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Abstract

A general model for the dissolution of stoichiometric particles, taking into account
the influences of cross-diffusion, in multi-component alloys is proposed and analyzed us-
ing a diagonalisation argument. We give a self-similar solution for the resulting Stefan-
problem and state when the solutions are mass-conserving. We also give criteria for
well-posed models on cross-diffusion. Furthermore, we show that particle dissolution in
multi-component alloys can under certain circumstances be approximated by a model for
particle dissolution in binary alloys.

Keywords: Multi-component alloy, Particle dissolution, Cross-diffusion, Vector-valued Stefan problem, Self-similar solu-

tion

1 Introduction

In the thermal processing of both ferrous and non-ferrous alloys, homogenization of the as-cast
microstructure by annealing at such a high temperature that unwanted precipitates are fully

1corresponding author, e-mail: F.J.Vermolen@its.tudelft.nl
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dissolved, is required to obtain a microstructure suited to undergo heavy plastic deformation
as an optimal starting condition for a subsequent precipitation hardening treatment. Such
a homogenization treatment, to name just a few examples, is applied in hot-rolling of Al
killed construction steels, HSLA steels, all engineering steels, as well as aluminium extrusion
alloys. Although precipitate dissolution is not the only metallurgical process taking place, it
is often the most critical of the occurring processes. The minimum temperature at which the
annealing should take place can be determined from thermodynamic analysis of the phases
present. The minimum annealing time at this temperature, however, is not a constant but
depends on particle size, particle geometry, particle concentration, overall composition etc.

Due to the scientific and industrial relevance of being able to predict the kinetics of particle
dissolution, many models of various complexity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17] have been presented and experimentally validated. In recent years the simpler models
covering binary and ternary alloys have been extended to cover multi-component particles
[18, 19, 20]. These advanced models cover a range of physical assumptions concerning the
dissolution conditions and the initial microstructure. Furthermore, mathematical implications
(such as a possible bifurcation of the solution, monotonicity of the solution and well-posedness)
are addressed and mathematically sound extensions to the case of n compound particles, with
proven theorems concerning existence of mass-conserving solutions and solution bounds, have
been derived.

The current paper aims at being descriptive about the implications of the mathematics
of these more complex particle dissolution models. First we formulate the model for particle
dissolution in multi-component alloys in which cross-diffusion of the alloying elements is taken
into account. Using diagonalisation, we show that the case of cross-diffusion can be formulated
similarly to the case where no cross-diffusion takes place, only the thermodynamic relation
for the interfacial (equilibrium) concentrations changes. We analyze its well-posedness and
existence of solutions. Subsequently, we give asymptotic solutions for the dissolution of a
planar particle. Furthermore, we show that under certain circumstances the multi-component
problem (a ’vector-valued’ Stefan problem) can be approximated by a binary problem (’scalar’
Stefan problem). Finally some conclusions are formulated.

2 Basic assumptions in the model

The as-cast microstructure is simplified into a representative cell containing the ’matrix’ of
phase α and a single particle of phase β of a specific form, size and location of the cell bound-
ary. The particle volume We consider a particle of a multi-component β phase surrounded
by a ’matrix’ of phase α. The particle volume fraction in this representative cell is equal
to that in the real metal. Also the composition of the matrix is taken such that it reflects
the situation in the real metal. Both a uniform and a spatially varying composition can be
assumed in the model. The boundary between the β-particle and α-matrix is referred to as
the interface. Particle dissolution is assumed to proceed by a number of the subsequent steps
[9, 11]: decomposition of the particle, atoms from the particle crossing the interface and diffu-
sion of these atoms in(to) the α-phase. Here we take the effects of cross-diffusion into account.
We assume in this work that the first two mechanisms proceed sufficiently fast with respect
to diffusion. Hence, the interfacial concentrations are those as predicted by thermodynamics
(local equilibrium).

In [20] we considered the dissolution of a stoichiometric particle in a ternary alloy. The



3

hyperbolic relationship between the interfacial concentrations for ternary alloys is derived
using a three-dimensional Gibbs space. For the case that the particle consists of n chemical
elements apart from the atoms that form the bulk of the β-phase, a generalization to an
n-dimensional Gibbs hyperspace has to be made. The Gibbs surfaces become hypersurfaces.
We expect that similar consequences follow and that hence the hyperbolic relation between
the interfacial concentrations remains valid for the general stoichiometric particle in a multi-
component alloy. We denote the chemical species by Sp i, i ∈ {1, ..., n + 1}. We denote the
stoichiometry of the particle by (Sp1)m1

(Sp2)m2
(Sp3)m3

(...)(Spn)mn . The numbers m1,m2, ...
are stoichiometric constants. We denote the interfacial concentration of species i by c sol

i and
we use the following hyperbolic relationship for the interfacial concentrations:

(csol
1 )m1(csol

2 )m2(...)(csol
n )mn = K = K(T ). (1)

The factor K is referred to as the solubility product. It depends on temperature T according
to an Arrhenius relationship.

We denote the position of the moving interface between the β-particle and α-phase by S(t).
Consider a one-dimensional domain, i.e. there is one spatial variable, which extends from 0
up to M (the cell size). Since particles dissolve simultaneously in the metal, the concentration
profiles between consecutive particles may interact and hence soft-impingement occurs. This
motivates the introduction of finitely sized cells over whose boundary there is no flux. For
cases of low overall concentrations in the alloy, the cell size M may be large and the solution
resembles the case where M is infinite. The latter case can be described with (semi) explicit
expressions. The spatial co-ordinate is denoted by r, 0 ≤ S(t) ≤ r ≤ M . This domain is
referred to as Ω(t) := {r ∈ R : S(t) ≤ r ≤ M}. The α-matrix where diffusion takes place is
given by Ω(t) and the β-particle is represented by the domain 0 ≤ r < S(t). Hence for each
alloying element, we have for r ∈ Ω(t) and t > 0 (where t denotes time)

∂ci

∂t
=

n
∑

j=1

Dij

ra

∂

∂r

{

ra ∂cj

∂r

}

, for i ∈ {1, ..., n}. (2)

Above equations follow from thermodynamic considerations, their derivation can for instance
be found in [21, 3]. Here Dij and ci respectively denote the coefficients of the diffusion matrix
and the concentration of the species i in the α-rich phase. The diffusion matrix D is notated
as follows:

D =





D11 . . . D1n

. . . . . . . . .
Dn1 . . . Dnn



 .

This relaxes the assumption that the alloying elements diffuse independently. When cross-
diffusion is neglected, the diffusion matrix is diagonal. The geometry is planar, cylindrical
and spherical for respectively a = 0, 1 and 2. Let c0

i denote the initial concentration of each
element in the α phase, i.e. we take as initial conditions (IC)

(IC)







ci(r, 0) = c0
i (r) for i ∈ {1, ..., n}

S(0) = S0.

At a boundary not being an interface, i.e. at M or when S(t) = 0, we assume no flux through
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it, i.e.
∂ci

∂r
= 0, for i ∈ {1, ..., n}. (3)

Furthermore at the moving interface S(t) we have the ’Dirichlet boundary condition’ c sol
i for

each alloying element. The concentration of element i in the particle is denoted by c part
i ,

this concentration is fixed at all stages. This assumption follows from the constraint that the
stoichiometry of the particle is maintained during dissolution in line with Reiso et al [16].
The dissolution rate (interfacial velocity) is obtained from a mass-balance of the atoms of
alloying element i. The mass-balance per unit area leads to

(S(t + ∆t) − S(t))csol
i = (S(t + ∆t) − S(t))cpart

i −
n
∑

j=1

Dij
∂cj

∂r
∆t.

Division by ∆t gives

(S(t + ∆t) − S(t))

∆t
(cpart

i − csol
i ) =

n
∑

j=1

Dij
∂cj

∂r
.

Subsequently we take the limit ∆t → 0 and we obtain the following equation for the interfacial
velocity

(cpart
i − csol

i )
dS

dt
=

n
∑

j=1

Dij
∂cj

∂r
(S(t), t).

Summarized, we obtain at the interface for t > 0 and i, j ∈ {1, ..., n}:

ci(S(t), t) = csol
i

(

cpart
i − csol

i

) dS

dt
=

n
∑

j=1

Dij
∂cj

∂r
(S(t), t)



















⇒
n
∑

k=1

Dik

cpart
i − csol

i

∂ck

∂r
(S(t), t) =

n
∑

k=1

Djk

cpart
j − csol

j

∂ck

∂r
(S(t), t).

(4)
The right-hand part of above equations follows from local mass-conservation of the compo-
nents. Above formulated problem falls within the class of Stefan-problems, i.e. diffusion with
a moving boundary. Since we consider simultaneous diffusion of several chemical elements,
it is referred to as a ’vector-valued Stefan problem’. The unknowns in above equations are
the concentrations ci, interfacial concentrations csol

i and the interfacial position S(t). All con-
centrations are non-negative. The coupling exists in both the diffusion equations, equation
of motion and the values of the concentrations at the interfaces between the particle and
α-rich phase. This strong coupling complicates the qualitative analysis of the equations. For
a mathematical overview of Stefan problems we refer to the textbooks of Crank [22], Chadam
and Rasmussen [23] and Visintin [24].

3 Analysis

In this section we consider some general mathematical properties of the vector-valued Stefan
problem in which we deal with the extra coupling from cross-diffusion. We will partly or
entirely decouple the diffusion equations depending on whether the diffusion matrix, D, is
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diagonalizable. Therefore, we first give some analytical results for the binary case, in which
we consider diffusion of one alloying element only. Next we consider the ’degenerate’ vector-
valued Stefan problem where one of the diffusivities is zero, where loss of uniqueness of the
solution results. Subsequently we state the vector-valued Stefan problem with the diffusion
matrix. Here we deal with a factorization of the diffusion matrix where we use Jordan
decomposition or diagonalisation. We end up with some remarks concerning the case when
D is not diagonalizable.

3.1 The binary case

First we consider the case that one of the diffusion coefficients is equal to zero. The treatment
is binary, i.e. we consider only one diffusing alloying element. The concentration in this
section is denoted by u. Let the domain that includes the α-particle and β-phase be given by
x ∈ [0,M ], then consider the following problem for t > 0











































































∂u

∂t
= D

∂2u

∂x2
, x ∈ (S(t),M),

(upart − usol)
dS

dt
= D

∂u

∂x
(S(t), t),

u(S(t), t) = usol,

∂u

∂n
(M, t) = 0,

u = upart, x ∈ [0, S(t)).

(5)

Here we assume that usol is a given constant. We now introduce the definition of a mass-
conserving solution:

Definition 1 A solution of the Stefan problem is called conserving if the solution satisfies

∫ M

0
(u(x, t) − u0)dx = (upart − u0)S(t), ∀t > 0.

With this definition of mass-conserving solutions we established the following proposition in
[18]:

Proposition 1 Let all concentrations, which are used in problem (5), be non-negative, then
the following combinations give non-conserving solutions in the sense of Definition 1:

• usol < upart < u0,

• u0 < upart < usol.

Further, we call a solution allowable if it satisfies the following definition:

Definition 2 A solution of the Stefan problem is allowable if and only if it is both mass
conserving in the sense of Definition 1 and asymptotically stable with respect to perturbations.
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Problems that have only non-allowable solutions are called ill-posed. Some results on mass
conserving solutions are proven in [18] and [25]. It is well-known that whenever the diffusion
coefficient D is negative, then the solution is not stable with respect to perturbations. This
implies that the case D < 0 is ill-posed in the sense of Definition 2.

Let us consider the case D = 0, which may happen after a diagonalisation when the
diffusion matrix is singular. For D = 0, the one-dimensional version of problem (5) changes
into



















































∂u

∂t
= 0, x ∈ (S(t),M)

u(S(t), t) = usol,

∂u

∂x
(M, t) = 0,

u = upart, x ∈ [0, S(t)).

(6)

We assume that the function that describes the interface position S is smooth in a time-
interval [0, T ], i.e.

(C) : S ∈ C1(0, T ) ∩ C0[0, T ].

Now we show that D = 0 never allows growth of the β-particle. First, we need the following
Lemma for the proof of this assertion:

Lemma 1 Let S satisfy smoothness (C),

1. suppose S(t̂) > S(0), then there exists a minimal t = t̃, such that S(t̃) = S(t̂) and
S(t) < S(t̃) for all t ∈ (0, t̃),

2. suppose S(t̂) < S(0), then there exists a minimal t = t̃, such that S(t̃) = S(t̂) and
S(t) > S(t̃) for all t ∈ (0, t̃).

Proof: Let V ⊂ (0, t̂] be the set that contains the times that S(t) ≥ S( t̂), i.e.

V := {t ∈ (0, t̂] : S(t) ≥ S(t̂)}.

The existence of a minimal t = t̃, amounts to the establishing of the existence of a minimum
for V . Since all t are positive, t = 0 is a lower bound of V . Further t̂ ∈ V and thus
V 6= ∅. First we show that V is closed and since it has a lower bound, it follows from the
completeness axiom (see for instance [26, 27]) that V has a minimum. To show that V is
closed, we show that its complement within (0, t̂], V c := (0, t̂] \ V , is open. Suppose that
t̄ ∈ V c, then S(t̄) < S(t̂). Since S is continuous (see (C)), it follows that there exists δ > 0
such that S(t) < S(t̂),∀|t − t̄| < δ. Since this holds for each t̄ ∈ V c, the set V c is open and
hence V is a closed set. This implies the existence of a minimum of V and hence t̃ exists as
a minimal t such that S(t) < S( t̃) = S(t̂) for all t ∈ (0, t̃] and the first part of Lemma 1 is
proven. The proof of the second part of Lemma 1 is analogous. 2

Theorem 1 Let S(t) satisfy smoothness (C) and let the equations in (6) be satisfied, then

1. S(t̂) ≤ S(0) for any t̂ ∈ [0, T ] if upart 6= u0,
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2. S is undetermined if upart = u0.

Proof: By contradiction, suppose S(t̂) > S(0) and suppose that S satisfies smoothness (C),
then, according to Lemma 1, there exists a t̃ ∈ (0, t̂) such that S(t̃) = S(t̂) and S(t) < S(t̃)
for all t ∈ (0, t̃). Since u = upart whenever x ∈ [0, S(t)), Definition 1 implies

upartS(0) + (M − S(0))u0 = S(t̃)upart + (M − S(t̃))u0,

implying
(upart − u0)(S(0) − S(t̃)) = 0.

This implies either u0 = upart or S(t̃) = S(0). First we assume that upart 6= u0, then
S(t̃) = S(0), which contradicts the assertion S( t̃) > S(0) and the first part of the theorem is
proven. Furthermore, if upart = u0 holds, then S(t̂) is undetermined. This proves the second
part of the theorem. 2

Theorem 2 Let S satisfy smoothness (C) and the equations in (6) be satisfied, then

1. S(t̂) = S(0) whenever usol 6= upart 6= u0;

2. S(t̂) is undetermined, but S(t̂) ≤ S(0), if usol = upart 6= u0.

Proof: From Theorem 1 follows that S(t̂) ≤ S(0) whenever upart 6= u0. Suppose that
S(t̂) < S(0), then from Lemma 1 follows that there exists t̃ such that S(t̃) = S(t̂) and
S(t) > S(t̃) for all t ∈ (0, t̃). From Definition 1 follows

upartS(0) + (M − S(0))u0 = S(t̃)upart +

∫ S(0)

S(t̃)
u(x, t)dx + (M − S(0))u0, (7)

Since
∂u

∂t
= 0 for x > S(t̃), the integral in the above equation can be written by

∫ S(0)

S(t̃)
u(x, t)dx = (S(0) − S(t̃))usol,

and the equation of mass-conservation, equation (7), changes into

(∗) (upart − usol)(S(0) − S(t̃)) = 0.

Hence usol = upart or S(t̃) = S(0). Suppose that usol 6= upart, then S(t̃) = S(0) and the first
part of the theorem is proven. Further, if usol = upart, then (*) holds for all S(t̃) = S(t̂) and
hence this quantity is undetermined, which proves the second part of the theorem. Note from
Theorem 1 that then S(t̂) ≤ S(0). 2

The above theorem implies that S(t) is non-moving if upart 6= usol, otherwise, whenever
upart = upart, the function S is undetermined and hence uniqueness is violated. Similarly,
whenever upart = u0, the solution is undetermined. We state this result in the following
corollary:

Corollary 1 The solution of problem (6) is not uniquely defined when usol = upart or upart =
u0.
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3.2 The ’degenerate’ vector-valued Stefan problem

We now consider the vector-valued Stefan problem as constituted by equations (1),(2),(3) and
(4). We start by analyzing the case that one of the diffusivities is equal to zero, say D 1 = 0.
When one of the diffusivities is zero, we refer to the problem as being ’degenerate’. First we
remark that S(t) > S(0) gives a contradiction with regard to Theorem 1. Hence we know
that S(t) ≤ S(0). We will now prove the following theorem:

Theorem 3 Let S(t) satisfy smoothness condition (C), then the problem as constituted by
equations (1), (2), (3) and (4), supplemented with initial conditions u0

j 6= 0 for j ∈ {2, . . . , n},
has a solution, S(t) = S(0), when one of the diffusivities is zero, say D1 = 0.

Proof: Suppose that S(t) = S(0) for t ∈ [0, T ], then S(t) is known, and from (4) follows
when usol

1 6= upart
1

0 = S′(t) =
D1

upart
1 − usol

1

∂u1

∂x
(S(t), t) =

Dj

upart
j − usol

j

∂uj

∂x
(S(t), t) for j ∈ {2, . . . , n}.

Since generally Dj 6= 0 for j ∈ {2, . . . , n}, this implies

∂uj

∂x
(S(t), t) = 0, for j ∈ {2, . . . , n}, t ∈ [0, T ].

Since
∂uj

∂x
= 0 for both x = S(t) = S(0) and x = M , and uj(x, 0) = u0

j for x ∈ [0,M ], it

follows from the maximum principle of the diffusion equation (see Protter and Weinberger
[28])

uj(x, t) = u0
j , for j ∈ {2, . . . , n},

and
usol

j (x, t) = u0
j , for j ∈ {2, . . . , n}.

The concentration usol
1 is determined from relation (1) using the above values for u sol

j , j ∈
{2, . . . , n}. Further from relation (1) it is clear that when u0

j = 0 for any j ∈ {2, . . . , n}
S(t) = S(0) is not a solution (usol

1 is not bounded then). 2

Suppose now, under hypothesis of Theorem 2, S(t) ≤ S(0) for 0 < t ≤ T , suppose further that
there exists a t = t̂ such that S(t̂) < S(0), then from Lemma 1 there exists a t̃ ∈ (0, t̂) such
that S(t̃) = S(t̂) and S(t) > S(t̃) for all t ∈ (0, t̃). Definition 1 then gives for mass-conserving
solutions

S(0)upart
1 + (M − S(0))u0

1 = S(t̃)upart
1 +

∫ S(0)

S(t̃)
u1(x, t)dx + (M − S(0))u0

1.

Since u1(S(t), t) = usol
1 and

∂u1

∂x
= 0, the above equation changes into

(S(0) − S(t̃))upart
1 =

∫ S(0)

S(t̃)
usol

1 (x, t)dx.
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Suppose usol
1 = upart

1 , then the above equation is satisfied. Knowing the value of u sol
1 = upart

1 ,
then the other interfacial concentrations {usol

2 , . . . , usol
n } are determined from the problem

defined by (1), (2), (3) and (4). If the values of {usol
2 , . . . , usol

n } are such that
dS

dt
≤ 0 (see

[18]), then from Theorem 1, there exists a solution S(t) < S(0) and hence at least two solutions
are possible. Hence, uniqueness is violated for this case. Furthermore, there possibly also
exist non-monotonous solutions. We summaries this in the following remark:

Remark 1 Under hypothesis of Theorem 3, the solution may not be unique.

We further remark that the condition of ’non-growing’ solutions, i.e.
dS

dt
≤ 0 implies that

the solutions are allowable in the sense of Definition 1 (see also Proposition 1). We just
established in this subsection that when one of the diffusivities is zero and when the initial
concentrations are non-zero then a non-moving boundary is a possible solution. Further,
under some circumstances the solution may not be unique. Therefore, this is not likely to be
a very interesting case from a metallurgical point of view.

3.3 The vector-valued Stefan problem: decomposition of the diffusion ma-

trix

Subsequently, we change into a vector notation of the equations. We define the vectors
c := (c1, c2, . . . cn)T , cp := (cpart

1 , cpart
2 , . . . , cpart

n )T , cs := (csol
1 csol

2 . . . , csol
n )T , then the

diffusion equations become in vector notation

∂

∂t
c =

1

ra

∂

∂r

{

raD
∂

∂r

}

c. (8)

In the above equation the diffusion matrix, D, is assumed to be independent of the concen-
trations, time and position. The boundary and initial conditions follow similarly in vector
notation. The equation of motion of the interface becomes in vector notation:

(cp − cs)
dS

dt
=

∂

∂r
Dc(S(t), t).

To analyze equation (8) it is convenient to look at a decomposition of the diffusion matrix
D. Therefore we use the Decomposition Theorem in linear algebra, which says that for each
D ∈ R

n×n there exists a non-singular P ∈ R
n×n such that Λ = P−1DP , where Λ represents

a Jordan block-matrix. We refer to Birkhoff and MacLane [29] for the proof of the theorem.
For cases where D has n independent eigenvectors, i.e. D is diagonalizable, Λ is diagonal with
the eigenvalues of D on the main diagonal. Further, the columns of the matrix P consists of
the eigenvectors of D. In the more general case of a Jordan decomposition we have that the
matrix P consists of the generalized eigenvectors of D, which are obtained from solution of

(D − λI)wi+1 = wi, with w1 = v,

where I ∈ R
n×n is the identity matrix and v and w i are an eigenvector and generalized

eigenvectors of D respectively, belonging to the eigenvalue λ whose geometric multiplicity is
less than the algebraic multiplicity. For the coming we assume that the eigenvalues are real.
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Substitution of the decomposition of D into Eq.(8) gives

∂

∂t
c =

1

ra

∂

∂r

{

ra ∂

∂r

}

PΛP−1c ⇔ ∂

∂t
P−1c =

1

ra

∂

∂r

{

ra ∂

∂r

}

ΛP−1c

(cp − cs)
dS

dt
=

∂

∂r
PΛP−1c(S(t), t) ⇔ P−1 (cp − cs)

dS

dt
=

∂

∂r
ΛP−1c(S(t), t).

We define the transformed concentrations as

u := P−1c, us := P−1cs

up := P−1cp, u0 := P−1c0

then the diffusion equation and equation of motion change into

∂

∂t
u =

1

ra

∂

∂r

{

ra ∂

∂r

}

Λu

(up − us)
dS

dt
=

∂

∂r
Λu(S(t), t).

(9)

Above equations involve Jordan matrices with the eigenvalues of the diffusion matrix. For
non-defective matrices, with n linearly independent eigenvectors, the matrix in the above
expressions is diagonal and the system is fully uncoupled. Hence the strong coupling in
the partial differential equations has been reduced herewith. The homogeneous Neumann
conditions at the non-moving boundary are similar for the transformed concentrations due to
the linear nature of the transformation. Further, we have for t = 0

uj =







u0
j , for x ∈ Ω(0),

upart
j , for x ∈ [0,M ] \ Ω(0).

j ∈ {1, . . . , n}

From the decomposition of the diffusion matrix, with c = Pu ⇒ c i =

n
∑

j=1

pijuj, the coupling

between the interfacial concentrations via the hyperbolic relation (1) changes into

(

n
∑

j=1

p1ju
s
j)

m1(

n
∑

j=1

p2ju
s
j)

m2(. . .)(

n
∑

j=1

pnju
s
j)

mn = K = K(T ). (10)

Although this condition becomes more complicated, the analysis is facilitated using the diag-
onalisation of the diffusion matrix.

In the Jordan-matrix we have one uncoupled concentration for each eigenvalue of D. This
implies that whenever one eigenvalue is negative, an uncoupled diffusion equation with a
negative diffusivity results for the decomposed system. In other words, we face the following
equation

∂ui

∂t
= −µ

1

ra

∂

∂r

{

ra ∂ui

∂r

}

, with µ := −λ < 0, for x ∈ Ω(t), t > 0.

It is well-known that the above equation is unstable with respect to perturbations and hence



11

the problem is ill-posed. This motivates the requirement that the eigenvalues of the diffusion
matrix have to be non-negative.

For the case that one of the eigenvalues is zero, then we have an uncoupled equation without
diffusion, i.e.

∂ui

∂t
= 0, for x ∈ Ω(t), t > 0.

Theorem 4 Let S satisfy smoothness (C), then the problem as constituted by equations (9)
and (10), supplemented with initial conditions c0

j 6= 0 for j ∈ {2, . . . , n} and homogeneous
Neumann boundary conditions at x = M , has a solution S(t) = S(0) when one of the diffu-
sivities is zero, say D1 = 0.

Proof: The proof of the theorem is analogous to the proof of the Theorem 3, where the
hyperbolic relation between the set {usol

1 , . . . , usol
n } differs and where we must have c0

j 6= 0 for
j ∈ {2, . . . , n} to avoid a contradiction with the existence of a solution S(t) = S(0). Note
that u0

1 is allowed to be zero provided that c0
j 6= 0 for j ∈ {2, . . . , n}. 2

As a consequence of the above result, we will restrict ourselves to the treatment of a matrices,
D, which have real and positive eigenvalues. If D is symmetric and diagonally dominant,
then it follows from Gerschgorin’s Theorem that the matrix positive definite and hence its
eigenvalues are positive.

Furthermore, from the Spectral Theorem in standard linear algebra follows that if D ∈
R

n×n is symmetric then D is diagonalizable, the eigenvalues are real and P −1 = P T . For this
case above relation changes into

D = PΛP T .

3.4 The non-diagonazible case

We explain this for the ternary case, i.e. D ∈ R
2×2 , first with non-moving boundaries. In

Section 4 we will treat the case where the boundary moves. The Jordan decomposition then
gives

Λ =

(

λ 1
0 λ

)

,

where we only consider λ > 0. Hence the system of 2 equation is reduced to for x ∈ (0, 1), t >
0:



















∂u

∂t
= λ

∂2u

∂x2

∂v

∂t
= λ

∂2v

∂x2
+

∂2u

∂x2
.

(11)

We will fix the boundaries and consider smooth solutions of the above equations in the sense
of

(S) : u, v ∈ C2,1((0, 1) × R
+) ∩ C1,0([0, 1] × R

+
0 ).



12

Furthermore, let us consider the following boundary- and initial conditions

(IBC)



























u(0, t) = us, v(0, t) = vs,

u(x, 0) = u0, v(x, 0) = v0,

∂u

∂x
(1, t) = 0,

∂v

∂x
(1, t) = 0.

The solution of the upper equation in (11) satisfies a maximum principle, i.e. u has no
extreme for x ∈ (0, 1) and t > 0. A proof of this fact is given by Protter and Weinberger [28].
Since u satisfies a maximum principle and a homogeneous Neumann boundary condition at
x = 1, it follows that u is concave-upward or concave-downward whenever us > u0 or us < u0

respectively, i.e.
∂2u

∂x2
> 0, whenever us > u0,

∂2u

∂x2
< 0, whenever us < u0.

For the function v we will show that an interior minimum cannot exist for any x ∈ (0, 1),
t > 0 whenever us > u0 and similarly no interior maximum cannot exist whenever u s < u0:

Proposition 2 Let the functions u and v satisfy equations (11) and smoothness condition
(S) with initial and boundary conditions (IBC), then

1. no internal minimum exists for v whenever u is concave-upward,

2. no internal maximum exists for v whenever u is concave-downward.

Proof: Since u and v are smooth, it follows that an internal extreme, say for (x, t) =

(x̂, t̂) ∈ (0, 1) × R
+ is necessarily a stationary point, i.e. for v this gives

∂v

∂t
= 0 =

∂v

∂x
for

(x, t) = (x̂, t̂). Furthermore, for an extreme at (x̂, t̂) to be an internal (local) minimum we

must have
∂2v

∂x2
(x̂, t̂) ≥ 0 and similarly for an internal (local) maximum we have

∂2v

∂x2
(x̂, t̂) ≤ 0.

For any stationary point (x̂, t̂) for v we obtain from (11)

λ
∂2u

∂x2
+

∂2v

∂x2
= 0 ⇔ λ

∂2u

∂x2
= −∂2v

∂x2
for (x, t) = (x̂, t̂).

Suppose that
∂2u

∂x2
(x̂, t̂) > 0, then

∂2v

∂x2
(x̂, t̂) < 0 and hence an internal minimum cannot exist

for (x̂, t̂). Since
∂2u

∂x2
> 0 for us > u0, an interior minimum cannot exist for v when us > u0

and the first part of Proposition 2 is proven, the proof of the second part of Proposition 2 is
analogous. 2

We will derive, for the case of a ’half-infinite’ domain, a criterion for u s and u0 for the
existence of an internal extreme. For this semi-unbounded domain x > 0 and t > 0 we
consider self-similar solutions in the form of u, v(x, t) = u, v(η), η :=

x√
t
. For simplicity we
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will take u0 = 0 = v0. Substitution into (11) implies















−η

2
u′ = λu′′

−η

2
v′ = λu′′ + v′′

(12)

Here we use as boundary conditions

(BC)







u(0) = us, v(0) = vs,

limη→∞ u(η) = 0 = limη→∞ v(η).

For simplicity we set f = f(η) = u ′ and g = g(η) = v′, then we obtain the following solution
for f :

f = C1e
− η2

4λ ,

and for the function g we obtain the following linear differential equation:

g′ +
η

2λ
g =

η

2λ2
f

The above differential equation is solved using an integrating factor to obtain

g =

(

C1
η2

4λ2
+ C2

)

e− η2

4λ .

Integration of the functions f and g gives:

v = C1
1

4λ2

∫ η

0
s2e− s2

4λ ds + C2

∫ η

0
e− s2

4λ ds + D1

u = C1

∫ η

0
e− s2

4λ + D2

By partial integration the integral in the upper equation is computed to yield

v =
C1

2λ2

(

−ηλe− η2

4λ + λ
√

πλerf(
η

2
√

λ
)

)

+ C2

√
πλerf(

η

2
√

λ
) + D1

u = C1

√
πλerf(

η

2
√

λ
) + D2

The function v is monotonous whenever g does not change sign. Furthermore, v is monotonous
if and only if v is monotonous in space and time. Using the boundary conditions the integra-
tion constants can be computed. For the function g then follows

g = g(η) = v′ =

(

1

2
us − vs − us

4λ2
η2

)

e− η2

4λ2

√
πλ

.
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The above equation implies that v exhibits a (local) interior extreme whenever
1

2
us − vs > 0.

We summarize the result in Proposition 3:

Proposition 3 Consider equations (12) for a semi-unbounded domain, supplemented with

boundary conditions (BC), then the self-similar solution with u, v(x, t) = u, v(η), η :=
x√
t

has

an interior extreme whenever
1

2
us − vs > 0.

4 Similarity solutions and asymptotic approximations

In this section we consider the Stefan problem for each component. The components of the
vectors u, up, us and u0 are denoted by the index i in subscript. We showed in [25] (see also
Proposition 1) that solutions are not mass-conserving whenever

• us
i < us

i < u0
i for a certain i ∈ {1, . . . , n},

• u0
i < up

i < us
i for a certain i ∈ {1, . . . , n}.

Above conditions are used to reject solutions that are not physically correct. To facilitate
the analysis we consider the Stefan problem on an unbounded domain in one Cartesian co-
ordinate:

(P1)











































∂

∂t
u = Λ

∂2

∂r2
u

(up − us)
dS

dt
= Λ

∂

∂r
u(S(t), t)

u(r, 0) = u0, S(0) = S0,
u(S(t), t) = us.

First we deal with the diagonalizable case where we consider an exact solution and an asymp-
totic approximation. Subsequently we deal with the non-diagonalizable case where we also
consider an exact solution and an asymptotic approximation. For both cases the domain is
semi-infinite.

4.1 The exact solution of Neumann for the diagonalizable case

As an trial solution of (P1) we assume that the interfacial concentrations us are constant.
Furthermore, we assume that the diffusion matrix, D, is diagonalizable. Suppose that the
vector us is known then using a similar procedure as in [18], one obtains the solution for each
component:

ui = u0
i + (u0

i − us
i )

erfc(
r − S0

2
√

λit
)

erfc(
k

2
√

λi
)

, for i ∈ {1, . . . , n}.

The assumption that S = S0 + k
√

t gives the following expression for k

u0
i − us

i

up
i − us

i

·
√

λi

π
· e

− k2

4λi

erfc( k
2
√

λi
)

=
k

2
, for i ∈ {1, . . . , n}.
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Above equation is to be solved for the parameter k. However, the transformed interfacial
concentrations us are not known either and hence one is faced with the following problem

(P2)



































u0
i − us

i

up
i − us

i

·
√

λi

π
· e

− k2

4λi

erfc( k
2
√

λi
)

=
k

2
, for i ∈ {1, . . . , n},

(
n
∑

j=1

p1ju
s
j)

m1(
n
∑

j=1

p2ju
s
j)

m2(. . .)(
n
∑

j=1

pnju
s
j)

mn = K = K(T ).

Here the unknowns are the transformed interfacial concentrations us and rate-parameter
k. In above problem there is no time-dependence, hence the ansatz of time-independent
transformed interfacial concentrations (and hence the physical interfacial concentrations) is
not contradicted. Due to the non-linear nature of the equations, the solution is in general
not unique. We apply numerical zero-point methods to obtain the solution. To get insight in
the qualitative aspects of the solution, we consider some approximate solutions in the next
subsubsection.

4.2 An asymptotic solution for the diagonalizable case

Suppose that ||us − u0|| � ||up − us||, then the solution of problem (P2) is approximated by
the solution of

(P3)



























k = 2
u0

i − us
i

up
i − us

i

√

λi

π
, for i ∈ {1, . . . , n},

(

n
∑

j=1

p1ju
s
j)

m1(

n
∑

j=1

p2ju
s
j)

m2(. . .)(

n
∑

j=1

pnju
s
j)

mn = K = K(T ).

Above problem is to be solved using a zero-point method. Suppose that the initial concentra-
tions are zero, then u0 = 0, further we assume that the transformed particle concentration is
much larger than the transformed interfacial concentrations, i.e. u s

i � up
i for i ∈ {1, . . . , n},

then it follows that the first equation of (P3) becomes

k ≈ 2
us

1

up
1

√

λ1

π
. (13)

Hence the equation of motion of the interface becomes

dS

dt
≈ −us

1

up
1

√

λ1

πt
. (14)

Further, the following recurrence relation between the transformed interfacial concentrations
follows (see also [18], [30] for the derivation):

us
i =

up
i

up
1

√

λ1

λi
us

1.
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Substitution of above transformed interfacial concentrations into the second equation of (P 3)
gives the following real-valued solution

us
1 =

















K




n
∑

j=1

p1j

up
j

up
1

√

λ1

λj





m1




n
∑

j=1

p2j

up
j

up
1

√

λ1

λj





m2

(. . .)





n
∑

j=1

pnj

up
j

up
1

√

λ1

λj





mn

















1

µ

,

where we defined µ :=
∑n

j=1 mj. Above expression for the transformed interfacial concentra-
tion is substituted into the rate equation for the interface (13). This gives

dS

dt
= − 1

up
1

















n
∏

k=1

K




n
∑

j=1

(

pkj

up
j

up
1

√

λ1

λj

)





mk

















1

µ

√

λ1

πt
.

In above equation we put the factors up
1 and λ1 out of the summation and product in the

denominator. Furthermore subsequent multiplication of both the denominator and numerator

by

n
∏

k=1

(

√

λk

)1/µ
gives

dS

dt
= − csol

eff

cpart
eff

√

Deff

πt
, (15)

where

csol
eff = K1/µ, Deff =

[

n
∏

i=1

(λk)
mi

]1/µ

, cpart
eff =





n
∏

k=1





n
∑

j=1

(

pkju
p
j

√

λk

λj

)









1/µ

. (16)

Above equation (16) gives the effective interfacial concentration, effective particle concen-
tration and effective diffusivity. These quantities follow in terms of the solubility product,
transformed particle concentrations and the eigenvalues and eigenvectors of the diffusion ma-
trix. The differential equation (15) is solved using separation of variables. Dissolution times
of the particle can be determined then using known parameters such as the eigenvalues and
eigenvectors of the diffusion matrix.

4.3 The exact solution of Neumann for the non-diagonalizable case

We deal with a ternary example, where n = 2, higher order examples can be treated similarly.
When the matrix D is not diagonalizable then we use a Jordan decomposition. For D ∈ R

2×2

we obtain

Λ =

(

λ 1
0 λ

)
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as the decomposed form of the diffusion matrix. The set of transformed diffusion equations
become



















∂u1

∂t
= λ

∂2u1

∂x2
+

∂2u2

∂x2

∂u2

∂t
= λ

∂2u2

∂x2

(17)

From the above system it can be seen that the equation for u2 is uncoupled. Its solution is
computed using the self-similarity transformation and subsequently substituted into the equa-

tion for u1. We consider self-similarity solutions u 1, u2(x, t) = u1u2, (η), where η :=
x − S0√

t
,

then a similar procedure as in Section 3.4. the following is obtained:

u1 =
C1

2λ2

(

−ηλe− η2

4λ + λ
√

πλerf(
η

2
√

λ
)

)

+ C2

√
πλerf(

η

2
√

λ
) + D1

u2 = C1

√
πλerf(

η

2
√

λ
) + D2

Again we use the trial solution S = S0 + k
√

t, a combination with the boundary conditions
delivers

C1 =
u0

2 − us
2√

πλerfc( k
2
√

λ
)
, D2 = u0

2 − C1

√
πλ

C2 =
1√
πλ







u0
1 − us

1

erfc( k
2
√

λ
)
− C1

2





√

π

λ
+

k

λ

e− k2

4λ

erfc( k
2
√

λ
)











, D1 = u0
1 −

√
πλC2 − C1

2

√

π
λ .

Substitution of these constants into the expressions of u1 and u2 gives the transformed con-
centrations. Further, the rate factor of the interface movement is obtained from combination
of the Stefan condition and the expression for u2. Then we get the following set of equations
to be solved for k, us

1 and us
2:

(up
2 − us

2)
k

2
√

λ
=

u0
2 − us

2

erfc( k
2
√

λ
)

√

1

π
· e− k2

4λ

(up
1 − us

1)
k

2
√

λ
=

e− k2

4λ

erfc( k
2
√

λ
)







(u0
1 − us

1)

√

1

π
+

u0
2 − us

2

2λ
√

π
·



1 + 2
k2

4λ
− k

2
√

λ

2√
π

e− k2

4λ

erfc( k
2
√

λ
)











(p11u
s
1 + p12u

s
2)

m1 (p21u
s
1 + p22u

s
2)

m2 = K.

(18)

Note that p
1

and p
2

respectively represent the eigenvector and generalized eigenvector that
correspond to the eigenvalue λ of the defective matrix D. The above system of equations
can be solved using a zero-point method. In the next subsection we will consider some
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approximations of the solution of the above equations.

4.4 An asymptotic solution for the non-diagonalizable case

Suppose |us
2 − u0

2| � |up
2 − us

2|, then k → 0 and hence
e− k2

4λ

erfc( k
2
√

λ
)
→ 1. The above equations

(18) tend to the following expressions:

k

2
√

λ
=

√

1

π

u0
2 − us

2

up
2 − us

2

k

2
√

λ
=

√

1

π

{

u0
1 − us

1

up
1 − us

1

+
u0

2 − us
2

2λ(up
1 − us

1)

}

(19)

As an approximation we set u0
i ≈ 0 and up

i � us
i , then the above equation change into

k = −2

√

λ

π

us
2

up
2

k = −2

√

λ

π

{

us
1

up
1

+
us

2

2up
1λ

}

(20)

From the above equations, we obtain the following relation between u s
1 and us

2:

us
2 =

up
2

(up
1 −

up
2

2λ)
us

1, for up
1 −

up
2

2λ
6= 0.

The above expression is substituted into the third equation, which links u s
1 and us

2, to obtain
a value for us

1. Using this value us
2 can be computed and subsequently we can compute the

interface rate coefficient k. The interface movement can then be determined. Note from the
above equation that the expression for the interfacial concentrations and effective diffusion
coefficient is less simple than for the case in which there is no cross-diffusion.

5 Numerical experiments

As a numerical experiment we show the computation of the dissolution of a planar phase for
the case that the diffusion matrix is diagonalizable. The used numerical scheme is similar
to the scheme for multi-component dissolution as described in [18] where a Finite difference
method is used for the concentrations and a discrete Newton method for the determination of
the interfacial concentrations. For the diagonalizable case the only difference is the change of
the hyperbolic relation between the solubilities changes when using the so-called transformed
concentrations. Furthermore, we compare the computed numerical solutions with the self-
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Figure 1: The interfacial position as a function of time. The dotted curve corresponds to self-
similar solution and the other curve corresponds to the numerical approach.

similar solution as developed in Section 4. As input-data we used

c0 = (0, 0)T , cpart = (50, 50)T ,

D =

(

1 −1/2
1/4 2

)

, K = 1.

The above matrix is diagonalizable. In Figure 1 we plot the interface as a function of time
for the self-similar solution and numerical solution. As to be expected the solutions co-incide
for small times and start to deviate for later stages. From Figure 1 it is concluded that the
numerical scheme is also applicable for cross-diffusion. Numerical computations with cross-
diffusion for the case where the diffusion matrix is not diagonalizable remain to be done. We
further show the interface position as a function of time for the self-similar (exact) solution
and the quasi-binary approach in Figure 2. It can be seen that the quasi-binary approach is
very accurate for this case.

We show the curve for the concentration profile for a case where the diffusion matrix is
not diagonalizable (see Figure 3 and Figure 4) for subsequent times. It is clear that one of
the concentrations is not monotonous, see Proposition 3. The data-set that we used is given
by:

c0 = (0, 0)T , cpart = (100, 50)T ,

D =

(

2 −1
1 2

)

, K = 1.

Further, the interfacial position is plotted in Figure 5. We show the results for the exact
solution, see Section 4.3. and the results for the asymptotic approximation (i.e. the quasi-
binary approach), see Section 4.4. It can be seen that the curves co-incide well and hence for
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Figure 2: The interfacial position as a function of time for the same dataset as in Figure 1 for
the exact self-similar solution and the asymptotic approximation (quasi binary approach).

this case the asymptotic approach is accurate.

6 Conclusions

A model, based on a vector-valued Stefan problem, has been developed to predict dissolution
kinetics of stoichiometric particles in multi-component alloys. Cross-diffusion of the alloying
elements is taken into account, which gives a strong coupling of the differential equations.
Using a diagonalization argument the vector-valued Stefan problem with cross-diffusion is
transformed into a vector-valued Stefan problem where the cross-terms vanish whenever the
diffusion matrix is diagonalizable. For the diagonalizable case the numerical solution proce-
dure, which is used for modelling particle dissolution / growth when no cross-diffusion is taken
account, can be used. When the diffusion matrix is not diagonalizable, the Jordan decom-
position is used to facilitate the analysis. Well-known mathematical implications, concerning
mass-conservation of the Stefan problem and self-similarity solutions can be recovered now
also for the case of cross-diffusion. The hyperbolic relation between the interfacial concen-
trations becomes more complicated, however, since the eigenvectors of the diffusion matrix
have to be taken into account as well. In spite of this complication, the vector-valued Stefan
problem can be approximated by a quasi-binary in a similar way as for the case in which
no cross-diffusion is taken into account for the vector-valued Stefan problem. Similar as in
the case of no cross-diffusion we obtain expressions for the effective interfacial concentra-
tion, particle concentration and effective diffusion coefficient. For the case that the diffusion
matrix is singular, it is shown that the solution is not unique. Furthermore, the case of a
non-diagonalizable diffusion matrix is analyzed.

Still the following remains to be done:
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Figure 3: The concentration profiles for consecutive times in the α-rich phase for two alloying
elements where the diffusion matrix is not diagonalizable. The concentration of element 1 is not
monotonous.
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Figure 4: The concentration profiles for consecutive times in the α-rich phase for two alloying
elements where the diffusion matrix is not diagonalizable. The concentration of element 1 is not
monotonous.
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Figure 5: The interface position as a function of time for the case that the diffusion matrix is
not diagonalizable. The exact- and asymptotic solution are shown.

1. We want to include the other geometries as well in the analysis.

2. Some numerical calculations for the case of a non-diagonalizable diffusion matrix will
be done.
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