 40

±12.43i,±16.03i,±20.27i

Table 1: Approximations of the eigenvalues of the truncated system (22).
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