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On the weakly nonlinear, transversal vibrations of a conveyor belt

with a low and time-varying velocity

G. Suweken and W.T. van Horssen

Abstract

In this paper the weakly nonlinear, transversal vibrations of a conveyor belt will be
considered. The belt is assumed to move with a low and time-varying speed. Using
Kirchhoff’s approach a single equation of motion will be derived from a coupled system of
partial differential equations describing the longitudinal and transversal vibrations of the
belt. A two time-scales perturbation method is then applied to approximate the solutions
of the problem. It will turn out that the frequencies of the belt speed fluctuations play an
important role in the dynamic behaviour of the belt. It is well-known in linear systems
that instabilities can occur if the frequency of the belt speed fluctuations is the sum of two
natural frequencies. However, in the weakly nonlinear case as considered in this paper
this is no longer true. It turns out that the weak nonlinearity stabilizes the system.

1 Introduction

Axially moving systems are present in a wide class of engineering problems which arise in
industrial, civil, aerospatial, mechanical, electronic and automotive applications. Aerial ca-
bles, tram-ways, oil pipelines, magnetic tapes, power transmission belts, paper sheet and web
processes, fiber winding and band saw blades are examples of cases where an axial transport
of mass can be associated with transverse vibrations.

Investigating transverse vibrations of a belt system is a challenging subject which has
been studied for many years (see [1] - [4] for a recent overview) and is still of interest today.
In general, the studies about the dynamical behaviour of belt systems have been restricted
to belts moving with a constant speed (see for instance [1] - [5]). Recently there are some
studies about the transversal vibrations of belt systems moving with a non-constant speed
(see for instance [6] - [12]). The vibrations of a belt system moving with a low non-constant
velocity have been studied in [6], [7] and [8]. In [6] the belt vibrations have been modeled
using a linear string-like equation while in [7] the vibrations have been modeled using a linear
beam-like equation. The transversal vibrations of a belt system moving with an O(1) time-
dependent speed have been studied in [9] and [10], while the associated nonlinear vibrations
have been studied in [11] and [12]. A major drawback in the papers [9] - [12] which has
been observed in [6] and [7], is the use of the truncation method (specifically the use of only
one term). It has been pointed out in [1], [6] and [7] that a strong reduction in the phase
space can lead to a poor description of the dynamic phenomena and in particular the use of
only an one degree-of-freedom approximation can lead to errors in the spatial description and
in the forecasting of the time evolution of the system. In [6] and [7] it has been shown that
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the truncation method as applied in [9] - [12] indeed leads to incorrect results for low speed
belt systems on long timescales.

In this paper the weakly nonlinear transversal vibrations of a moving belt will be stud-
ied. These vibrations are described by a single weakly nonlinear beam equation. Kirchhoff’s
approach has been used to obtain this single governing equation from the original coupled
system of partial differential equations which describe the longitudinal and transversal vibra-
tions of the belt. The belt speed is considered to be time-varying and to be small compared
to the wave speed. It is assumed that the speed is V (t) = ε̃(V0 + α sin(Ωt)), where ε̃, V0, α,
and Ω are all constants with 0 < ε̃ � 1 and V0 > |α|. It should be observed that the velocity
changes periodically such that the belt moves in one direction. In fact the small parameter
ε̃ indicates that the belt speed V (t) is small compared to the wave speed. The variation in
V (t) may be due to the pulleys imperfection or some other sources of imperfection and it can
be considered as some kind of excitation. In this paper it is assumed that the displacement
of the belt in the longitudinal and in the transversal directions are small.

In relation to excitations, some results in this area have been obtained by Sack [13] and
Archibald and Emslie [14]. Sack considered the problem of a string moving with a constant
velocity at which one of its end (i.e. x = L) is subjected to an harmonic excitation. In [13]
the vibrations of the string at x = L is forced to be v(x, t) = v0 cos(Ωt). Archibald and
Emslie also studied the case where one end of the moving string is subjected to a harmonic
excitation to represent the case of a belt traveling from an eccentric pulley to a smooth pulley.
Whereas the case where both ends of the string are excited is studied by Mahalingam in [15].
A moving string model has been used in [15] to study the transverse vibrations of power
transmission chains. In all of these works, the belt movement is assumed to be constant.

This paper is organized as follows. In section 2 the coupled equations describing the motion
of the belt system in longitudinal and in transversal direction are derived. These coupled
partial differential equations are then reduced in section 3 to a single partial differential
equation by applying Kirchhoff’s approximation. In section 4 a two time-scales perturbation
analysis of the equation as obtained in section 3 will be carried out. Some specific values of Ω,
the frequency of the belt speed fluctuations, are used to demonstrate what kind of resonances
can occur. Finally, in the last section some conclusions will be drawn and some remarks will
be made.

2 Equations of motion

The equations of motion for a belt system with constant axial velocity have been derived in
[16] using Hamilton’s principle. For a time-varying velocity the same approach which has
been used in [16] can also be applied with some modifications. A schematic model of a belt
system under consideration has been given in Figure 1.

A point particle P on the belt under consideration will have transversal and longitudinal
velocities:

dU

dτ
=

∂U

∂τ
+

∂U

∂X

∂X

∂τ
⇔ dU

dτ
= Uτ + c(τ)UX ,

dW

dτ
= c(τ) + Wτ + c(τ)WX , (1)
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Figure 1: Schematic model of a conveyor belt, and velocity components at a point P on the
belt.

respectively. Using these two velocities the kinetic energy of the belt is given by:

KE =
1

2
ρA

∫ L

0

{
(Uτ + cUX)2 + [Wτ + c(1 + WX)]2

}
dx, (2)

and the potential energy is given by:

PE =
1

2

∫ L

0

( 1

EA
{R0 − EA + EA[(1 + WX)2 + U2

X ]
1

2 }2 + EIU2
XX

)
dx, (3)

with:
ρ : the mass density of the belt,
A : the cross-sectional area of the belt,
c(τ) : the belt velocity,
E : the modulus of elasticity,
R0 : the constant tension in a dynamic equilibrium,
I : the second moment of area with respect to the horizontal axis,
U(X, τ) : the transversal displacement of the belt,
W (X, τ) : the longitudinal displacement of the belt,
X : the position along the horizontal axis,
τ : the time, and
L : the distance between the pulleys.

The Hamilton function H(X, τ, UX , Uτ ,WX ,Wτ , UXX) is defined by

1

2
ρA

{
(Uτ + cUX)2 + [Wτ + c(1 + WX)]2

}
−

1

2

( 1

EA
{R0 − EA + EA[(1 + WX)2 + U2

X ]
1

2 }2 + EIU2
XX

)
. (4)

Then according to Hamilton’s principle, the equations of motion can be derived from dI(ε)
dε = 0

with ε = 0, where

I(ε) =

∫ τ2

τ1

∫ L

0
H(X, τ, ŪX , Ūτ , W̄X , W̄τ , ŪXX)dxdt,

in which:

W̄ (X, τ) = W (X, τ) + εη(X, τ), and Ū(X, τ) = U(X, τ) + εζ(X, τ).
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The arbitrary functions η(X, τ) and ζ(X, τ) have to satisfy:

η(0, τ) = η(L, τ) = 0 = η(X, τ1) = η(X, τ2), and

ζ(0, τ) = ζ(L, τ) = 0 = ζ(X, τ1) = ζ(X, τ2). (5)

It then follows that

dI(ε)

dε
=

∫ τ2

τ1

∫ L

0

d

dε
H(X, τ, ŪX , Ūτ , W̄X , W̄τ , ŪXX)dXdτ

=

∫ τ2

τ1

∫ L

0

{ ∂H

∂W̄X

∂W̄X

∂ε
+

∂H

∂ŪX

∂ŪX

∂ε
+

∂H

∂W̄τ

∂W̄τ

∂ε
+

∂H

∂Ūτ

∂Ūτ

∂ε
+

∂H

∂ŪXX

∂ŪXX

∂ε

}
dXdτ,

=

∫ τ2

τ1

∫ L

0

{ ∂H

∂W̄X
ηX +

∂H

∂ŪX
ζX +

∂H

∂W̄τ
ητ +

∂H

∂Ūτ
ζτ +

∂H

∂ŪXX
ζXX

}
dXdτ.

(6)

So, dI(0)
dε =

∫ τ2

τ1

∫ L

0

{ ∂H

∂WX
ηX +

∂H

∂UX
ζX +

∂H

∂Wτ
ητ +

∂H

∂Uτ
ζτ +

∂H

∂UXX
ζXX

}
dXdτ = 0. (7)

Integrating (7) by parts and using (5) it then follows that (7) can be rewritten in:

∫ τ1

τ2

∫ L

0

{
η
[ d

dX

( ∂H

∂WX

)
+

d

dτ

( ∂H

∂Wτ

)]
+

ζ
[ d

dX

( ∂H

∂UX

)
+

d

dτ

( ∂H

∂Uτ

)
− d2

dX2

( ∂H

∂UXX

)]}
dXdτ = 0. (8)

Since the functions η(X, τ) and ζ(X, τ) are arbitrary it follows from (8) that

d

dX

( ∂H

∂WX

)
+

d

dτ

( ∂H

∂Wτ

)
= 0,

d

dX

( ∂H

∂UX

)
+

d

dτ

( ∂H

∂Uτ

)
− d2

dX2

( ∂H

∂UXX

)
= 0. (9)

These equations are called the Euler-Lagrange equations. By substituting H(X, τ, U X , Uτ ,
WX ,Wτ , UXX) as given by (4) into (9), the following equations are obtained:

ρAWττ + 2ρAcWXτ + ρAcτ (1 + WX) + (ρAc2 − EA)WXX =

(EA − R0)
(1 + WX)UXUXX − U2

XWXX

[(1 + WX)2 + U2
X ]3/2

,

ρAUττ + 2ρAcUXτ + ρAcτUX + (ρAc2 − EA)UXX + EIUXXXX =

(R0 − EA)
(1 + WX)2UXX − (1 + WX)UXWXX

[(1 + WX)2 + U2
X ]3/2

. (10)

Using a Taylor series, the denumerator in (10) can be approximated by:

[(1 + Wx)2 + U2
X ]−3/2 = 1 − 3WX + 6W 2

X − 3

2
U2

X − 10W 3
X +

15

2
WXU2

X + O(4), (11)
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where O(4) stands for terms of degree 4 or higher. Assuming that the displacements in the
longitudinal direction are much smaller than the displacements in the transversal direction,
that is, O(W ) = O(U 2) it follows from (11) that [(1 + WX)2 + U2

X ]3/2 ≈ 1 − 3WX − 3
2U2

X .
Substitution of this approximation into (10) gives (approximately)

ρAWττ + 2ρAcWXτ + ρAcτ (1 + WX) + (ρAc2 − EA)WXX = (EA − R0)UXUXX ,

ρAUττ + 2ρAcUXτ + ρAcτUX + (ρAc2 − R0)UXX + EIUXXXX =
(
EA − R0

)(3

2
U2

XUXX + WXUXX + UXWXX

)
, τ > 0, 0 < X < L. (12)

To put the equation of motion (12) into a non-dimensional form, the following substitutions
are applied:

w(x, t) =
W (X, τ)

L
, u(x, t) =

U(X, τ)

L
, x =

X

L
, β2 =

T0

ρA
, t =

βτ

L
, V (t) =

c(τ)

β
,

P 2
0 =

EI

T0L2
, and P 2

1 =
EA

T0
,

where L is the distance between the two pulleys which are assumed to be two simple supports,
and T0 is the initial tension which is related to R 0 through R0 = T0 + ηρAc2 with 0 ≤ η ≤ 1.
Substituting all those non-dimensional variables into (12) and letting κ = 1− η the following
system of partial differential equations is then obtained:

wtt + 2V wxt + Vt(1 + wx) − (P 2
1 − V 2)wxx = (P 2

1 − 1 − ηV 2)uxuxx,

utt + 2V uxt + Vtux + (κV 2 − 1)uxx + P 2
0 uxxxx =

(P 2
1 − 1 − ηV 2)(

3

2
u2

xuxx + uxwxx + wxuxx), t ≥ 0, 0 < x < 1. (13)

The boundary conditions for the two simple supports are given by:

w(0, t) = w(1, t) = 0, and u(x, t) = uxx(x, t) = 0 for x = 0, 1, (14)

while the initial displacements and initial velocities are:

w(x, 0) = w0(x), wt(x, 0) = w1(x), u(x, 0) = u0(x), and ut(x, 0) = u1(x). (15)

In (13) it is assumed that P 2
0 = O(1) and that P 2

1 is much larger than P 2
0 . In fact it will be

assumed that P 2
1 = O(1

ε̃ ) with 0 < ε̃ � 1. Also it will be assumed that the belt speed c is
small compared to the wave speed β (or equivalently V is small compared to 1, that is, it will
be assumed that V (t) = O(ε̃)).

3 Kirchhoff’s approach

In this paper it will be assumed that u and V are O(ε̃), w is O(ε̃ 2), P 2
0 is O(1), and P 2

1 is
O(1

ε̃ ), where ε̃ is a small parameter with 0 < ε̃ � 1. Using these assumptions and following
Kirchhoff’s approach it will be shown in this section that the coupled system of PDEs (13)
can be reduced to a single PDE for the transversal displacement u(x, t).
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Now, it should be observed that the equation for the longitudinal displacements w(x, t)
in (13) can be rewritten in:

wtt + 2V wxt + Vt(1 + wx) + V 2wxx = P 2
1 (wx +

1

2
u2

x)x − (1 + ηV 2)uxuxx. (1)

Since u and V are O(ε̃), w = O(ε̃2), and P 2
1 = O(1

ε̃ ) then (1) up to order ε̃ becomes:

P 2
1 (wx +

1

2
u2

x)x = Vt ⇒ P 2
1 (wx +

1

2
u2

x) = xVt + f(t) (2)

⇒ P 2
1

∫ 1

0
(wx +

1

2
u2

x)dx =
1

2
Vt + f(t) ⇒ f(t) =

1

2

(
P 2

1

∫ 1

0
u2

xdx − Vt

)
, (3)

where use has been made of the boundary conditions w(0, t) = w(1, t) = 0.
Similarly the equation for u in (13) can be rewritten in

utt − uxx + P 2
0 uxxxx =

[
P 2

1

{
ux(

1

2
u2

x + wx)x + uxx(
1

2
u2

x + wx)
}
− 2V uxt − Vtux

]
+

”h.o.t.”, (4)

where h.o.t. stands for higher order terms. Substituting wx + 1
2u2

x from (2) and (3) into (4)
gives:

utt − uxx + P 2
0 uxxxx =

[
(x − 1

2
)Vtuxx − 2V uxt +

1

2
P 2

1 uxx

∫ 1

0
u2

xdx
]

+ ”h.o.t.”, (5)

where u(x, t) additionally has to satisfy the boundary conditions (14) and the initial conditions
(15).

When it is assumed that P 2
1 � O(1

ε̃ ) (instead of P 2
1 = O(1

ε̃ )) it follows from (1) that
(wx + 1

2u2
x)x = 0 approximately. Following the same steps as given in (2) and (3) it then

follows that u(x, t) has to satisfy

utt − uxx + P 2
0 uxxxx =

[
− Vtux − 2V uxt +

1

2
P 2

1 uxx

∫ 1

0
u2

xdx
]

+ ”h.o.t.”. (6)

An equation similar to (6) has been studied in [12] using Galerkin’s truncation method. In
[6] and [7] it has been explained that for these type of equations many phenomena which are
present in infinite dimensional systems can be lost in its finite dimensional approximations.
In this paper a justification of the applicability of the truncation method will be given by
explicitly studying all (internal and external) resonances which are present in equation (5).

In (5) u, V, and P 2
1 are now replaced by ε̃ũ, ε̃Ṽ , and 1

ε̃ P̃1
2

respectively, where ũ, Ṽ and P̃ 2
1

are of O(1). Equation (5) then becomes:

ũtt − ũxx + P 2
0 ũxxxx = ε̃

[
(x − 1

2
)Ṽtũxx − 2Ṽ ũxt +

1

2
P̃1

2
ũxx

∫ 1

0
ũ2

xdx
]

+

”h.o.t. in ε̃”, 0 < x < 1, t > 0, (7)

where ũ(x, t) also has to satisfy the following boundary and initial values

ũ(x, t) = ũxx(x, t) = 0, for x = 0 and x = 1, t ≥ 0, (8)

ũ(x, 0) = ũ0(x), ũt(x, 0) = ũ1(x), for t = 0, 0 < x < 1. (9)
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4 A perturbation analysis

In this section approximations of the solution ũ(x, t) of the initial-boundary value problem
(7)-(9) will be constructed. As mentioned in the introduction of this paper it is assumed that
the velocity V (t) = ε̃Ṽ (t) of the belt is given by

V (t) = ε̃Ṽ (t) = ε̃(V0 + α sin(Ωt)), (1)

where ε̃, V0, α, and Ω are all constants with 0 < ε̃ � 1 and V0 > |α|. For special values of
Ω it will turn out in this section that complicated resonances occur. Some of these cases for
Ω will be studied in detail.Based on the boundary conditions (8) for ũ(x, t) it follows that
ũ(x, t) can be written in the form: ũ(x, t) =

∑∞
n=1 un(t) sin(nπx). Since this series is odd and

2-periodic in x each term in (5) should be expanded odd with respect to x = 0 and x = 1 and
2-periodic in x. This is accomplished by multiplying each term in (7) which is not already
odd in x, (i.e. terms like xuxx and uxt) with H(x) (see also [6], [17], [18]) where

H(x) =

{
1 for 0 < x < 1,
−1 for −1 < x < 0,

=
∞∑

j=0

4

(2j + 1)π
sin((2j + 1)πx), (2)

and H(x) = H(x + 2). So, equation (7) then becomes on −1 < x < 1:

ũtt − ũxx + P 2
0 ũxxxx = ε̃

[
Ṽtũxx(xH(x) − 1

2
) − 2Ṽ ũxtH(x) +

1

2
P̃1

2
ũxx

∫ 1

0
ũ2

xdx
]

+ ”h.o.t. in ε”. (3)

It can be shown elementarily that the Fourier series of xH(x) on −1 < x < 1 is

1

2
−

∞∑

j=0

4

(2j + 1)2π2
cos((2j + 1)πx). (4)

Substitution of (4) in (3) gives:

ũtt − ũxx + P 2
0 ũxxxx = ε̃

[
− 4

∞∑

j=0

cos((2j + 1)πx)

(2j + 1)2π2
Ṽtũxx − 2Ṽ ũxtH(x) +

1

2
P̃1

2
ũxx

∫ 1

0
ũ2

xdx
]

+ ”h.o.t. in ε”. (5)

Now by substituting Ṽ (t) as given by (1) and the series
∑∞

n=1 un(t) sin(nπx) for ũ(x, t) into
(5) and then by using the orthogonality properties of the Fourier sin−series on −1 < x < 1
it follows that uk has to satisfy (for k = 1, 2, 3, . . .)

ük + ω2
kuk = ε̃

[ ∑

k=2j+1+n

+
∑

k=n−2j−1

−
∑

k=2j+1−n

]2n2αΩcos(Ωt)

(2j + 1)2
un −

4ε̃(V0 + α sin(Ωt))
[ ∑

k=2j+1+n

+
∑

k=2j+1−n

−
∑

k=n−2j−1

] nu̇n

(2j + 1)
−

ε̃
k2P̃ 2

1 π4

4
uk

( ∞∑

l=1

l2u2
l

)
+ O(ε̃2), (6)
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where ω2
k = (kπ)2 + P 2

0 (kπ)4. It should be observed that (6) is also obtained when (after
the sin−series for u(x, t) is substituted into (7)) equation (7) is multiplied with sin(kπx) and
then integrated with respect to x from x = 0 to x = 1.

When a naive perturbation method is used secular terms will occur. To avoid these secular
terms a two time-scales perturbation method will be used to solve (6) approximately. The
introduction of two time-scales t0 = t and t1 = ε̃t implies that

uk(t) = ūk(t0, t1), u̇k =
∂ūk

∂t0
+ ε̃

∂ūk

∂t1
, ük =

∂2ūk

∂t20
+ 2ε̃

∂2ūk

∂t0∂t1
+ ε̃2 ∂2ūk

∂t21
.

For convenience the bar on ūk(t0, t1) will be dropped in the further analysis. Assuming that
uk(t0, t1) can be written in the formal expansion uk0 + ε̃uk1 + O(ε̃2) it then follows from the
O(1)−terms and the O(ε̃)−terms in (6) that uk0 and uk1 have to satisfy:

O(1) :
∂2uk0

∂t20
+ ω2

kuk0 = 0,

O(ε̃) :
∂2uk1

∂t20
+ ω2

kuk1 =

−2
∂2uk0

∂t0∂t1
+

[ ∑

k=2j+1+n

+
∑

k=n−2j−1

−
∑

k=2j+1−n

]2n2αΩcos(Ωt0)

(2j + 1)2
un0 −

[ ∑

k=2j+1+n

+
∑

k=2j+1−n

−
∑

k=n−2j−1

](4n(V0 + α sin(Ωt))

2j + 1

∂un0

∂t0

)
−

P̃1
2
k2π4

4
uk0

( ∞∑

l=1

l2u2
l0

)
,

respectively. The solution of the O(1) problem is given by

uk0(t0, t1) = Ak0(t1) sin(ωkt0) + Bk0(t1) cos(ωkt0), (7)

where the functions Ak0(t1) and Bk0(t1) in (7) are still arbitrary and can be used to avoid
secular terms in the O(ε̃)−problem for uk1. By substituting uk0(t0, t1) into the O(ε̃)−problem
it follows that

∂2uk1

∂t20
+ ω2

kuk1 = −2ωk[Ȧk0 cos(ωkt0) − Ḃk0 sin(ωkt0)] +

[ ∑

k=2j+1+n

+
∑

k=n−2j−1

−
∑

k=2j+1−n

] αΩn2

(2j + 1)2

[
An0

{
sin((ωn + Ω)t0) +

sin((ωn − Ω)t0)
}

+ Bn0

{
cos((ωn + Ω)t0) + cos((ωn − Ω)t0)

}]
+

[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

]4nωnV0

2j + 1

[
An0 cos(ωnt0) − Bn0 sin(ωnt0)

]
+

[ ∑

k=n−2j−1

−
∑

k=n+2j+1

−
∑

k=2j+1−n

]2αnωn

2j + 1

[
An0

{
sin((ωn + Ω)t0) −

sin((ωn − Ω)t0)
}

+ Bn0

{
cos((ωn + Ω)t0) − cos((ωn − Ω)t0)

}]
+
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−k2P̃ 2
1 π4

8

[
Ak0 sin(ωkt0) + Bk0 cos(ωkt0)

] ∞∑

l=1

l2
(
A2

l0 + B2
l0

)
+

−k2P̃ 2
1 π4

16

∞∑

l=1

l2
(
B2

l0 − A2
l0

)[
Ak0

{
sin((2ωl + ωk)t0) − sin((2ωl − ωk)t0)

}
+

Bk0

{
cos((2ωl + ωk)t0) + cos((2ωl − ωk)t0)

}]
+

−k2P̃ 2
1 π4

8

∞∑

l=1

l2Al0Bl0

[
Ak0

{
cos((2ωl − ωk)t0) − cos((2ωl + ωk)t0)

}
+

Bk0

{
sin((2ωl + ωk)t0) + sin((2ωl − ωk)t0)

}]
. (8)

Now it can be seen from the right-hand side of (8) that secular terms (or equivalently res-
onances) will occur when ωn ± Ω = ±ωk or when ωl = ωk. In the following subsections,
some cases will be studied in which resonances occur. In section 4.1 the case Ω 6= ±ω k ± ωn

will be studied. In this case only internal resonances occur due to the nonlinear term in the
PDE (7). In section 4.2 the case Ω = ω2 − ω1 + ε̃φ will be studied in which φ is a detuning
parameter. This case is an example in which the frequency of the belt-velocity fluctuations
is the difference of two natural frequencies of the constant belt-velocity problem. In section
4.3 and 4.4 the case Ω = ω2 + ω1 + ε̃φ and Ω = ω3 + ω2 + ε̃φ respectively will be studied.
Again φ is a detuning parameter. These cases are examples in which the frequencies of the
belt-velocity fluctuations are the sum of two natural frequencies of the constant belt-velocity
problem.

4.1 The case where Ω causes no resonances

When Ω 6= ±ωk ± ωn (or not ε-close to these values) only internal resonances will occur due
to the nonlinear term in the PDE (7). It can be shown elementarily from (8) that secular
terms in uk1 can be avoided if Ak0 and Bk0 satisfy

Ȧk0 = −k2P̃1
2
π4

32ωk
Bk0

[
k2(A2

k0 + B2
k0) + 2

∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ḃk0 =
k2P̃1

2
π4

32ωk
Ak0

[
k2(A2

k0 + B2
k0) + 2

∞∑

l=1

l2(A2
l0 + B2

l0)
]
, (9)

for k = 1, 2, 3, . . .. System (9) can be solved exactly by introducing polar coordinates, that is,
Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk(t1) cos(φk(t1)). System (9) in polar coordinates
then becomes:

ṙk = 0, φ̇k = −k2P̃1
2
π4

32ωk

(
k2r2

k + 2

∞∑

l=1

l2r2
l

)
. (10)

From (10) it follows that rk(t1) = rk(0) and φk(t1) = −k2P̃1

2
π4

32ωk

(
k2rk(0)

2+2
∑∞

l=1 l2rl(0)
2
)
t1+

φk(0) for k = 1, 2, 3, . . .. The constants rk(0) and φk(0) follow from the initial values Ak0(0)
and Bk0(0).
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4.2 The case Ω = ω2 − ω1 + ε̃φ

It has been shown at the end of section 3 that resonances will occur when ωn ± Ω = ±ωk

or when ωl = ωk. In this section the case Ω = ω2 − ω1 + ε̃φ will be discussed where φ is a
detuning parameter. By using this special value of Ω additional mode interactions will only
occur between mode 1 and mode 2 as has been shown in [7]. Substituting Ω = ω2 − ω1 + ε̃φ
into (8), taking apart terms that cause resonances and setting these terms equal to zero to
avoid secular terms, the following set of equations for Ak0(t1) and Bk0(t1) will be obtained:

Ȧ10 = −4α(4ω1 − ω2)

9ω1
[B20 cos(φt1) − A20 sin(φt1)] −

P̃1
2
π4

32ω1
B10

(
(A2

10 + B2
10) +

2

∞∑

l=1

l2(A2
l0 + B2

l0)
)
,

Ḃ10 =
4α(4ω1 − ω2)

9ω1
[A20 cos(φt1) + B20 sin(φt1)] +

P̃1
2
π4

32ω1
A10

(
(A2

10 + B2
10) +

2

∞∑

l=1

l2(A2
l0 + B2

l0)
)
,

Ȧ20 = −4α(4ω1 − ω2)

9ω2
[A10 sin(φt1) + B10 cos(φt1)] −

P̃1
2
π4

4ω2
B20

(
2(A2

20 + B2
20) +

∞∑

l=1

l2(A2
l0 + B2

l0)
)
,

Ḃ20 =
4α(4ω1 − ω2)

9ω2
[A10 cos(φt1) + B10 sin(φt1)] +

P̃1
2
π4

4ω2
A20

(
2(A2

20 + B2
20) +

∞∑

l=1

l2(A2
l0 + B2

l0)
)
, (11)

and (9) for k = 3, 4, 5, . . . . By introducing polar coordinates in (9) for k = 3, 4, 5, . . . and in
(11), that is, Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk(t1) cos(φk(t1)) it follows that

ṙ1 =
4α(4ω1 − ω2)

9ω1
r2 sin(φ2 − φ1 + φt1), ṙ2 = −4α(4ω1 − ω2)

9ω2
r1 sin(φ2 − φ1 + φt1),

φ̇1 = −4α(4ω1 − ω2)r2

9ω1r1
cos(φ2 − φ1 + φt1) −

P̃1
2
π4

32ω1

(
r2
1 + 2

∞∑

l=1

l2r2
l

)
,

φ̇2 = −4α(4ω1 − ω2)r1

9ω2r2
cos(φ2 − φ1 + φt1) −

P̃1
2
π4

4ω2

(
2r2

2 +

∞∑

l=1

l2r2
l

)
, (12)

and ṙk = 0 for k = 3, 4, 5, . . .. To obtain (12) it has been assumed that r1 6= 0, and r2 6= 0.
From (11) and (12) it can be seen that if there is no initial energy present in the kth mode,
k = 3, 4, 5, . . . then the energy in that mode will be zero up to O(ε̃) on time-scales of O( 1

ε̃ ).
From (12) it can also be seen that if there is energy of O(1) present in the first mode then an
O(1) part of this energy will be transferred to the second mode, and vice versa. This energy
transport will take place on time-scales of O( 1

ε̃ ). In what follows it is assumed that there is
energy present in each mode of vibration at t = 0. Since ṙk = 0 for k = 3, 4, 5, . . . it then
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follows that rk(t1) = rk(0) for t1 > 0. From the first two equations in (12) it follows that
ω1r1ṙ1 +ω2r2ṙ2 = 0. This implies that ω1r

2
1 +ω2r

2
2 = C, where C is a constant of integration.

In fact rk(t1) = rk(0) for k = 3, 4, 5, . . ., and ω1r
2
1 +ω2r

2
2 = C are first integrals of the infinite

dimensional system of ODEs (12). Now let Φ(t1) = φ2(t1) − φ1(t1) + φt1. Then it can easily
be deduced from (12) that

ṙ1 =
4α(4ω1 − ω2)

9ω1

√
C − ω1r2

1

ω2
sin(Φ),

Φ̇ = φ +
4α

9
(4ω1 − ω2)

[ r2

ω1r1
− r1

ω2r2

]
cos(Φ) + P̃1

2
π4

[ 1

32ω1

(
r2
1 + 2

∞∑

l=1

l2r2
l

)
−

1

4ω2

(
2r2

2 +

∞∑

l=1

l2r2
l

)]
. (13)

By introducing the following re-scalings r1(t1) =
√

c
ω1

R1(s2),Φ(t1) = Ψ(s2) with s1 =

4α
9
√

ω1ω2

(4ω1 − ω2)t1, and ds2

ds1
= 1

R1

√
1−R2

1

, and by using the first integrals rk(t1) = rk(0) for k =

3, 4, 5, . . ., and ω1r
2
1 + ω2r

2
2 = C it follows that (13) can be simplified to

dR1

ds2
= R1(1 − R2

1) sin(Ψ),
dΨ

ds2
= (1 − 2R2

1) cos(Ψ) + (k1R
2
1 + k2)R1

√
1 − R2

1, (14)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(4ω1−ω2) k̄i for i = 1, 2 and k̄1 =
(

3
32ω1

− 1
4ω2

)
C
ω1

−
(

1
4ω1

− 3
2ω2

)
C
ω2

, and

k̄2 =
(

1
4ω1

− 3
2ω2

)
C
ω2

+ φ

P̃1

2
π2

+
(

1
16ω1

− 1
4ω2

)∑∞
l=3 l2rl(0)

2. Since α and φ are both arbitrary

it follows that k1 and k2 are arbitrary. However, the analysis can be restricted to the case
k1 ≥ 0 and −∞ < k2 < ∞, since for k1 < 0 a simple rescaling (Ψ := Ψ + π, and s2 := −s2)
leads again to the system (14) with k1 ≥ 0 and−∞ < k2 < ∞. It turns out that a first
integral for (14) can also be obtained. To obtain this first integral it should be observed from
(14) that

dΨ

dR1
=

(1 − 2R2
1) cos(Ψ) + (k1R

2
1 + k2)R1

√
1 − R2

1

R1(1 − R2
1) sin(Ψ)

⇔ sin(Ψ)dΨ

dR1
=

(1 − 2R2
1) cos(Ψ) + (k1R

2
1 + k2)R1

√
1 − R2

1

R1(1 − R2
1)

⇔ −d(cos(Ψ))

dR1
=

1 − 2R2
1

R1(1 − R2
1)

cos(Ψ) +
(k1R

2
1 + k2)R1

√
1 − R2

1

R1(1 − R2
1)

⇔ d(cos(Ψ))

dR1
+

1 − 2R2
1

R1(1 − R2
1)

cos(Ψ) =
(k1R

2
1 + k2)R1

√
1 − R2

1

R1(1 − R2
1)

(15)

which is a first order ODE in cos(Ψ). The solutions of this ODE(15) can readily be con-
structed, yielding

cos(Ψ) =
k1

3R1

√
1 − R2

1

[
R1(1 − R2

1)
3/2 +

2

5
(1 − R2

1)
5/2

]
+

k2(1 − R2
1)

3R1
+

C̃

R1

√
1 − R2

1

, (16)
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where C̃ is a constant of integration. In the following subsections an analysis of system (14)
in the (R1,Ψ)−phase plane will be given for different values of k 1 and k2 with k1 ≥ 0 and
−∞ < k2 < ∞.

4.2.1 Equilibrium points of system (14)

The obvious equilibrium points of system (14) are (R1,Ψ) = (0,±nπ
2 ), and (1,±nπ

2 ), with
n = 1, 3, 5, . . .. The less obvious equilibrium points (R 1,Ψ) are given by Ψ = mπ with m ∈ Z,
where R1 with 0 < R1 < 1 follows from (1 − 2R2

1) cos(mπ) + (k1R
2
1 + k2)R1

√
1 − R2

1 = 0.
To determine the number of equilibrium points for a fixed value of m two cases have to be
studied: (i) m is even, and (ii) m is odd. These two cases will now be studied.

(i) The case Ψ = mπ with m even
The R1-values in this case follow from

1 − 2R2
1 + (k1R

2
1 + k2)R1

√
1 − R2

1 = 0 ⇔ 1 − 2R2
1

R1

√
1 − R2

1

+ k1R
2
1 + k2 = 0

⇔ 1 − R2
1 − R2

1

R1

√
1 − R2

1

+ k1R
2
1 + k2 = 0 ⇔

√
1 − R2

1

R1
− R1√

1 − R2
1

+ k1R
2
1 + k2 = 0

⇔
√

z − z2

z
− z√

z − z2
+ k1z + k2 = 0, (17)

where z = R2
1. To determine z from (17) is the same as determining the intersection point(s)

of the following two curves: y = k1z + k2, and y = −(
√

z−z2

z − z√
z−z2

). For special values

of k1 and k2, these two curves are given in Figure 2. By varying k1 and k2 it is possible to

Figure 2: The curves y = −(
√

z−z2

z − z√
z−z2

) and y = k1z + k2 with k1 = 3 and k2 = −1.

obtain one, two, or three intersection points (i.e. equilibrium points). Observe also that as
k2 is getting larger, the intersection point tends to z = 1.

In the case that the straight line is tangent to the other curve, there will be two critical

points. Assume that the straight line y = k1z + k2 is tangent to f(z) = −(
√

z−z2

z − z√
z−z2

) at

the point z = z0. It then follows that

k1 = f ′(z0) =
−1

2z0(z0 − 1)
√
−z0(z0 − 1)

,
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k2 = f(z0) − z0f
′(z0) =

4z2
0 − 6z0 + 3

2(z0 − 1)
√

−z0(z0 − 1)
= (4z2

0 − 6z0 + 3)(−z0)k1. (18)

From the first equation in (18) z0 can be determined, yielding

z01,2
=

1

2
± 1

2

√
1 − 3

√
16/k2

1 , (19)

and then from the second equation in (18) it follows that

k21
= (−4z3

01
+ 6z2

01
− 3z01

)k1, k22
= (−4z3

02
+ 6z2

02
− 3z02

)k1. (20)

From (19) and from 0 < z0 < 1 it follows that 1− 3

√
16
k3

1

≥ 0. Since k1 ≥ 0 it then follows that

k1 ≥ 4. In Figure 3 the curves in the (k1, k2)-plane (as defined by (19) and(20)) are given on

–10

–8

–6

–4

–2

0
2 4 6 8 10 12 14

A−3

A−1

A−1

k 1

k2

Figure 3: Bifurcation curve in the (k1, k2)-plane for the number of equilibrium points (R1,Ψ)
of system (14) with Ψ = mπ,m even and fixed.

which exactly two equilibrium points (R1,Ψ) of system (14) can be found for Ψ = mπ with
m even and fixed. Also in Figure 3 the region A-1 (A-3) is given in which exactly one (three)
equilibrium point(s) of system (14) can be found for Ψ = mπ with m even and fixed.

(ii) The case Ψ = mπ with m odd
The R1-values in this case follow from

−(1 − 2R2
1) + (k1R

2
1 + k2)R1

√
1 − R2

1 = 0, (21)

which is equivalent to finding the intersection point(s) of the curves y = −(k 1z + k2) and

y = −(
√

z−z2

z − z√
z−z2

), where z = R2
1 (see also the previous case (i)). In this case always one

equilibrium point will be found for Ψ = mπ with m odd and fixed since the straight line has
a negative gradient.

4.2.2 The (R1,Ψ)-phase plane of system (14)

In the previous subsection all equilibrium points of system (14) have been determined. In
this subsection the orbits in the (R1,Ψ)-phase plane for system (14) will be given for different
values of k1 and k2. In Figure 4 these orbits are presented. It can be seen from Figure 4 that
for large values of the detuning parameter φ (that is, for large values of |k 2|) R1(s2), and so
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r1(t1) become constant. So, for large values of the detuning parameter φ the solutions of the
”resonant” case (i.e. system (14)) tend to the solutions of the ”non-resonant” case (i.e.system
(9)). Figure 4 and the first integrals for system (14) also show that all solutions are bounded
for this special value of Ω = ω2 − ω1 + ε̃φ, which is of difference type. These results are in
accordance with those obtained for the linearized problem (see [7]).
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Figure 4: Orbits in the (R1,Ψ) phase plane for system (14) for different values of k1 and k2

with −π ≤ Ψ ≤ π (vertical axis) and 0 ≤ R1 ≤ 1 (horizontal axis).

4.3 The case Ω = ω2 + ω1 + ε̃φ

At the end of section 3 it has been shown that resonances will occur when ωn ±Ω = ±ωk, or
when ωl = ωk. In this section the case Ω = ω2 + ω1 + ε̃φ, will be studied, where φ is again a
detuning parameter. By using this special value of Ω additional mode interactions will only
occur between mode 1 and 2 as has been shown in [7]. Substituting Ω = ω2 +ω1 + ε̃φ into(8),
taking apart those terms that cause resonances, and setting these terms equal to zero to avoid
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secular terms, the following set of equations for Ak0(t1) and Bk0(t1) will be obtained:

Ȧ10 =
4α(ω2 + 4ω1)

9ω1
[B20 cos(φt1) − A20 sin(φt1)] −

P̃1
2
π4

32ω1
B10

[
A2

10 + B2
10 +

2
∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ḃ10 =
4α(ω2 + 4ω1)

9ω1
[A20 cos(φt1) + B20 sin(φt1)] +

P̃1
2
π4

32ω1
A10

[
A2

10 + B2
10 +

2
∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ȧ20 =
4α(ω2 + 4ω1)

9ω2
[B10 cos(φt1) − A10 sin(φt1)] −

P̃1
2
π4

4ω2
B20

[
2(A2

20 + B2
20) +

∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ḃ20 =
4α(ω2 + 4ω1)

9ω2
[A10 cos(φt1) + B10 sin(φt1)] +

P̃1
2
π4

4ω2
A20

[
2(A2

20 + B2
20) +

∞∑

l=1

l2(A2
l0 + B2

l0)
]
, (22)

and (9) for k = 3, 4, 5, . . . . By introducing polar coordinates in (9) for k = 3, 4, 5, . . . and (11),
that is, Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk(t1) cos(φk(t1)) it follows that:

ṙ1 =
4α(ω2 + 4ω1)

9ω1
r2 sin(φ2 + φ1 + φt1), ṙ2 =

4α(ω2 + 4ω1)

9ω2
r1 sin(φ2 + φ1 + φt1),

φ̇1 =
4α(ω2 + 4ω1)r2

9ω1r1
cos(φ2 + φ1 + φt1) −

P̃1
2
π4

32ω1

[
r2
1 +

∞∑

l=1

l2r2
l

]
,

φ̇2 =
4α(ω2 + 4ω1)r1

9ω2r2
cos(φ2 + φ1 + φt1) −

P̃1
2
π4

4ω2

[
2r2

2 +
∞∑

l=1

l2r2
l

]
, (23)

where r2
l = A2

l0 + B2
l0, and ṙk = 0 for k = 3, 4, 5, . . .. This implies that rk(t1) = K̃, where

K̃ is a constant. From the first two equations in (23) a first integral can again be derived,
yielding ω1r

2
1 −ω2r

2
2 = K, where K is a constant of integration. As in the previous section it

will turn out that a phase plane analysis can be performed. To give this analysis three cases
have to be distinguished: (i) K > 0, (ii) K = 0, and (iii) K < 0.

4.3.1 The case K > 0

By using the first integrals and introducing Ψ = φ2 +φ1 + φt1 a reduced system as in section
4.2 can be obtained from (23), that is;

ṙ1 =
4α

9ω1
(4ω1 + ω2)

√
ω1r2

1 − K

ω2
sin(Ψ),
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Ψ̇ = φ +
4α

9
(4ω1 + ω2)

[ 2ω1r
2
1 − K

ω1ω2r1

√
ω1r2

1
−K

ω2

]
cos(Ψ) − P̃1

2
π4

[( 3

32ω1
+

1

4ω2

)
r2
1 +

( 1

4ω1
+

3

2ω2

)ω1r
2
1 − K

ω2
+

( 1

32ω1
+

1

4ω2

) ∞∑

l=3

l2rl(0)
2
]
. (24)

A further simplification in (24) can be made by introducing the re-scalings r 1(t1) =
√

K
ω1

R1(s2),

s1 = 4α
9
√

ω1ω2
(4ω1 + ω2)t1, and ds2

ds1
= 1

R1

√
R2

1
−1

which results in:

dR1

ds2
= R1(R

2
1 − 1) sin(Ψ),

dΨ

ds2
= (2R2

1 − 1) cos(Ψ) − (k1R
2
1 + k2)R1

√
R2

1 − 1, (25)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(ω2+4ω1) k̄i, for i = 1, 2, k̄1 =
(

3
32ω1

+ 1
4ω2

)
K
ω1

+
(

1
4ω1

+ 3
2ω2

)
K
ω2

and k̄2 =
(

1
32ω1

+ 1
4ω2

)∑∞
l=3 l2rl(0)

2 −
(

1
4ω1

+ 3
2ω2

)
K
ω2

− φ

P̃1

2
π2

. For the same reasons as given in section

4.2 the analysis can be restricted to the case k1 ≥ 0 and −∞ < k2 < ∞. It should be observed
that K > 0 implies that R1 > 1. Using a similar method as described at the end of section
4.2, a first integral of (25) also can be derived, giving

cos(Ψ) =
1

R1

√
R2

1 − 1

[k1

7
R7

1 +
1

5
(k2 − k1)R

5
1 −

k2

3
R3

1 + Ĉ
]
, (26)

where Ĉ is a constant of integration. The equilibrium points of system (25) have to satisfy
dR2

ds2
= 0 and dΨ

ds2
= 0. Since R1 > 1 in this case it follows for the equilibrium points that

Ψ = mπ with m ∈ Z and R1 has to satisfy

±(2R2
1 − 1) − (k1R

2
1 + k2)R1

√
R2

1 − 1 = 0, (27)

where the ‘+’ sign is associated with Ψ = mπ and m even, and the ‘−’ sign is associated with
Ψ = mπ and m odd. Introducing z = R2

1 (27) becomes

±
( z√

z2 − z
+

√
z2 − z

z

)
− (k1z + k2) = 0. (28)

The solution(s) of (28) will be the intersection point(s) of the curves given by g 1(z) =

±
(

z√
z2−z

+
√

z2−z
z

)
and g2(z) = k1z+k2. In case Ψ = mπ and m even always one intersection

point will be found while in case Ψ = mπ and m odd zero, one or two intersection points can
be found depending on the values of k1 and k2 (see also Figure 5). For Ψ = mπ with m odd
exactly one intersection point will occur when the straight line is tangent to the other curve.

Assume that the straight line g2(z) = k1z + k2 is tangent to g1(z) = −
(√

z2−z
z + z√

z2−z

)
at

the point z = z0. It then follows that

k1 = g′1(z0) =
1

2
(z0(z0 − 1))−3/2,

k2 = g1(z0) − z0g
′
1(z0) = −(4z3

0 − 6z2
0 + 3z0)k1, (29)

where z0 > 1. From the first equation in (29) it follows that z0 = 1
2 + 1

2

√
1 + 3

√
16
k2

1

, and then

from the second equation in (29) it follows how the curve in the (k 1, k2)-plane is defined on

16



Figure 5: The functions g1(z) = ±
(√

z2−z
z + z√

z2−z

)
and some functions g2(z) = k1z + k2. In

the left graph g1 is given with the ‘−’ sign, and in the right graph g1 is given with the ‘+’
sign.

which exactly one equilibrium point (R1,Ψ) of system (25) can be found for Ψ = mπ with m
odd and fixed. In Figure 6 this curve has been plotted. Also in Figure 6 the region A-0 and
A-2 are given in which zero and exactly two equilibrium points, respectively, of system (25)
can be found for Ψ = mπ with m odd and fixed. In Figure 7 some phase portraits of system
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Figure 6: Bifurcation curve in the (k1, k2)-plane for the number of equilibrium points of
system (25) with Ψ = mπ,m odd and fixed.

(25) have been given for different values of k1 and k2. It can also be seen in Figure 7 that all
solutions for R1 are bounded, and that for large |k2|-values (that is, for large values of the
detuning parameter) the behaviour of the solutions of system (25) resembles the solutions of
the ”non-resonant” system (9).

4.3.2 The case K = 0

By using the first integral ω1r
2
1 = ω2r

2
2 and by introducing Ψ = φ2 + φ1 + φt1 a reduced

system (as in section 4.2) can be obtained form (23), that is,

ṙ1 =
4α

9
√

ω1ω2
(4ω1 + ω2)r1 sin(Ψ),
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Figure 7: Phase portraits of system (25) for different values of k1 and k2 (case K > 0).

Ψ̇ =
8α

9
√

ω1ω2
(4ω1 + ω2) cos(Ψ) − P̃1

2
π4

[{ 3

32ω1
+

1

4ω2
+

( 1

4ω1
+

3

2ω2

)ω1

ω2

}
r2
1 +

( 1

32ω1
+

1

4ω2

) ∞∑

l=3

l2rl(0)
2 − φ

P̃1
2
π4

]
. (30)

A further simplification in (30) can be made by introducing the re-scaling s 1 = 4α
9
√

ω1ω2

(4ω1 + ω2)t1 which results in

dr1

ds1
= r1 sin(Ψ),

dΨ

ds1
= 2 cos(Ψ) − (k1r

2
1 + k2), (31)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(4ω1+ω2) k̄i, for i = 1, 2, and k̄1 = 3
32ω1

+ 1
4ω2

+
(

1
4ω1

+ 3
2ω2

)
ω1

ω2
, k̄2 =

(
1

32ω1
+

1
4ω2

)∑∞
l=3 l2rl(0)

2 − φ

P̃1

2
π4

. For the same reasons as given in section 4.2 the analysis can be

restricted to the case k1 ≥ 0 and −∞ < k2 < ∞. A first integral for system (31) can be
computed as follows:

dΨ

dr1
=

2 cos(Ψ)

r1 sin(Ψ)
− k1r

2
1 + k2

r1 sin(Ψ)
⇔ sin(Ψ)

dΨ

dr1
=

2 cos(Ψ)

r1
− k1r

2
1 + k2

r1
,

⇔ d cos(Ψ)

dr1
+

2 cos(Ψ)

r1
=

k1r
2
1 + k2

r1
, (32)

which has as solution:

cos(Ψ) =
1

r2
1

[k1

4
r4
1 +

k2

2
r2
1 + C∗

]
, (33)
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Figure 8: Phase portraits of system (31) for different values of k1 and k2 (case K = 0).

where C∗ is a constant of integration.
The equilibrium points of system (31) are given by r1 sin(Ψ) = 0 and 2 cos(Ψ) − (k1r

2
1 +

k2) = 0. Elementarily it can be shown that the equilibrium points (r 1,Ψ) of system (31) are:

for k2 ≤ −2 : (r1,Ψ) =
(√

−2−k2

k1
,mπ

)
with m odd, and

(r1,Ψ) =
(√

2−k2

k1
,mπ

)
with m even.

for −2 ≤ k2 ≤ 2 : (r1,Ψ) = (0,Ψ) with Ψ given by cos(Ψ) = k2

2 , and

(r1,Ψ) =
(√

−2−k2

k1
,mπ

)
with m even.

for k2 > 2 : no equilibrium points.
In Figure 8 some phase portraits of system (31) have been given for different values of k 1 and
k2. It can also be seen in Figure 8 (and from (33)) that all solutions for r 1 are bounded, and
that for large |k2|-values (that is, for large values of the detuning parameter) the behaviour
of the solution of system (31) resembles the behaviour of the solutions of the ”non-resonant”
system (9).

4.3.3 The case K < 0

From the first two equations in (23) a first integral ω1r
2
1 − ω2r

2
2 = K can be derived. Substi-

tuting K = −F , with F > 0 into this first integral ω2r
2
2 = ω1r

2
1 + F is obtained. By using

this first integral and the other first integrals rk(t1) = rk(0) for k ≥ 2, and by introducing
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Φ = φ2 + φ1 + φt1 the following reduced system will be obtained:

ṙ1 =
4α

9ω1
(4ω1 + ω2)

√
ω1r2

1 + F

ω2
sin(Φ),

Φ̇ = φ +
4α

9
(4ω1 + ω2)

[ 2ω1r
2
1 + F

ω1ω2r1

√
ω1r2

1
+F

ω2

]
cos(Φ) − P̃ 2

1 π4
[( 3

32ω1
+

1

4ω2

)
r2
1 +

( 1

4ω1
+

3

2ω2

)ω1r
2
1 + F

ω2
+

( 1

32ω1
+

1

4ω2

) ∞∑

l=3

l2rl(0)
2
]
. (34)

By introducing the following re-scalings r1(t1) =
√

F
ω1

R1(s2),Φ(t1) = Ψ(s2) with s1 =
4α

9
√

ω1ω2
(4ω1 + ω2)t1, and ds2

ds1
= 1

R1

√
R2

1
+1

system (34) becomes:

dR1

ds2
= R1(R

2
1 + 1) sin(Ψ),

dΨ

ds2
= (2R2

1 + 1) cos(Ψ) − (k1R
2
1 + k2)R1

√
R2

1 + 1, (35)

where ki =
9P̃1

2
π4

√
ω1ω2

4α(4ω1+ω2) k̄i for i = 1, 2, and k̄1 =
[(

3
32ω1

+ 1
4ω2

)
+

(
1

4ω1
+ 3

2ω2

)
ω1

ω2

]
F
ω1

and

k̄2 =
(

1
4ω1

+ 3
2ω2

)
F
ω2

+
(

1
32ω1

+ 1
4ω2

) ∑∞
l=3 l2rl(0)

2 − φ

P̃1

2
π4

. For the same reasons as given in

section 4.2 the analysis can be restricted to the case k1 ≥ 0 and −∞ < k2 < ∞. Using a
similar method as described at the end of section 4.2 a first integral of (35) can be derived,
yielding

cos(Ψ) =
1

R1

√
R2

1 + 1

[k1

4
R4

1 +
k2

2
R2

1 + C∗∗
]
, (36)

where C∗∗ is a constant of integration.

The equilibrium points of system (35) have to satisfy R1(R
2
1 + 1) sin(Ψ) = 0 and (2R2

1 +
1) cos(Ψ) − (k1R

2
1 + k2)R1

√
R2

1 + 1 = 0. From the first equation it follows that R1 = 0 or
Ψ = mπ with m ∈ Z. For R1 = 0 it follows from the second equation that cos(Ψ) = 0 ⇒ Ψ =
(2n+1)

2 π with n ∈ Z. For Ψ = mπ it follows from the second equation that

(−1)m(2R2
1 + 1) − (k1R

2
1 + k2)R1

√
R2

1 + 1 = 0. (37)

Following the analysis as given in subsection 4.3.1 it can be shown elementarily that

(i) for m even and fixed there will be always exactly one equilibrium point,

(ii) for m odd and fixed it is possible to have zero, one, or two equilibrium point(s) depending
on the values of k1 and k2. In Figure 9 the bifurcation curve in the (k1, k2)-plane is
given for which one equilibrium point occurs. Also in Figure 9 the regions A-0 and A-2
are given in which zero or two equilibrium points occur respectively.

In Figure 10 some phase portraits of system (35) are given for different values of k 1 and
k2. From these phase portraits and from (36) it can be deduced that R1 remains bounded,
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Figure 9: Bifurcation curve in the (k1, k2)-plane for the number of critical points of system
(35) with Ψ = mπ,m odd and fixed.
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Figure 10: Phase portraits of system (35) for different values of k1 and k2 (case K < 0).

and so, all solutions of the problem with Ω = ω2 + ω1 + εφ will remain bounded. These
results are different from the ones found in the linearized case (see [7]). For the problem
under consideration it can be concluded that the nonlinear terms ”stabilize” the conveyor
belt system.

4.4 The case Ω = ω3 + ω2 + ε̃φ

The linearized problem with Ω = ω3 + ω2 + ε̃φ has been studied in [7]. It has been shown in
[7] that for most parameter values only the second and the third mode will interact through an
internal resonance and that for special values of the beam parameters there will be additional
interactions. In this section it will be assumed that the beam parameters are such that only
an interaction between the second and the third mode occurs due to velocity fluctuations with
frequency Ω = ω3 + ω2 + ε̃φ, where φ is a detuning parameter. In [7] it has been shown that
for the linearized problem instabilities (that is, unbounded solutions) occur. For the nonlinear
system (see (8)) with Ω = ω3 +ω2 + ε̃φ it can again be shown that in order to remove secular
terms that Ak0 and Bk0 have to satisfy:

Ȧ20 =
12α

25ω2
(9ω2 + 4ω3)[B30 cos(φt1) − A30 sin(φt1)] −

P̃1
2
π4

4ω2
B20

[
2(A2

20 + B2
20) +
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∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ḃ20 =
12α

25ω2
(9ω2 + 4ω3)[A30 cos(φt1) + B30 sin(φt1)] +

P̃1
2
π4

4ω2
A20

[
2(A2

20 + B2
20) +

∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ȧ30 =
12α

25ω3
(9ω2 + 4ω3)[B20 cos(φt1) − A20 sin(φt1)] −

9P̃1
2
π4

32ω3
B30

[
9(A2

30 + B2
30) +

2

∞∑

l=1

l2(A2
l0 + B2

l0)
]
,

Ḃ30 =
12α

25ω3
(9ω2 + 4ω3)[A20 cos(φt1) − B20 sin(φt1)] +

9P̃1
2
π4

32ω3
A30

[
9(A2

30 + B2
30) +

2
∞∑

l=1

l2(A2
l0 + B2

l0)
]
. (38)

and Ȧk0 = 0 and Ḃk0 = 0 for k = 1, 4, 5, 6, . . . . By introducing polar coordinates, that
is, Ak0(t1) = rk(t1) sin(φk(t1)) and Bk0(t1) = rk(t1) cos(φk(t1)) it follows that system (38)
becomes

ṙ2 =
12α

25ω2
(9ω2 + 4ω3)r3 sin(φ2 + φ3 + φt1),

ṙ3 =
12α

25ω3
(9ω2 + 4ω3)r2 sin(φ2 + φ3 + φt1),

φ̇2 =
12α

25ω2
(9ω2 + 4ω3)

r3

r2
cos(φ2 + φ3 + φt1) −

P 2
1 π4

4ω2

(
2r2

2 +
∞∑

l=1

l2r2
l

)
,

φ̇3 =
12α

25ω3
(9ω2 + 4ω3)

r2

r3
cos(φ2 + φ3 + φt1) −

9P 2
1 π4

32ω3

(
9r2

3 + 2
∞∑

l=1

l2r2
l

)
,

(39)

and ṙk0 = 0 for k = 1, 4, 5, 6, . . .. It follows from the first two equations in (39) that ω2r2ṙ2 −
ω3r3ṙ3 = 0 which leads to the first integral ω2r

2
2 − ω3r

2
3 = K̃, where K̃ is a constant of

integration.
Now it should be observed that system (39) and system (23) are of the same from. So,

the analysis as presented in section 4.3 can be repeated leading to the same conclusions (see
the end of section 4.3).

5 Conclusions and remarks

In this paper a weakly nonlinear model describing the transversal vibrations of a conveyor
belt with a low and time-varying velocity has been studied. The equations of motion have
been derived using Hamilton’s principle leading to a system of partial differential equations
describing the longitudinal and the transversal displacements of the conveyor belt. Using
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Kirchhoff’s assumption the system of partial differential equations has been reduced to a single
fourth order, weakly nonlinear beam equation, which describes the transversal vibrations of
the belt system. In the analysis it has been assumed that the belt moves with a time-
varying velocity V (t) = ε̃(V0 + α sin(Ωt)), where ε̃, V0, and α are constants with |α| < V0

and 0 < ε̃ � 1. The value of ε̃ can be considered to be a measure of the smallness of the
belt speed compared to the wave speed. Further it has been assumed that the vertical and
the longitudinal displacement are of order ε̃ and of order ε̃ 2 respectively, and that P 2

0 = EI
T0L2

and P 2
1 = EA

T0
are of order 1 and of order 1

ε̃ respectively. Complicated dynamical behaviour
of the belt system occurs when the frequency Ω of the belt speed fluctuations is the sum or
difference of any two natural frequencies of the belt system with velocity equal to zero. In
[7] it has been shown for a linear model that the behaviour of the system will be unstable for
frequencies Ω of sum type. In this paper it has been shown for a weakly nonlinear model that
the behaviour of the system will always be stable for Ω = ω2 − ω1 + ε̃φ, or Ω = ω2 + ω1 + ε̃φ,
or Ω = ω3 + ω2 + ε̃φ, where φ is a detuning parameter. It is expected that for other values of
Ω the same techniques (as presented in this paper) can be applied to determine the stability
properties of the belt system. Finally it should be remarked that other order assumptions
on the longitudinal and the vertical displacement, and on P 2

0 and P 2
1 lead to other model

equations. These model problems will be the subject for future research.
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