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ON THE PERIODS OF THE PERIODIC SOLUTIONS OF THE

NONLINEAR OSCILLATOR EQUATION ẍ + x
1/(2n+1) = 0 .

W.T. van Horssen

Faculty of Information Technology and Systems,
Department of Applied Mathematical Analysis,

Delft University of Technology,
Mekelweg 4, 2628 CD Delft, The Netherlands,

(W.T.vanHorssen@math.tudelft.nl)

In a series of papers Mickens and his co-authors [1]-[3], and Awrejcewicz and
Andrianov [4] considered nonlinear oscillator equations of the form

ẍ + f(x) = 0 . (1)

In particular the case f(x) = x1/(2n+1) with n a positive integer has been
studied in [2], [3] and [4]. Using a generalized harmonic balance method (see
[1]) approximations of the periodic solutions have been constructed in [2] and
[3] in the form

x(t) '
A cos(ωt)

1 + B cos(2ωt)
, (2)

where A, B, and ω are to be determined as functions of the special initial
conditions x(0) = x0 and ẋ(0) = 0. The ultimate procedure used in [3] to
calculate A, B, and ω is based on the numerical integration of the differential
equation subject to x(0) = x0 and ẋ(0) = 0. The ”angular frequency” ωn(x0)
of the periodic solution of (1) with f(x) = x1/(2n+1) was approximated in [2]
by
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. (3)

From (3) the period Tn(x0) of the periodic solution of (1) with f(x) = x1/(2n+1)

can be approximated by 2π
ωn(x0)

. In [4] the so-called small δ-method has been

applied to approximate Tn(x0).
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In this paper an exact, analytical expression for Tn(x0) will be given, which
easily can be approximated numerically (up to any desired accuracy). First of
all it should be observed that (1) with f(x) = x1/(2n+1) has as an integrating
factor ẋ. Using this integrating factor the following first integral is obtained

1

2
(ẋ)2 +

(2n + 1)

(2n + 2)
x

2n+2

2n+1 = c , (4)

where c is a non-negative constant of integration. It follows from (4) that all
orbits in the phase-plane (that is, in the (x, ẋ)-plane) are closed, and are
symmetric with respect to the x-axis, and are symmetric with respect to the
ẋ-axis. So, all solutions of (1) with f(x) = x1/(2n+1) are periodic. Without loss
of generality it can be assumed that a periodic solution starts at t = 0 in

(x(0), ẋ(0)) = (x0, 0) with x0 > 0, and so c in (4) is equal to (2n+1)
(2n+2)

x
2n+2

2n+1

0 .

Let Tn(x0) be the period of this periodic solution. Since the orbits in the
phase-plane are symmetric with respect to the x-axis and the ẋ-axis it follows
that (x

(

Tn(x0)
2

)

, ẋ
(

Tn(x0)
2

)

) = (−x0, 0). From (4) it then follows that

dx(t)

dt
= ±

√

2(2n + 1)

2n + 2

√

x
2n+2

2n+1

0 − x(t)
2n+2
2n+1 ,

or equivalently

1
√

2n+1
n+1

√

x
2n+2

2n+1

0 − x
2n+2
2n+1

dx

dt
= ± 1 . (5)

Then, integrating (5) with respect to t from t = 0 to Tn(x0)
2

yields

Tn(x0)

2
=

1
√

2n+1
n+1

x0
∫

−x0

1
√

x
2n+2
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0 − x
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dx ,

and after introducing the new dimensionless variable s = x
x0

instead of x the
period Tn(x0) of the vibration becomes

Tn(x0) =
4x

n

2n+1

0
√

2n+1
n+1

1
∫

0

1
√

1 − s
2n+2

2n+1

ds . (6)

To avoid computational difficulties when the integral in (6) is integrated nu-
merically is should be observed that after some integrations by parts this
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integral can be rewritten in

1
∫

0

1
√

1 − s
2n+2

2n+1

ds =
(3n + 2)

n + 1

1
∫

0

√

1 − s
2n+2

2n+1 ds . (7)

From (6) and (7) it then follows that the period Tn(x0) of a periodic solution
of ẍ + x1/(2n+1) = 0 (with x(0) = x0 > 0, ẋ(0) = 0, and n a positive integer)
is given by

Tn(x0) =
4(3n + 2)x

n

2n+1

0
√

(2n + 1)(n + 1)

1
∫

0

√

1 − s
2n+2

2n+1 ds . (8)

For n = 0 (the harmonic oscillator case) it follows from (8) that T 0(x0) is
equal to the well-known value 2π. For large values of n (and for finite, n-

independent, and fixed values of x0) it also follows that x
n

2n+1

0 → x
1

2

0 and
√

1 − s
2n+2

2n+1 →
√

1 − s , and so, it follows from (8) that Tn(x0) → 4
√

2 x
1

2

0

for n → ∞ . For other values of n the integral in (8) has to be calculated
numerically. Using a standard numerical integration routine (as for instance
available in the formula manipulation package Maple) the integral in (8) can
easily be approximated numerically (up to any desired accuracy). For some
values of n approximations of the period Tn(x0) and approximations of the
”angular frequency” ωn(x0) = 2π

Tn(x0)
are given in Table 1 up to five decimals.

Also in Table 1 the approximations of ωn(x0) (as obtained in [2] and [3] by
using a harmonic balance/numerical method, and given by (3)) are listed.
As can be seen from this table the fractional errors of the approximations as
obtained in [2] and [3] for n ≥ 1 range from approximately 2 to approximately
11 percent. The approximations of Tn(x0) as obtained in [4] by using the small
δ-method can also readily compared with the accurate (up to 5 decimals)
results as given in Table 1.
Finally it should be remarked that the analysis (to obtain periods of periodic
solutions) as presented in this paper is not only restricted to a nonlinear
oscillator equation (1) with f(x) = x1/(2n+1) , but can be extended to more
general, nonlinear oscillator equations.
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n Tn(x0) ωn(x0) Approximation of
ωn(x0) as given in [2]
(see also (3))

0 2π 1.00000 1.00000

1 x
1/3
0 5.86966 x

−1/3
0 1.07045 x

−1/3
0 1.04912

2 x
2/5
0 5.78495 x

−2/5
0 1.08613 x

−2/5
0 1.04812

3 x
3/7
0 5.74847 x

−3/7
0 1.09302 x

−3/7
0 1.04405

4 x
4/9
0 5.72816 x

−4/9
0 1.09689 x

−4/9
0 1.04017

5 x
5/11
0 5.71522 x

−5/11
0 1.09938 x

−5/11
0 1.03684

6 x
6/13
0 5.70626 x

−6/13
0 1.10110 x

−6/13
0 1.03403

7 x
7/15
0 5.69968 x

−7/15
0 1.10238 x

−7/15
0 1.03164

8 x
8/17
0 5.69465 x

−8/17
0 1.10335 x

−8/17
0 1.02960

9 x
9/19
0 5.69067 x

−9/19
0 1.10412 x

−9/19
0 1.02783

10 x
10/21
0 5.68745 x

−10/21
0 1.10474 x

−10/21
0 1.02628

50 x
50/101
0 5.66322 x

−50/101
0 1.10947 x

−50/101
0 1.00919

500 x
500/1001
0 5.65750 x

−500/1001
0 1.11059 x

−500/1001
0 1.00149

∞ x
1/2
0 4

√
2 x

−1/2
0

π
2
√

2
x
−1/2
0 1.00000

Table 1: The period Tn(x0) and the ”angular frequency” ωn(x0) accurate up
to five decimal places, and the approximations of ωn(x0) as given
in [2].


