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Abstract

We investigate the influence of the value of deflation vectors at interfaces on the rate

of convergence of preconditioned conjugate gradient methods applied to a Finite Element

discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions

with continuous or discontinuous coefficients that vary in several orders of magnitude. In

the continuous case we are interested in the convergence acceleration of deflation on block

preconditioners. For the discontinuous case the Finite Element discretization gives a sym-

metric matrix with very large condition number and hence many iterations are needed to

obtain a solution using conjugate gradients. We use an incomplete Choleski decomposition

for the symmetric discretization matrix. Subsequently, deflation is applied to eliminate the

disadvantageous effects to convergence caused by the remaining small eigenvalues. Here we

investigate the effects of several variants of deflation and we propose an optimal choice for the

deflation vectors. Finally, we apply deflation to a parallel preconditioned conjugate method

to accellerate the calculation.

Mathematics Classification: 65F10 (Iterative methods for linear systems), 76S05 (Flow in Porous Media)

Keywords: porous media, Laplace equation, finite differences, conjugated gradients, preconditioning, deflation

1 Introduction

Large linear systems occur in many scientific and engineering applications. Often these systems
result from a discretization of model equations using Finite Elements, Finite Volumes or Finite
Differences. The systems tend to become very large for three dimensional problems. Some models
involve both time and space as independent parameters and therefore it is necessary to solve such
a linear system efficiently at all time-steps.

In this paper we only consider symmetric positive definite (SPD) matrices. Presently, direct
methods (such as an LU-decomposition) and iterative methods are available to solve such a linear
system. However, for large sparse coefficient matrices fill-in causes a loss of efficiency (in computer
memory and number of floating point operations). For such a case iterative methods are a better
alternative. Furthermore, if a time integration is necessary, then the solution of the preceding time-
step can be used as a starting vector for the algorithm to get the result on the next time-step.
This too supports the use of iterative methods.

Iterative methods such as Gauss-Seidel, Jacobi, SOR and Chebyshev-methods can be used,
however, convergence is in general slow and it is often very expensive to determine good estimates
of parameters on which they depend. To avoid these problems, the conjugate gradient method
is used. We deal with an application from transport in porous media where we encounter ex-
treme contrasts in the coefficients of the partial differential equation. The large contrasts are
caused by the layered domain where neighbouring layers in Figure 1 extreme contrasts in mobil-
ity. Here a preconditioning is necessary and we use a standard incomplete Choleski factorization
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Figure 1: An example of the geometry of the domain with high and low permeability regions.

as a preconditioner for the conjugate gradient method (ICCG) to improve convergence behavior.
Furthermore, deflation is applied to get rid of remaining extremely small eigenvalues that delay
convergence. Vuik et al. [17] proposed a scheme based on physical deflation in which the defla-
tion vectors are continuous and satisfy the original partial differential equation on a subdomain.
A different variant involves the so-called algebraic deflation with discontinuous deflation vectors.
Here convergence is speeded up. This was also subject of [16]. In that paper a comparison is
given between physical deflation vectors and algebraic deflation vectors. Two choices of algebraic
deflation vectors are applied:

• algebraic deflation vectors restricted to high permeability layers,

• algebraic deflation vectors for each layer.

From numerical experiments it follows that the second choice gives faster convergence. Further-
more, this option turned out to be more efficient for many applications than the use of physical
deflation vectors. Therefore, we limit ourselves to the use of algebraic projection vectors for each

layer.
For references related to the Deflated ICCG method we refer to the overview given in [17]

and [16]. The DICCG method has already been successfully used for complicated magnetic field
simulations [2]. A related method is recently presented in [11]. In [4] deflation is used to accel-
erate block-IC preconditioners combined with Krylov subspace methods in a parallel computing
environment.

The DICCG method is related to coarse grid correction, which is used in domain decomposition
methods [6, 11]. Therefore insight in a good choice of the deflation vectors can probably be used
to devise comparable strategies for coarse grid correction approaches.

We assume that the domain Ω consists of a number of disjoint sets Ωj , j = 1, ...,m such that
∪m

j=1Ω̄j = Ω̄. The division in subdomains is motivated by jumps in the coefficients and/or the
data distribution used to parallelize the solver. For the construction of the deflation vectors it is
important which type of discretization is used: cell centered or vertex centered.

Cell centered
For this discretization the unknowns are located in the interior of the finite volume. The domain
decomposition is straightforward as can be seen in Figure 2. The algebraic deflation vectors zj

are uniquely defined as:

zj(xi, yi) =

{

1, for (xi, yi) ∈ Ωj

0, for (xi, yi) ∈ Ω \ Ωj .
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Figure 2: Domain decomposition for a cell centered discretization.

Vertex centered
If a vertex centered discretization is used the unknowns are located at the boundary of the finite
volume or finite element. Two different ways for the data distribution are known [12]:

• Element oriented decomposition: each finite element (volume) of the mesh is contained in a
unique subdomain. In this case interface nodes occur.

• Vertex oriented decomposition: each node of the mesh is an element of a unique subdomain.
Now some finite elements are part of two or more subdomains.

For Finite Elements only the last option is commonly used. Note that the vertex oriented decom-
position is not well suited to combine with a finite element method. Therefore we restrict ourselves
to the element oriented decomposition, see Figure 3. As a consequence of this the deflation vectors
can overlap at interfaces.

In our previous work we always use non-overlapping deflation vectors. In [17, 18] the interface
vertices are only elements of the high permeability subdomains, whereas in [4] no interface vertices
occur due to a cell centered discretization. The topic of this paper is: how to choose the value of
the deflation vectors at interface points in order to obtain an efficient, robust and parallelizable
black-box deflation method.

First we briefly present the mathematical model that we use to compare the various deflation
vectors. Subsequently we give the algorithm and describe different versions of deflation. This is
followed by a description of the numerical experiments.
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Figure 3: Domain decomposition for a vertex centered discretization. The grey nodes are the
interface nodes.

2 The mathematical model

We denote the horizontal and vertically downward pointing coordinates by x and y. Flow in
porous media is often modelled by the following coupled scaled problem:

(P0)































∂S

∂t
+ ∇ · (qS) = ∇ · (D(S)∇S),

∇ · q = 0,

1

σ
q + ∇p− gSey = 0.

The above equations are supplemented with appropriate initial and boundary conditions. In
above equations S (-), q (m/s) and p (Pa) are the unknown saturation, discharge and pressure
respectively. The unit vector in the y-direction is represented by ey and the contstant of gravity
is denoted by g. The time is denoted by t (s) and σ is the (known) mobility. Porous media mostly
consist of several layers where the mobility varies between several orders of magnitude. In this
work we take σ as a (piecewise) constant function. For an overview of the equations that occur in
modeling flow in porous media we refer to the books of among others Bear [1] and Lake [9].

For the 2-dimensional case it is favourable [3, 13] to introduce the stream function ψ such that
q = ∇×ψ. Since here ∇ and q respectively work and are given for the (x, y) plane only, it follows
that ψ only has a non-constant z-component, i.e. ψ =< 0, 0, ψ >. For more mathematical details
on the existence of such a stream function, we refer to the book of Temam [14]. Further, ∂z(.) = 0
and hence after taking the curl over the third equation of (P0) we are faced with

−∇ ·
(

1

σ
∇ψ

)

= g
∂S

∂y
.
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If one imposes no-flow conditions over the boundary of Ω, then it follows that

ψ = 0 on Γ,

where Γ represents the boundary of Ω. This implies that the equations in (P0) change into

(P1)



















∂S

∂t
+ < −∂ψ

∂y
,
∂ψ

∂x
> ·∇S = ∇ · (D(S)∇S),

−∇ ·
(

1

σ
∇ψ

)

= g
∂S

∂y
,

for (x, y) ∈ Ω. We focus on the solution of the second equation of (P1) by a Finite Element
Method, and hence consider a variational formulation:

(P2)















Find ψ ∈ H1
0 (Ω) (ψ|Γ = 0) such that

∫

Ω

∇v · 1

σ
∇ψdA =

∫

Ω

g
∂S

∂y
vdA for all v ∈ H1

0 (Ω).

In problem (P2) σ is allowed to be piecewise continuous and hence the solution ψ is only piecewise
smooth. This problem is solved by the use of a standard Galerkin Finite Element Method, with

ψ =

n
∑

i=1

ψivi (vi|Γ = 0), with piecewise linear element functions vi. In our examples we take a

layered domain with

σ(x, y) =







σmax = 107, (x, y) ∈ Ω2j+1

σmin = 1, (x, y) ∈ Ω2j ,

where we suppose that the closed domain Ω consists of the union of m closed subdomains
Ω1, . . . ,Ωm (see Figure 1). In some applications, the high and low mobility (σ) respectively
correspond to sand and shale layers. We will also use this terminology to refer to the high and
low permeability layers. From the Galerkin discretization it follows inmediately that accross an
interface the coefficients in the discrete equation varies several orders of magnitude.

Discretization by the use of Galerkin’s method results into a matrix-vector equation of type

Ax = b,

where A ∈ R
n×n , x ∈ R

n and b ∈ R
n respectively represent the discretization (or stiffness-) matrix,

solution vector and right-hand side vector. Using a FEM approach the discretization matrix is
sparse, symmetric and positive definite (SPD). Furthermore, the discretization is chosen such that
the interfaces between consecutive layers coincide with gridpoints. For the case of large jumps
in the coefficient σ the condition of the discretization-matrix is very large. The remainder of the
paper is devoted to the efficient solution of the above matrix-vector equation when n is large.

3 Solution of the matrix equation

Since A is symmetric and positive definite, the conjugate gradient method is a natural candidate
to solve the matrix equation. After k iterations the ||.||A-norm (||.||A :=

√

(., A.)) of the error is
bounded from above by the well-known result of Luenberger, which can also be found in [5]

||x− xk||A ≤ 2

(√
κ− 1√
κ+ 1

)k

||x− x0||A, (1)

where κ denotes the condition number of the matrix A and x is the exact solution of the system.
For the ||.||2-norm (||.||2 :=

√

(., .)), it can be proven that
√

λmin||.||2 ≤ ||.||A ≤
√

λmax||.||2. (2)
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The above inequalities are combined with equation (1) to obtain

||x− xk||2 ≤ 2
√
κ

(√
κ− 1√
κ+ 1

)k

||x− x0||2, (3)

This estimate is standard and can be found in the book of Golub and van Loan [5]. It gives an
upper bound for the error for the ||.||2-norm.

Vuik et al. [17] observe that the number of small eigenvalues (order 10−7) of A is equal to the
number of gridnodes in the low mobility layer (σ = 10−7) plus the number of high permeability
layers that have a low permeability layer on top. The conjugate gradient method converges to the
exact solution only once all small eigenvalues have been ’discovered’. The number of eigenvalues
is reduced by the use of a preconditioner (Incomplete Choleski decomposition or even a diagonal
scaling). However, still a number of small eigenvalues remain for the preconditioned matrix. These
small eigenvalues persist due to the fact that at each interface between low-and high permeability
layers a homogeneous Neumann condition is effectively adopted by the sand-layer. This makes the
blocks of the discretization matrix that correspond to the sandwiched sandlayers almost singular.
This observation is formulated in terms of the following theorem, which is proven by Vuik et al.
[17]:

Theorem 1 Let ε, ε :=
σmin

σmax

be small enough and D = diag(A) and let r be the number of layers

with σ of order one between low σ layers, then the diagonally scaled matrix D−1/2AD−1/2 has

exactly r eigenvalues of order ε. 2

We remark here that Theorem 1 is extended to incomplete Choleski preconditioning, see Vuik et
al [18]. The preconditioning aims at improving the condition of the matrix. However, for this
case r small eigenvalues persist. In experiments we use an incomplete Choleski decomposition as
a preconditioner for the symmetric positive definite discretization matrix.

In the next section we consider the DICCG-method as proposed by Vuik et al. [17] for the
Laplace problem with extreme contrasts of the coefficients. The aim is to get rid of the remaining
very small eigenvalues of the preconditioned matrix Ã = L−TL−1A, where L−TL−1 ≈ A−1 is the
IC-preconditioner.

3.1 Deflation

In this subsection we analyze the elimination of the small eigenvalues of A by deflation. There-
fore, we first prove that, if the deflation matrix is constructed by eigenvectors of A, then its
corresponding eigenvalues are transformed into zero for the product of the deflation matrix and
the discretization matrix A. Here we need properties like symmetry and that the deflation matrix
is a projection. These properties are proven first. Suppose that λi and zi, i ∈ {1, . . . , n} respec-
tively represent eigenvalues and orthonormal eigenvectors of the symmetric discretization matrix
A ∈ R

n×n (such that zT
j zi = δij), and define the matrix P ∈ R

n×n by

P := I −
m

∑

j=1

zjz
T
j , m ≤ n

then

PAzi = Azi −
m

∑

j=1

zjz
T
j Azi = Azi − λi

m
∑

j=1

zjz
T
j zi = 0, ∀ i ∈ {1, . . . ,m}

PAzk = Azk −
m

∑

j=1

zjz
T
j Azk = Azk − λk

m
∑

j=1

zjz
T
j zk = λkzk, ∀ k ∈ {m+ 1, . . . , n}.

Hence, we state the following result:
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Theorem 2 Let P := I −
m

∑

i=1

ziz
T
i , where zi and λi are respectively orthogonal eigenvectors and

eigenvalues of the matrix A, then

1. For j > m PA and A have the same eigenvalues λj , and the corresponding eigenvalues of A

given by λj for j ≤ m are all zero for the matrix PA;

2. the matrix P is a projection.

Proof: The first statement is proven by the argument above Theorem 2. To prove the second
statement, we compute

P
2

= (I −
m

∑

i=1

ziz
T
i )(I −

m
∑

i=1

ziz
T
i ) = I − 2

m
∑

i=1

ziz
T
i + (

m
∑

i=1

ziz
T
i )(

m
∑

i=1

ziz
T
i ) = I −

m
∑

i=1

ziz
T
i = P .

The second last equality results from orthonormality of the eigenvectors. Hence, the matrix P is
a projection. 2

From Theorem 2 it follows that P and PA are singular. Now we introduce the matrix P for a
general choice of deflation vectors:

Definition 1 The deflation matrix P is defined by

P := I −AZ(ZTAZ)−1ZT .

We show that P can be written as P when the columns of Z are eigenvectors of A.

Theorem 3 Let Z ∈ R
n×m : Z = (z1 . . . zm) where zi are the orthonormal eigenvectors with

eigenvectors λi of the matrix A and let P be defined as in Definition 1, then P = P . Further, P

is a projection for all choices of Z ∈ R
n×m .

Proof: Let P = I −AZ(ZTAZ)−1ZT , then

P = I −A(z1 . . . zm)









zT
1

. . .

zT
m



A(z1 . . . zm)





−1 



zT
1

. . .

zT
m



 =

= I − (Az1 . . . Azm)





zT
1 Az1 . . . zT

1 Azm

. . . . . . . . .

zT
mAz1 . . . zT

mAzm





−1 



zT
1

. . .

zT
m



 =

= I − (λ1z1 . . . λmzm)diag

(

1

λ1
, . . . ,

1

λm

)





zT
1

. . .

zT
m



 = I −
m

∑

i=1

ziz
T
i = P

This proves the first statement. The second statement is proven by direct multiplication:

P 2 = I − 2AZ(ZTAZ)−1ZT +AZ(ZTAZ)−1ZTAZ(ZTAZ)−1ZT = P.

Hence P is a projection. 2

Corollary 1 The matrix PA is symmetric positive semi-definite.

Proof: Symmetry of PA is established by,

(PA)T = (A−AZ(ZTAZ)−1ZTA)T = A−AZ(ZTAZ)−1ZTA = PA (AT = A).
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Further, P is a projection and A is symmetric positive definite, hence from Lemma 2.1. by Frank
and Vuik [4], follows that PA is positive semi-definite. 2

Furthermore, the matrix PA, where P := I −AZ(ZTAZ)−1ZT , is singular since

PAZ = AZ −AZ(ZTAZ)−1ZTAZ = AZ −AZ = 0.

This is also shown in Theorem 4.1. in Vuik et al [17]. Consider matrix A with eigenvalues
{λ1, . . . , λm, λm+1, . . . , λn} and let Z = (z1, . . . , zm) where Azi = λizi, i ∈ {1, . . . ,m} are eigen-
vectors of A that correspond to eigenvalues {λ1, . . . , λm}. Then with P , according to Definition
1, it follows that PA has eigenvalues {0, . . . , 0, λm+1, . . . , λn}.

Theorem 4 Let P ∈ R
n×n be defined as in Definition 1, with Z = (z1, . . . , zm), then the null-

space of P is spanned by the independent set {Az1, . . . , Azm}, i.e. null(P ) = Span{Az1, . . . , Azm}.

Proof: Since PAZ = 0, it follows that Azi ∈ null P and hence dim null P ≥ m. Let V :=
Span{z1, . . . , zm}, then from the Direct Sum Theorem (see for instance [8]) follows R

n = V ⊕V ⊥,
where V ⊥ = {y ∈ R

n : y ⊥ V }, hence dim V ⊥ = n−m. Suppose y ∈ V ⊥, then

Py = y −AZ(ZTAZ)−1ZT y = y.

Hence dim col P ≥ n−m. Since dim null P+dim col P = n, this implies dim null P ≤ m. Hence,
using dim null P ≥ m, we have dim null P = m. Since {Az1, . . . , Azm} represents a linearly
independent set of m vectors in null P and dim null P = n, it follows from the Basis-Theorem
(see for instance [10]) that

null P = Span{Az1, . . . , Azm}.
This proves the theorem. 2

The matrix P is referred to as the deflation matrix. The vectors z1, . . . , zm are referred to as
the projection vectors and they are chosen such that their span approaches the span of the small
eigenvectors of Ã. The advantage of working with the matrix P Ã rather than with Ã is that
the smaller eigenvalues of Ã are transferred to zero eigenvalues of PA which do not influence the
convergence of the CG-method.

3.2 Deflated Incomplete Choleski Preconditioned Conjugate Gradients

The elimination of the small eigenvalues of A takes place by using the projection matrix P . We
then solve

PAx̃ = Pb, (4)

with the ICCG-method, where PA is singular. The solution of the above equation is not unique.
We obtain the solution of the matrix-equation Ax = b by

x = (I − P T )x+ P Tx. (5)

Note that x̃ is the solution of equation (4). In this paragraph we first establish uniqueness of the
above P T x̃, given any x̃ that satisfies equation (4). Therefore, we first need to establish that for
the projected solution we have P Tx = P T x̃ and that hence P T x̃ is unique. Equation (4) is written
as P (Ax̃ − b) = 0, where Ax̃ − b ∈ null P . Since PAZ = 0, the vectors Azi are in the null-space
of P , i.e. Azi ∈ null P . Since, we know from Theorem 4 that null P = Span{Az1, . . . , Azm}, the

vectors in the null-space of P can be written as linear combinations w =
m

∑

i=1

αiAzi. Therefore, it

can be seen that one can write for the vector x̃:

x̃ = A−1b+A−1w = A−1b+

m
∑

i=1

αizi. (6)
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Since A is not singular, the first term in the right-hand side is uniquely determined. We investigate
the result obtained from multiplication of the second term in the right-hand side with the matrix
P T . For convenience we look at the product P TZ:

P TZ = (I − Z(ZTAZ)−TZTA)Z = Z − Z(ZTAZ)−1ZTAZ = 0.

Hence, this product is zero and the second term of the right-hand side of equation (6) vanishes
after multiplication with P T , since Z = (z1 . . . zm). Hence, the vector P T x̃ is unique and we have

P T x̃ = P TA−1b = P Tx.

For the first term of the right-hand side of equation (5) we note that

(I − P T )x = Z(ZTAZ)−1ZAx = Z(ZTAZ)−1Zb.

Hence this term is also uniquely determined and since the dimension of the matrix ZTAZ is small,
the computation of this term is relatively cheap. This is summarized in the next theorem:

Theorem 5 Let P be defined as in Definition 1 and x̃ as in equation (4), then

1. P T x̃ is unique and P T x̃ = P Tx,

2. The unique solution of Ax = b can be written by x = Z(ZTAZ)−1ZT b+ P T x̃, where x̃ is a

solution of equation (4). 2

We further note that (I − P T )Z = Z(ZTAZ)−1ZTAZ = Z, hence (I − P T )(z1, . . . , zm) =
(z1, . . . , zm). From this follows that Span{z1, . . . , zm} =: V ⊂ R

n is in the eigenspace of eigenvalue
λ = 1 of the matrix (I − P T ).

For completeness, we present the algorithm of the deflated ICCG.

Algorithm 1 (DICCG [17]):
k = 0, r̃0 = Pr0, p1

= z0 = L−TL−1r̃0
while ||r̃k||2 > ε

k = k + 1

αk =
r̃T

k−1 zk−1

pT
k
PAp

k
xk = xk−1 + αp

k
r̃k = r̃k−1 − αkPApk
zk = L−TL−1r̃k

βk =
r̃T

k zk

r̃T
k−1 zk−1

p
k−1

= zk + βkpk

end while

The conjugate gradient method is reported to converge for symmetric positive definite matrices.
However, Kaasschieter ([7], Section 2) notes that eigenvalues of a symmetric positive semi-definite
matrix that are zero do not contribute to the convergence of the CG-method. Furthermore, he
concludes that the singular system can be solved by conjugate gradients as long as system (4) is
consistent (Pb ∈ Col(PA)). Van der Sluis and van der Vorst [15] note that the convergence may
be much faster than bounds (1) and (3) predict when eigenvectors are clustered.
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3.3 Choice of deflation vectors

We apply several choices for the deflation vectors to solve the following problem:

(P3)



























−∇ · k∇ψ = 0, (x, y) ∈ Ω,

ψ = 1, (x, y) ∈ ΓD,

∂ψ

∂n
= 0, (x, y) ∈ ΓN .

The domain Ω is divided into subdomains Ωj such that Ω = ∪m
i=1Ωi where ℵ ⊆ {1, . . . ,m} denotes

the set of indices that correspond to subdomains with high permeability, i.e.

k(x, y) =







kmax = 1, (x, y) ∈ Ωj , j ∈ ℵ,

kmin = ε, (x, y) ∈ Ωj , j ∈ {1, . . . ,m} \ ℵ.

Further, we assume that if Ωi ∩ Ωj 6= ∅ then the value of k in Ωi is not equal to the value of k in
Ωj . We take ε = 10−7. For each subdomain Ωi we introduce a deflation vector zj as follows:

zj(x, y) =











0, for (x, y) ∈ Ω \ Ωj

∈ [0, 1], for (x, y) ∈ Ωj \ (Ωj ∪ (ΓN ∩ Ωj))

1, for (x, y) ∈ Ωj .

Note that in the Finite Element formulation the Dirichlet boundary points do not participate in
the solution of the matrix vector equation. An example of the geometry is shown in Figure 1. We
investigate the following choices where zj is varied for (x, y) ∈ Ωj \ (Ωj ∪ (ΓN ∩ Ωj)).

1. non overlapping projection vectors:

zj(x, y) =











1, for (x, y) ∈ Ωj \ (Ωj ∪ Γ), j ∈ ℵ,

0, for (x, y) ∈ Ωj \ (Ωj ∪ Γ), j ∈ {1, . . . ,m} \ ℵ,

2. complete overlapping projection vectors:

zj(x) = 1, for Ωj \ (Ωj ∪ Γ), j ∈ {1, . . . ,m}, .

3. average overlapping projection vectors of the subdomains:

zj(x) =
1

2
, for Ωj \ (Ωj ∪ Γ), j ∈ {1, . . . ,m}, .

4. weighted overlapping projection vectors of the subdomains:

zj(x, y) =



















kmax

kmax + kmin
, for Ωj \ (Ωj ∪ Γ), j ∈ ℵ,

kmin

kmax + kmin
, for Ωj \ (Ωj ∪ Γ), j ∈ {1, . . . ,m} \ ℵ.

Note that weighted overlap is approximated by no overlapping when kmin � kmax and by average
overlapping whenever kmin = kmax. After some theoretical results we investigate the four choices
by numerical experiment for both the case that kmin � kmax and kmin = kmax. Subsequently, we
apply the deflation principle to parallel computation.
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We consider the case that constrasts are large, i.e. kmin � kmax, ε = 10−7. We now show

that the choice of average overlap is not suitable for this case where cond(A) = O(
1

ε
). In the next

theorem we refer to areas with kmin and kmax as low mobility and high mobility layers respectively.
Now we will show that the average overlapping projection vectors do not approximate the span of
the eigenvectors that belong to eigenvalues that are of the order O(ε).

Assumption 1 We assume that the Finite Element discretization is consistent, which means

that discretization error is zero for a constant function. We further assume that the off-diagonal

elements of the discretization matrix A are non-positive.

Let xm denote the position of grid point m. A consequence of the above assumption is

n
∑

j=1

amj = 0 for xm ∈ Ω \ ΓD. (7)

Before we state the theorem we introduce the index set Πi ⊂ {1, . . . , n} as the set of indices of
vi (which is the projection vector that corresponds to subdomain Ωi) that correspond to grid
points, which are on the boundary between two consecutive subdomains with k = kmax = 1 and
k = kmin = ε. Further, we denote the neighbouring grid points of index set Πi (located in Ωi) by
Π̃i.

Theorem 6 If the Finite Element discretization satisfies Assumption 1 and if the discretization

matrix is irreducible, and let D = diag(a11 . . . ann), then

1. ||D−1Avi||∞ ∼ 1, for all i, regardless the value of k in the subdomain, for average overlapping

delation vectors,

2. ||D−1Avi||∞ = O(ε) for all i corresponding to the subdomains Ωi∩ΓD = ∅ with k = kmax = 1,
for the cases of non-overlapping, completely overlapping and weighted overlapping deflation

vectors,

3. ||D−1Avi||∞ ∼ 1 for all values of i that are not incorporated in part 2, i.e. k = kmin = ε or

Ωi ∩ ΓD 6= ∅ and k = kmax = 1.

Proof: We start with xm ∈ Ωi ∪ (Ωi ∩ ΓN ) and m ∈ {1, .., n} \ (Πi ∪ Π̃i), where xm is not a
neighbouring point of a Dirichlet point, then (vi)m is equal to its neighbours. From consistency
of the discretization follows

(Avi)m = 0 m ∈ {1, .., n} \ (Πi ∪ Π̃i),

regardless the value of k in the subdomain i. For m ∈ Πi we split its neighbours into the sets JH
m

and JH
m , respectively denoting the neighbouring gridnodes in the high and low permeability layers.

Further, we introduce the set J I
m representing the set of indices corresponding to neighbours of

point m with index in Πi. We proceed with m ∈ Πi, then for the discretization matrix we have

{

amj ∼ 1 for j ∈ JH
m ,

amj = O(ε) for j ∈ JL
m.

Multiplication of A with vector vi gives for component m

(Avi)m =

n
∑

j=1

amj(vi)j = amm(vi)m +
∑

j∈JL
m
∪JH

m
∪JI

m

amj(vi)j .
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Since amm = −
n

∑

j=1,j 6=m

amj ∼ 1 and (vi)m = (vi)j for j ∈ JI
m when the subdomains are layered,

the above relation implies

(Avi)m =
∑

j∈JL
m
∪JH

m

amj((vi)j − (vi)m). (8)

Now, we estimate (Avi)m by the use of equation (8) for the three cases in the Theorem.

1. Consider average overlapping deflation vectors, then

∑

j∈JL
m

amj((vi)j − (vi)m) = O(ε).

Further, note that from irreducibility of the matrix A it follows that amj ∼ 1 for at least
one j ∈ JH

m 6= ∅. Hence, we have

∑

j∈JL
m

amj((vi)j − (vi)m) ∼ 1.

Therefore, with Dmm = amm ∼ 1, it follows after using equation (8) that

||D−1Avi||∞ ∼ 1, for all subdomains.

This proves part 1 of the Theorem.

2. Consider i corresponding to subdomain Ωi ∩ΓD = ∅ with k = kmax = 1, then for m ∈ Πi we
have for all cases of overlap

∑

j∈JL
m

amj((vi)j − (vi)m) = O(ε),

and

∑

j∈JH
m

amj((vi)j − (vi)m) =











O(ε) for weighted overlap,

0 for complete and no overlap.

Substitution of the above relations into equation (8) gives

(Avi)m = O(ε).

Since Dmm ∼ 1, it follows for non-overlapping, complete overlap and weighted overlap, that

(D−1Avi)m = O(ε) for subdomains where k = kmax = 1.

For subdomains Ωi where Ωi ∩ ΓD = ∅ and k = kmax = 1, it follows, with (Avi)m = 0 for
m ∈ {1, . . . , n} \ Πi, that

||D−1Avi||∞ = O(ε).

This proves part 2 of the Theorem.

3. Now we consider Ωi where k = kmax = 1 and with Ωi ∩ΓD 6= ∅, then for a certain grid point
m that neighbours a Dirichlet grid point, we do not satisfy equation (8), but

n
∑

j=1

amj ∼ 1,



13

since k = kmax = 1. This implies that

n
∑

j=1

amj(vi)j ∼ 1

and hence
||D−1Avi||∞ ∼ 1, for Ωi ∩ ΓD 6= ∅ and k = kmax = 1.

For m ∈ Π̃i we have for a subdomain where k = ε

n
∑

j=1

amj((vi)j − (vi)m) = O(ε) for no overlap and weigthed overlap.

Since amm = Dmm ∼ ε for m ∈ Π̃i when k = ε, we obtain

||D−1Avi||∞ ∼ 1, for no overlap or weighted overlap.

For m ∈ Πi we have for a subdomain where k = ε
∑

j∈JH
m

amj((vi)j − (vi)m) ∼ 1 for complete overlap.

For complete overlap, we also have Dmm ∼ 1 for m ∈ Πi and hence one obtains

||D−1Avi||∞ ∼ 1 for complete overlap,

whenever i corresponds to a subdomain where k = kmin = ε. This proves the Theorem. 2

An important conclusion here is that the average overlapping deflation vectors with ε � 1
do not approximate the span of eigenvectors corresponding to the small eigenvalues of D−1A.
The above theorem is proven for diagonal scaling. We extend the result to an incomplete Choleski
decomposition for algebraic projection vectors with weighted and complete overlap and no overlap.
A similar Theorem is proven by Vuik et al [18] for physical deflation vectors. This is formulated
in the following theorem:

Theorem 7 If the Finite Element discretization is consistent under Assumption 1, then

||L−TL−1Avi||2 = O(ε)

for non-overlapping, completely and weighted overlapping projection vectors.

Proof: The proof is based on Theorem 6.

||L−TL−1Avi||2 = ||L−TL−1DD−1Avi||2 ≤ λmax(L
−TL−1D)||D−1Avi||2.

Vuik et al [18] (Theorem 2.2) prove that λ(L−TL−1D) is bounded also for ε → 0. Further, since
||D−1Avi||2 ≤ √

n||D−1Avi||∞, we obtain

||L−TL−1Avi||2 ≤ λmax(L
−TL−1D)

√
n||D−1Avi||∞.

Since we know from Theorem 6

||D−1Avi||∞ ≤ O(ε) for non-, completely and weighted overlapping projection vectors,

we obtain
||L−TL−1Avi||2 ≤ λmax(L

−TL−1D)
√
nO(ε).

This proves the assertion. 2

Note that the above theorem does not say anything for the case of incomplete Choleski precon-
ditioning and average overlapping projection vectors. The result in Theorem 6 is expected to hold
for average overlapping with incomplete Choleski preconditioning as well. This is also observed
by numerical experiments.
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Figure 4: Convergence behavior of the incomplete Choleski preconditioned CG-method for 7
subdomains with large jumps of the coefficient k in (P3). The ||.||2-norm of the residual and error
have been presented. The number of elements is 3200 per layer.

4 Numerical experiments

For the experiments we consider test-problem (P3) for a rectangular domain Ω. It easily follows
that the solution of this test-problem is ψ = 1. The problem is solved by the use of a Finite
Element method. We have done experiments with the different overlapping between subsequent
subdomains. The parameter k is allowed to have large jumps. To illustrate the need for deflation,
when k has large jumps, we start with the setting where we have horizontal layers of alternating
permeability where ε = 10−7. Here we take seven layers and 3200 (80 × 40) elements per layer
and show a convergence result obtained from a Choleski preconditioned conjugate gradient method
when no deflation is applied in Figure 4. It can be seen in the graph of the residual ||b−Axk ||2 that
convergence is fast at the early stages. Subsequently, a non-monotonic behaviour is observed which
is due to the presence of three eigenvalues that are of the order of 10−7 in accordance to Theorem 1.
These eigenvalues are due to the three sand layers that are sandwiched between low permeability
shale layers. The convergence speed of the exact error ||xk − xtrue||2, however, is slow at the
early stages and hence the solution has a poor quality then. Further for the sake of illustration,
we plot the smallest eigenvalue of the preconditioned discretization matrix as a function of the
iteration number. Only after ’discovery’ of all the (small) eigenvalues convergence sets in. We see
that although the problem is small, convergence is poor. To illustrate the increase of speed of
convergence by the use of deflation, we present the results from deflation for the same problem in
Figure 5. Here physical deflation has been used, where only for each high permeability layer, i.e.
sand layer, that is surrounded by shale-layers a deflation vector is used. From the results it can
be seen that the smallest eigenvalue is of the order of 0.01 and that convergence of the residual is
monotonous. Further, the exact error converges fast from the start. The computation has been
finished in about 99 iterations instead 290 iterations in Figure 4. So it is clear that deflation
increases the convergence speed. Similar results can be found in the paper of Vuik et al [17].
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Figure 5: Convergence behavior of the deflated incomplete Choleski preconditioned CG-method
for 7 subdomains with large jumps of the coefficient k in (P3). The ||.||2-norm of the residual and
error have been presented. Here results obtained by the use of physical deflation are shown. The
number of elements is 3200 per layer.

4.1 Algebraic deflation vectors

We consider a comparison between deflation with algebraic projection vectors without overlap
and deflation with physical projection vectors when contrasts in the permeability are very high
ε = 10−7. The results have been plotted in Figure 5 and 6. From both figures it is clear that
algebraic deflation without overlap, where for each layer there is a projection vctor, requires fewer
iterations than physical deflation. In Table 1 we present the number of iterations needed and
computing time to obtain convergence for different number of elements per subdomain.

Table 1: Computation time and speed of convergence for physical and algebraic deflation vectors

for several mesh-sizes.

Physical deflation Algebraic deflation
Number of elements Time (s) Time (s) Nphys Nalg

50 0.02 0.02 16 15
200 0.07 0.07 28 26
800 0.46 0.39 52 44
3200 3.49 2.92 99 84
12800 24.20 18.72 173 140
41200 171.18 129.61 298 255

From Table 1 it follows that algebraic deflation vectors without overlap gives better convergence
than physical deflation vectors, especially when the number of elements becomes large. Further-
more, the CPU-time is larger for physical deflation vectors, which is due to solving the homoge-
neous partial differential equation when the projection vector is determined. Note, however, that
the number of projection vectors is larger for algebraic deflation.

From Figure 5 and 6 it can also be seen that the smallest absolute value of the non-zero
eigenvalues is less small when algebraic deflation is used. This is assumed to be the cause for the
increase of speed of convergence when algebraic projections vectors are used.
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Figure 6: Convergence behavior of the deflated incomplete Choleski preconditioned CG-method
for 7 subdomains with large jumps of the coefficient k in (P3). The ||.||2-norm of the residual
and error have been presented. Here results obtained by the use of algebraic deflation are shown.
Algebraic deflation is here by no overlap for the projection vectors. The number of elements is
3200 per layer.

For the sake of illustration we show the evolution of the residual, smallest eigenvalue and error
during the conjugate gradient iterations for the various implementations of deflation. In Figure 7
we show the convergence for a system of seven subdomains with 3200 triangular elements. Here
the projection vectors are chosen with complete overlap at the interface points. From Figures 6
and 7 we see that the choice of complete overlapping projection vectors gives a slower convergence
than non overlapping projection vectors. Subsequently, we show convergence with deflation vectors
chosen with average overlap at the interfaces in Figure 8. It can be seen that the smallest eigenvalue
for average overlap is in the order of 10−8 by which convergence is deteriorated. From Figures 6,
7 and 8 it is concluded that no overlapping deflation vectors give the best choice when contrasts
are huge. Furthermore, average overlap gives the worst convergence behaviour. This is further
illustrated by Figure 9 where the exact error is plotted for the different options of deflation during
the iterations. Computations with weighted overlapping projection vectors give the same results as
for no-overlap in the case of sharp contrasts in the permeability, which follows from the definition
of the several overlappings.

Similar computations, without sharp contrasts, ε = 1, are presented in Figure 10. This Figure
indicates that average overlap gives the best results, although the differences are not as striking
as for the case where there are large contrasts. Note that weighted overlap and average overlap
are equivalent here. This difference is small due to the absence of extremely small eigenvalues.
Further, the computations with complete overlap gives the poorest convergence. From the figures
and computations with weighted overlap, whose results are omitted in this paper, it is concluded
that weighted overlap always gives good convergence since it mimics no overlap when constrasts
are high and average overlap when constrasts do not exist. This is an important insight for future
parallelization of the deflated preconditioned conjugate gradient method. We further note that
computations with weighted overlap give the same results as for average overlapping for the case
of no contrasts of the permeability.

We conclude that weighted overlap is most robust and this will always give the best choice for
use in a ’blackbox’ algorithm.
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Figure 7: Convergence behavior of the deflated incomplete Choleski preconditioned CG-method
for 7 subdomains with large jumps of the coefficient k in (P3). The ||.||2-norm of the residual
and error have been presented. Here results obtained by the use of algebraic deflation are shown.
Algebraic deflation is here by complete overlap for the projection vectors. The number of elements
is 3200 per layer.
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Figure 8: Convergence behavior of the deflated incomplete Choleski preconditioned CG-method
for 7 subdomains with large jumps of the coefficient k in (P3). The ||.||2-norm of the residual
and error have been presented. Here results obtained by the use of algebraic deflation are shown.
Algebraic deflation is here by average overlap for the projection vectors. The number of elements
is 3200 per layer.
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Figure 9: Convergence behavior of the deflated incomplete Choleski preconditioned CG-method
for 7 subdomains with large jumps of the coefficient k in (P3). The ||.||2-norm of error is presented
for the various choices of deflation. The number of elements is 3200 per layer.
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Figure 10: Convergence behavior of the deflated incomplete Choleski preconditioned CG-method
for 7 subdomains without large jumps of the coefficient k in (P3). The ||.||2-norm of the error is
presented for the various choices of deflation. The number of elements is 3200 per layer.
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4.2 Parallelization

The deflated preconditioned conjugate gradient method is very suitable for parallelization. Paral-
lellization is still a topic of research. The first results are given here, which have been computed
for a layered domain as in Figure 1. In the first series of numerical experiments, we show the
convergence behaviour when the number of subdomains is increased, using a constant number of
grid points, so the total number of gridnodes increases. Subsequently, we show the convergence
behaviour for the case that the number of blocks increases such that the total number of gridnodes
remains constant.

4.2.1 Increase of the size of the domain of computation

Here we consider a rectangular domain Ωn that consists of the equisized subdomains Ω1, . . . ,Ωn,

Ω
n

= Ω1 ∪ . . . ∪ Ωn, Ω
n+1

= Ω
n ∪ Ωn+1. In this section we take the permeability constant over

the whole domain. Further we use algebraic projection vectors with average overlap. We compare
the results from the following computation methods:

1. Sequential ICCG without deflation (SICCG);

2. Sequential ICCG with deflation (SDICCG);

3. Parallel ICCG without deflation (PICCG);

4. Parallel ICCG with deflation (PDICCG).

The number of iterations needed for convergence is plotted as a function of the number of sub-
domains for all four approaches in Figure 11. The number of grid points per subdomain is 80
× 80. It is seen that the parallel ICCG (PICCG) requires more iterations than the sequential
ICCG (SICCG). This is a common observation. For both cases the number of iterations needed
for convergence increases rapidly as the size of the domain of computation increases. However,
for both deflated methods the number of iterations is lower than for the non-deflated methods.
Further, as the number of subdomains, i.e. the size of the domain of computation, increases the
number of needed iterations becomes independent of the number of subdomains.

As a further illustration we show the wall-clock time for the four different approaches in
Figure 12. The wall-clock time is measured on a Beowulf cluster. It can be seen from this
figure that the wall-clock time is significantly smaller for the deflated ICCG (SDICCG) for the
sequential computation. So, for sequential computations deflation is attractive to increase the
speed of computation. Further, parallellization gives a significant speed-up, but as the number of
subdomains increases, the wall-clock time continues to increase when no deflation is used (PICCG).
However, if deflation is used in the parallel computations, the wall-clock time decreases and even
becomes almost independent of the number of added subdomains. It is therefore concluded in
this section that deflation accellerates computation in both a sequential and parallel computer
environment, if the solution of an elliptic problem as in (P3) is computed.

4.2.2 Increase of the number of deflation vectors in a given domain

Given a square domain, we increase the number of deflation vectors. Further, we assume that the
permeability is constant over the whole domain. We use 150 × 150 elements over the domain.

We present the results of the computations in Table 1 where we use the methods SDICCG,
DICCG and PDICCG (sequential with deflation, parallel without deflation and parallel with de-
flation) for the cases of 3 and 6 blocks. The number of iterations for the convergence of the SICCG
method (sequential, without deflation) is 142 iterations.

Table 1: Number of iterations for a square domain with 150 × 150 elements.

Number of blocks SDICCG PICCG PDICCG
3 106 198 141
6 101 198 138
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We remark that we used average overlap for the projection vectors in the deflated method. From
the above Table it is seen that deflation gives a reduction of the number of required iterations for
the sequential computations (compare column 2 with the 142 iterations for the SICCG method).
Further, the number of iterations increases when a parallel method is applied. However, deflation
applied in a parallellized method reduces the number of iterations again. Hence, deflation is again
recommended to use in both sequential and parallellized computations.

5 Conclusions

We investigated various choices of deflation vectors, which are used in the Deflated ICCG method.
It is found that the choice of the deflation vectors at the interfaces plays a crucial role in the
convergence rate. Summarized, the following is concluded so far:

• As the domain is divided into more subdomains, the number of iterations needed for conver-
gence decreases. This effect has been observed for σ = 1. Furthermore, this observation does
not depend on the choice of the values of the deflation vectors at the boundaries. Further,
deflation makes the parallel preconditioned conjugate gradient method scalable: the wall-
clock time becomes invariant with respect to the number of blocks if the number of blocks
is increased and the number of gridnodes per block is constant.

• For the case of no contrasts of the permeability between subsequent layers, it is observed that
average overlap between subsequent deflation vectors is superior to no overlapping. Here the
use of complete overlapping projection vectors is unsuitable. Whereas, for cases with large
contrasts of permeability the use of average overlapping projection vectors is not suitable.
This is caused by the fact that the span of the projection vectors approximates the span of
the eigenvectors that belong to the small eigenvectors badly.

• We introduce the method of ’weighted overlap’, which mimics average and no overlap for
respectively the cases of no contrasts and very large contrasts of the permeability. It is
observed that this choice gives the best convergence behavior for both the presence and
absence of sharp contrasts until now.
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