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Some Numerical Aspects for Solving Sparse Large Linear
Systems Derived from the Helmholtz Equation

Y.A. Erlangga
September 23, 2002

Abstract

In this report, several numerical aspects and difficulties for solving a linear system
derived from the time-harmonic wave equations are overviewed. The presentation be-
gins with the derivation of the governing equation for waves propagating in general
inhomogeneous media. Due to the need of numerical solutions, various discretizations
based on finite difference are discussed. Some numerical methods which are consid-
ered applicable for solving the resulting large but sparse, indefinite, non-Hermitian
linear system are discussed, including some types of existing preconditioners to possi-
bly accelerate the convergence. Following demands for solving large linear problems
in parallel computers, domain decomposition methods are revisited, with particular
attentions on methods for solving the discrete Helmholtz equation.

Keywords: Wave equation, radiation condition, finite difference, Krylov subspace meth-
ods, multigrid, preconditioners, domain decomposition
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1 Introduction

This report presents some issues related to numerical solutions of the wave equation. More
specific, we describe methods that have been used to solve the linear systems obtained
from the discrete wave equation which can be used to describe scattering phenomena. In
particular, we concentrate on a time-harmonic wave equation represented by the Helmholtz
equation

Ap+k’p=Ff, inQeR3, (1)

with certain boundary conditions at 92 and varying k in space.

Prior to the discussion of the recent solution techniques to the wave equation, we
will present the derivation of the mathematical model for wave propagation. Boundary
conditions associated with the problem are also discussed. Since in computations we would
have to truncate the infinite domain into a finite region, the so-called radiation condition
will be our main interest. It will be treated in Chapter 2.

Further, we are interested in numerical solutions to the wave equation. That is, we
look for solutions of a linear system

Ap=f AcC™, (2)

derived from discretization of (1). Therefore, some numerical algorithms will be discussed.
In short, the discretization of the wave equation results in a linear system with a large,
sparse coefficient matrix which is non-Hermitian and indefinite for a large range of appli-
cations (Section 3). The standard direct solution methods will become inefficient to solve
such a system if some additional techniques are not incorporated (e.g. domain decom-
position). As alternatives, iterative methods can be used to solve the linear system. In
either direct or iterative methods, many competing algorithms are available and should
be studied. For the direct methods, the minimum degree algorithm and nested dissection
method will be discussed. For iterative methods, some methods developed based on Krylov
subspace methods will be discussed (Section 5). Since the iterative methods are only ro-
bust and efficient with a preconditioner, discussions on preconditioners appropriate for
solving the linear systems will be given. Preconditioners will be the subject of Section 6.
In Section 7, the domain decomposition method, which is a powerful technique for parallel
computing, will be revisited. Some concluding remarks on the methods for solving the
Helmholtz equation are given in Section 8.



2 The wave equation

In this section we derive the time-harmonic Helmholtz equation for a general 3-D inhomo-
geneous problem. At the end we discuss the boundary conditions. We derive the so-called
Sommerfeld boundary condition ensuring outgoing waves without reflections at the outer
boundary. The case with at least one Sommerfeld’s boundary condition at the outer
boundaries, we call exterior problem. If none of the outer boundaries is the Sommerfeld
condition we call it an interior problem. In practical applications, one should approximate
the Sommerfeld condition to a certain accuracy. The first order Sommerfeld condition is
the simplest one but less accurate for treating outgoing waves with an incidence angle.
This will be discussed together with higher order approximations.

2.1 The Helmholtz equation

The central equation that governs the acoustic waves is the Helmholtz equation. The
derivation of this equation will be the subject of this section. However, only a brief discus-
sion is given. We refer to Colton and Kress [13, 14] or Ghosh-Roy and Couchman [53] for
a more detailed derivation.

We consider a region € € R3 wherein sound waves of small amplitude propagate. In an
acoustic wave problem, we consider the local motions of particles in the medium while the
medium itself is motionless. We define field variables which are of our interest: pressure
p = p(x,t), particle velocity v = v(z,t), density p = p(x,t), and entropy S = S(z,t). If we
assume the medium to be inviscid and compressible, the wave motion can be represented
by Euler’s equation

1
atV + (V : V) VvV = —;Vp, (3)
the continuity equation
dip+ V- (pv) =0, (4)
and the equation of state
p="p(p.S), ()

with S follows the adiabatic hypothesis

When waves propagate through the medium, all field variables are perturbed from
their quiescent conditions. If we assume only small perturbations to occur due to wave
propagations, the perturbed field variables can be expressed as p(z,t) = po(x,t) + op(x,t),
plx,t) = po(x,t) + dp(z,t), S(x,t) = So(z,t) + 6S(x,t), and v(z,t) = vo(z,t) + ov(x,t),
|0v| < |vo|, where subscript ”¢” denotes the quiescent condition. These expressions can
be used to linearize Euler’s equation by inserting them to (2.1)—(2.4), giving the following
linearized equations:

1
atv = __Vp> (7)
Po
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Ap+ poV - v =0, (8)

dp
Op = (9_p |p0,soat/)- (9)

After differentiating (2.5) in space and (2.6) in time and substracting the resulting equa-
tions one to another, we obtain the following relation:

Oup = Ap, (10)
where A = 0,, + 0,y + 0,.. By making use of (2.7), we get

dp
a_p|P0,Soattp = Ap. (11)
If the process during the propagation of waves is isentropic (this can be justified since the
adiabatic hypothesis is imposed and, from Euler’s equation, no dissipative process occurs),
we can use the definition of the speed of sound
0
2=

- ap‘ﬂo,so (12)

to form the equation of wave motion,
1

We consider time-harmonic waves with time dependent pressure of the form
p(x,t) = pla)e™" (14)
where w > 0 denotes frequency. Eq. (2.11) reduces to
Ap(z) + k*(z)p(z) = 0. (15)

In (2.13) k is the wavenumber, defined as k = w/c. Because w = 27/T, where T is the
wave period, we find also k = 27/, where A = ¢T" is the wavelength. Eq. (2.13) is known
as Helmholtz’s equation expressed in pressure.

We can also derive the Helmholtz equation expressed in the velocity by using the
velocity potential relation v = 1/poV® and p = —0,®, where & = &(x,t) is the veloc-
ity potential. Substituting these relations to (2.11), we observe that ® also satisfies the
wave equation. Introducing time-harmonic waves with ®(z,t) = ¢(x)exp(iwt), w > 0,
Helmholtz’s equation can be expressed as (see [13, 14, 53])

A+ k2p = 0. (16)

This equation and (2.13) are identical, and represent wave propagation in a medium.
Since we are interested in pressure field solution, we will use (2.13) instead of (2.14). To
obtain the solution in ¢, one can transform p via the potential relations.
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2.2 Boundary conditions

Since we are faced with a partial differential equation, proper boundary conditions are
required. These boundary conditions should be such that the resulting problem is well-
posed. In general, we identify two types of boundary conditions. The first type is a
boundary condition for waves propagate to infinite distance. The second type relates to
the case of waves scattered by obstacles in a medium. These boundary conditions will be
discussed in what follows.

Conditions for a boundary at infinite distance can be derived by considering the phys-
ical situation at infinity. This can be viewed from the solution of Helmholtz’s equation
(2.13). We assume spherical symmetric waves propagating from a source or scatterer in
). Eventhough in most cases, at distance close to the source waves may be arbitrary
and more complex than just spherical waves, we assume that at infinity the waves will
be disentangled and become spherical. Under this assumption, the problem can be easily
evaluated if (2.13) is transformed to a spherical coordinate system, giving the relation

(rp)" + k*(rp) = 0, (17)

with the general solution of (2.15) to be

k in(k
plr) = AZST) | psinkr) (18)
r r
Combining with (2.12), the time-harmonic solution reads
ei(kr—wt) e—(z’kr—i—wt)
p(rit) =A*—+ B ———. (19)
r r

From quick inspection, for surfaces of constant phase it is easily deduced that the
first term on the right hand side describes waves propagating away from a scatterer, if
wt increases with time. Contrary to the first term, the second term represents waves
propagating from infinity. For physical reasons if the region {2 bounded by a spherical
surface I' = 0€) contains scatterer, the latter term should be removed. This is because
physics only allows outgoing waves. As a consequence, only the first term on the right
hand side remains in the solution. Since the remaining term contains the factor r ~!, the
amplitudes of the wave must also vanish at infinity.

However, the vanishing amplitude condition can not be achieved, not even if the spher-
ical surface goes to infinity. If we choose two spherical surfaces with radius R' and R?
enclosing the scatterers region with R? > R!, it is found that p® (z) = p® (x), exhibiting
an invariance property to the radius. [The proof can be found in Ghosh-Roy and Couch-
man [53]. There, they first calculate p®' () and pF’(z) using the Helmholtz representation
in the interior, and then subtract one from the other. The divergence theorem is applied
to the region between bounding surfaces I'g, and I'g,|. If there exists a nonvanishing con-
tribution in any spheres in the region, then this contribution will not vanish, not even if
R — oo. This fact again should be rejected for physical reasons.
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Scatterer

Figure 1: Schematic picture of spherical waves propagating from a scatterer.

The vanishing criterion ensuring p(r) — 0 as r — 0 is provided by the radiation
condition. For k > 0, if we differentiate (2.17) with respect to r, the following relation
results:

r(p' — ikp) = —p. (20)

If r — oo, p — 0. By this we can reformulate the problem as

lim (p' — ikp) ~ o(r™1); lim rp ~ O(1). (21)

r—00

In (2.19), symbols ‘o and ‘O* are Landau’s symbols defined as

~ Ola(x fl@)
f(a) ~ Olg@) = 5 = €
ol fl)
(@) ~ olg(e) =5 = 0.

(22)

with C being a constant. The first condition in (2.19) is the Sommerfeld radiation condi-
tion, whereas the second condition of (2.19) is the finiteness condition. (In some references,
a different terminology is used for the radiation condition, for instance, non-reflecting or
absorbing condition. In this report, we will use the term ”radiation condition” for the
boundary condition at infinity.)

The boundary condition in (2.19) is of first-order type and has a non-reflecting property
for normal incoming waves. In the case of waves with a finite incidence angle 6, waves are
still reflected back into the interior. However the normal speed of the reflecting waves is
very small and does not influence too much the solution far from the boundaries if the
boundaries are taken very far from the source or scatterer [20].

Engquist and Majda [20] (see also Bamberger, Joly, and Roberts [3]) derive higher order
radiation conditions that reduce the amplitude of the reflecting waves on the boundaries.
Instead of looking at families of solutions (2.13) in the form of (2.12), a more general



solution can be constructed for a 2-dimensional wave as
plx,y,t) = / / el VE R o w)p(0, €, w) DEOw (23)

where (w, ) are dual variables to (y,t). Here, we position the boundary at x = 0 and let
waves travel from x > 0 to the left. p is the Fourier transform of p. A condition for perfect
wave annihilation on the boundary can be determined by differentiating (2.21) in x giving,

Op — // eVEFWY /€2 — )2pp OE w = 0. (24)

Using the pseudo-differential operator after Nirenberg (see [20]), the radiation condition
can then be written as

(9= (90 v/ = Dy ) Plamo = 0, (25)

: (0~ ieVT=/EF) =0 26)

If a zeroth order approximation is used to the term under the square-root, i.e., 1 —
(w/€)? =1+ O(w?/€?), and knowing that i¢ is related to d;, a radiation condition based
on the first order derivative can be determined, namely

(O = 0¢)pla=o = 0. (27)

A higher order approximation can be applied to the square root term: 1 — (w/€)? =
1—1/2(w/&)*+ O(w?*/€*). This gives

1
(arat — Ou + éamz) Pla=o =0, (28)

which is also a radiation condition but with a second order derivative.
If the second Padé approzimation is used to approximate the square root term of (2.24),
a radiation condition based on third order derivative can be found, namely

(Ottﬁx — i@xﬁyy — Ot + gﬁtﬁyy) Ple=o = 0. (29)

In [20] it is shown that all higher radiation conditions (2.25), (2.26), and (2.27) are
perfectly non-reflecting for normal incoming waves, well-posed, and have a local property.
The latter means that solutions on the boundary at the next time level can be computed
without having all values on the boundary at the previous time level. This property
is beneficial in terms of operation count. Numerical experiments also reveal that the
amplitude of the reflecting waves can be reduced up to only 0.5 % for (2.27) in case of
6 = 45° incident waves.



Physical
Domain X y

damping zone
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Figure 2: Computational domain with perfectly matched layer (damping zone). Q is a
quality variable.

An even more accurate non-reflecting condition is proposed by Clayton and Engquist [11].
By treating the boundary from the solutions of the paraxial equation (by assumming har-
monic solutions to the Helmholtz equation) and by approximations to it, a collection of
non-reflecting conditions is found; see [11]. This boundary condition turns out to be more
effective than the previous ones in removing reflections and has a local property.

A different boundary treatment is by enlarging the computational domain next to the
outer boundary of the physical domain (see fig. 2.2). In this additional domain (termed as
damping zone) a "reducing complex velocity condition” is imposed linearly. Observation on
the early numerical results (see [7, 43, 38, 39]) show ”perfect” penetration of the outgoing
waves. This idea was firstly introduced by Berenger [7] for Maxwell’s problem (so-called
Perfectly Matched Layer (PML)) and was subsequently implemented for the Helmholtz
equation by Liao and McMechan [43] and Kim [38, 39]. From a numerical point of view, this
property can help in reducing the number of iterations necessary to reach a solution [38, 39].

Even though it is tempting to implement the high order radiation condition at infinity,
the choice of radiation condition is not so straightforward. Several numerical issues should
be taken into account before choosing the radiation condition. These include the type of
discretization on the boundaries, the operation costs due to number of points involved, or
the scenario for solving the resulting linear system. For the latter, if we apply the separation
of variables method as a preconditioner, the use of the first-order radiation condition is
most attractive, since the separation of variables approach can not be implemented if high
order radiation conditions are imposed (see Plessix and Mulder [52])

In the scattering situation by obstacles inside the region €2, additional boundary condi-
tions representing the presence of the obstacles should be added. Consider an impenetrable
obstacle D in Q with the boundary I'y = dD. We distinguish two types of boundary con-
dition commonly used for scattering problems. In the case of sound-soft obstacles, the
velocity of the total wave (i.e. the sum of incoming wave ¢’ and scattered wave ¢*) van-
ishes at the boundary I'y, i.e. ¢ = 0 on I';. This condition is known as the Dirichlet
boundary condition. For the case of sound-hard obstacles, the condition on I', leads to a
Neumann boundary condition d¢/0v = 0 on I'y, imposing a condition of a vanishing normal
velocity on the scatterer surface. A combination of both boundary conditions with at least
one radiation condition gives a unique solution. For the proof, see for instance [13, 14, 53].
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2.3 Helmholtz’s problem

We now define our problem as follows. Let Q € R? be the region enclosing the medium
with scatterers and boundary I' = 0f2. Further, let v denote the unit outward normal to I'.
We introduce the Helmholtz operator £ = A+ k?, where k = k(z,w). Then, the Helmholtz
problem for wave propagation in an inhomogeneous medium can be defined as follows:

Find the total field p such that
Lp(z) = f(z,w) ing,

(a% - ik;) p(z) =0 onT = 90, (30)

In (2.28), f is a given source term.
For the case of impenetrable obstacles D with the boundary I'y = 9D in €2, the problem
can be defined as follows:

Find the total field p such that

Lp(x) = f(z,w) in €2,
(631/ — ik(g;,w)) p(z) =0 onI' = 01, (31)

Either Neumann or Dirichlet b.c. onT'.

Problems (2.28) and (2.29) become indefinite for high wavenumbers, having both neg-
ative and positive real eigenvalues. For the Dirichlet problem, Singer and Turkel [56] show
that the largest eigenvalue of the continuous problem (2.29) is A = k% — 2. So, the prob-
lem becomes indefinite for k& > /2. For the Neumann problem, the largest eigenvalue is
A = k? — 5/4. Therefore, if k > v/5/2 the problem becomes indefinite.

Problems (2.28) and (2.29) can be solved by an integral equation method by trans-
formation into a Fredholm integral equation [4] (of the first or second kind). Colton and
Kress [14] give in-depth discussions about the use of the integral equation in Helmholtz’s
problem. In the discretized form, the Fredholm integral equation results in a large full ma-
trix which requires the inversion for resolving the solution. This is considered too expensive
in many practical problems. Furthermore, for large k the solution becomes oscillatory. An
asymptotic method can be used to resolve the solution.

In this research, we aim at numerical solutions of the Helmholtz problem (2.28), i.e.,
high frequency waves propagating in an inhomogeneous medium. The numerical solution
is resolved from the linear system, resulting from a so-called ”direct” discretization of the
continuous Helmholtz equation. In many practical applications, the linear system produced
is very large. This requires special method(s) to solve the linear system efficiently in
reasonable accuracy.
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3 Discretization

To obtain a suitable equation for numerical computation, discretization must be applied to
(2.28). Several discretization schemes are available and can be used to solve the problem.
In general, we categorize them as finite difference and finite element discretizations. In
this section, we discuss the finite difference discretization.

3.1 Second order accurate finite difference

Let us consider again problem (2.28). The 3-D domain of interest {2 with boundary I" = 952
is discretized on an equidistant grid with L points in x, M points in y, and N points in z,
ie.
’ r=x9+1Ax, [=0,1,---,L
Ym = Yo+ mAy, m=0,1,--- M (32)
Zn =20 +nlz, n=0,1,---,N.
We use a standard finite difference stencil:

Div1 — 2p1+ iy
D .p(x;) = 33
p(a) — (3)
derived from Taylor’s expansion to approximate the second order derivative in the first
equation of (2.28) at z;. For sufficiently smooth p in 2, we can express the second order

derivative as

axwpl - Dmmpl + O(AZL’2), (34>

which means second order accuracy in space. This formulation is called here the point-wise
representation.
In the interior points, discretization results in the following equation, for the 3-D case:

Pl+1i,mn — 2pl,m,n + Pi—1,mn Piom+1n — 2pl,m,n + Plm—1,n

- -
Az? Ay? (35)
pl,m,n 1~ 2pl,m,n + pl,m,n—l
+ - AZQ + kl%m,npl,m,n - fl,m,n'
After applying (3.4) to all points in the interior of €2, one obtains a linear system
Ap =1, (36)

where A is (LM N) x (LM N) matrix having seven non-zero diagonals. The non-zero
diagonal elements are given by

2 2 2
M&@z—(&ﬁ+Af+A%)+ﬁmﬁWm
1
A(d.d+1) = A(d —1,d) = 5. -
1
1

Ald,d+ L x M)=A(d—-LxM,d) =-—

12



and
p(d> = Pim,n,

f(d) = fl,m,n'

In (3.6), Yy is determined by the position of the points in the region. For interior points,
Y. = 0. For points at the boundary, the expression depends on the type of boundary
discretization. For the first-order radiation condition, the following expression for v,. can
be used, [52]

(38)

( p(xlvyM7zn) 3 — -
1+ik(x07ymyzn)7 lfl - 07

p(folvymyzn) : _ .
1+ik(vaym7Z'n)’ lfl - L’

P(T1,Y1,2n) : _ 0.
_ ) 1+ik(z,y0,2n)° ifm = 0; 39
Yo = p(T1,ym—1,2n) : ( )
FebIM=brn) -y = M
1+ik(zy,ynr,2n)° ?
p(x1,Ym,21) 1fn — O

1+ik(zy,ym,20)’

p(xhyszN*l) 3 J—
\ 1+ik(z1,ym,2n)’ ifn = N.

The total number of nonzero elements of A is 7TLM N of (LM N)? total entries, indicating
sparsity.

3.2 Fourth order accurate finite difference

A more accurate approximation for the second order derivative can be constructed to (2.28).
For instance, the following fourth-order accurate stencil can be applied to discretize (2.28):

D,.p = Opap + 11—2Ax28mmp + O(A:I:4). (40)

This expression can be obtained if we keep the fourth-order term in Taylor’s expansion
and replace the values p;i1, p, pr—1 with (3.2). Because of (3.3) we find

Substituting (3.10) into (3.9) we get
1 -1
= (14 508D ) Dusdiap +0(0a"). (42)

Inserting (3.11) to the first equation of (2.28) we find, for the 3-D case,

wa Dyy DZZ 2
2)p=7, 43
(1 T ITA2D,, 1+ IAD, 11 LAZD. )p ! (43)

or
(Dl + D2 + Dg)p -+ (1 + K1 + K2 + Kg)k2p = (1 + K1 + K2 + Kg)f, (44)

13



where

Dl :Dmc + Dyy + DZZ7

D, = 12((Ax + AY?) Dy Dy + (Aa? + AZ) Dy Dt

(Ay2 + Azz)Dnyzz)

D3 = 1 4 1 (A" Ay® + Az’ Ay® + Ay*Az*) Doy Dy D..., (15)
K, = 12 (AﬁDm + Ay’Dy, + AZ*D..),

Kz =1 44 (A2?Ay* D, Dy + A2*AzDyy D + My*Az2Dy, D...) |

K; :—Ax2Ay2Az2DmDnyzz.

1728
This approximation is known as the Padé approzimation (see Singer and Turkel [56], Harari
and Turkel [34]).

Another type of fourth-order accurate stencil for discretizing the Helmholtz equation
can be derived by differentiating the Helmholtz equation twice in space. This can be
justified since the solution p satisfies the Helmholtz equation. By doing this, we get, for
the 1-dimensional Helmholtz equation,

amrrmp + kzamcp - amrf (46>

Inserting (3.15) for the fourth-order derivative term in (3.9), we find

2

Ax
) Opap + B0}

k2 Ax?

= Opaf + O(AZ?). (47)

D:c:cp = (1 -

If we further estimate 0., f using second-order approximation (3.3), expression for the
second-order derivative estimate can be obtained, i.e.,

k2 Ax? -1 Ax?
OpeD = (1 — TDM) D,. (p - Tf) + O(Ax4). (48)

This stencil is also fourth-order accurate. Using this stencil for 3-D cases, the discretized
Helmholtz equation reads

(Dl + Dy + D3)p +(1+ K+ Ky + f(s)k2p =1+ Fy+Fy+ F3)f> (49)

14



where R
Dl :Dmc + Dyy + DZZ7
- 2
Dy =—((Az® + Ay*)D,, D, + (Ax* + A2*)D,, D..+

12
+ (Ay2 + AZQ)Dnyzz)>

- k4
Dy =—Az*Ay*A=*D,, D, D

3 114 x Yy z zxldyyld 2z,

2

Ky =— E(A$2D:c:c + ACU2Dyy +A2°D..),

- k4
K2 :m(AxQA?fDmDyy + Ax2A22D:c:chz + Ay2A22Dnyzz)’ (50)
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In both 3D fourth-order discretizations, at most 27 points are required in the stencil.
The linear system obtained from these discretizations has 27 nonzero diagonals, giving the
total nonzero entries of 27TLM N.

3.3 Second-order versus fourth-order accurate stencil

It seems natural to expect more a accurate solution from a higher order discretization for
a given mesh size. However for Helmholtz problems, this is not always the case.

Singer and Turkel [56] make some comparison tests on second-order and fourth-order
accurate stencils for solving the 2-D Helmholtz equation. The tests were performed for
different values of k. Numerical experiments were performed with given source term f
that allows the exact solution to be obtained analytically. The numerical solutions were
then compared to the exact solution. The results show that for a low value of k, fourth-
order accurate stencils give better accuracy than the second-order one. However, whenever
k is sufficiently large, the second-order accurate scheme becomes more accurate compared
to the fourth-order on coarse grids. The fourth-order accurate schemes gain more accuracy
if a smaller mesh size is taken. Theoretically, for a second-order stencil we can estimate
that the necessary mesh size in each direction is proportional to 1/k with ten mesh points
needed to resolve one wavelength. In 3-D cases, approximately O((10k)3) mesh points are
needed to resolve the solution [19]. For large k, if fourth-order stencils are used the order
may be larger than this estimate, and the size of the linear system can be very large for a
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sufficiently accurate solution. From this view, the second-order stencil may become more
attractive. (Furthermore, the number of nonzero diagonals is smaller for the second-order
stencil than the fourth-order ones, implying that storage issues for the first stencil may not
be as critical as for the latter.

In problem (2.28), no restriction is made with respect to k in deriving the Helmholtz
equation. In general, £ may be complex. If £ € C, the waves are damped as they travel
away from the source. This is the natural case. In constrast, the radiation condition in
Chapter 2 was derived under restriction that k& > 0 is real. If we stick to this assumption
(which is correct for approximation), discretization in the interior of €2 leads to a real valued
linear system. However, imposing the radiation condition on the boundaries results in a
complex valued A in the resulting linear system. Matrix A of (3.5) is therefore complex and
symmetric discretized using either second- or fourth-order stencils. The only contribution
of complex values is from the boundary condition. For high values of k, the linear system
becomes indefinite (see Plessix and Mulder [52], and Elman and O’Leary [18]). We call a
linear system to be (positive) definite if xT Ax > 0 for x # 0. For definite matrices, many
nice algorithms to solve the linear system are available. However, these nice algorithms
typically fail to work for the indefinite linear system or are very slow to converge. This is
why in general no algorithms are available to solve the Helmholtz equation with unrestricted
value of k with a similar efficiency as for the symmetric possitive definite (SPD) cases.

In [56] an eigenvalues analysis for the second- and fourth-order discretized Helmholtz
equation is derived. Since A is large and sparse, solution methods which exploit sparsity
of A are desirable. Standard direct methods may become inattractive.
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4 Direct methods for solving discrete Helmholtz equa-
tions

In general practice, one can solve linear system (3.5) with coefficient matrix A by imple-
menting either direct or iterative methods. In direct methods, one tries to solve a linear
system in the spirit of the Gauss elimination. Since the standard Gauss elimination is
extremely expensive for solving very large, sparse matrices, it becomes prohibitive to di-
rectly use such a procedure. However, in the case of sparse matrices modifications to the
standard Gaussian elimination can lead to an efficient algorithm and also a reduction of
the required storage (at least for the 2-D cases).

In this section, we will first discuss the basics of Gauss elimination for solving a linear
system and the equivalent formulation of the coefficient matrix A in a simpler-to-solve
form, the so-called Cholesky factor. Since we are concerned with the sparsity of the matrix
A some additional algorithms will also be revisited, which are in practice often used.
These include numbering scenarios (reordering) and storage issues. We refer to [28] and
the references therein for a more detailed discussion.

4.1 Gauss elimination

Consider a general linear system
Ax =b. (51)

Solutions can be obtained by implementing the Gauss elimination algorithm, i.e. by reduc-
ing A into an upper triangular matrix followed by back substitution. The basic Gaussian
elimination algorithm is explained below.

Algorithm 4.1 Gauss elimination

1. Fork=1,2,--- ,n—1do
2. if ap, = 0 pivot

3. fori=k+1,---,ndo
4. a:aik/akk

5. For j=k,--- ,ndo
6 Q5 = Q45 — QAL
7 enddo

8. enddo

9. enddo

Algorithm 4.2 explains backward substitution to find the solution = from the upper trian-
gular matrix resulted from the algorithm 4.1.

Algorithm 4.2 Backward substitution
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1. Fori=n,n—1,---,1do
3. Forj=i+1,---,ndo
4. T, = T; —CLZ'jbj
5.  enddo

6. enddo

The algorithm is exactly terminated after a finite number of steps and if the matrix
A is invertible the solution exists. Assuming the matrix A is full, the number of storage
needed to store the matrix A, «, and b, are n(n + 1). The operation counts required to
obtain the solution is of order of 2n3/3.

A more efficient way to solve (4.1) can be designed for a symmetric positive definite
(SPD) matrix A, i.e., if A satisfies

Ai5 = Ajg, 27]21727 7N

(52)
xTAx > 0, for any x # 0.

For such a matrix, the following theorem is always satisfied.

Theorem 4.1
If A is SPD then it has a unique triangular factorization LLT | where L is the lower trian-
gular matriz with positive diagonal entries.

The factorization A = LL” is called the Cholesky factorization. Substituting the Cholesky
factorization into (4.1), the following linear systems can be solved sequentially to obtain
the solution x:
Ly = b,
(53)
L'x =y.
Both linear systems are easier to solve than the original one, e.g., by applying forward and
backward substitution to the first and second equation respectively. Using either forward
or backward substitution requires operation counts of order n2. The following describes the
Cholesky factorization of an SPD matrix A [28], the so-called bordering method. Suppose

A is partitioned as
M u
A= (3. 5

The Cholesky factorization of A is given as
_ (Ly 0\ [Li, w
A= DY) )

w=Lyju, t=(s—wlw)/2 (56)

Alternate algorithms for finding the Cholesky factor are the outer product form and the
inner product form; see [28].

where
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4.2 Matrix reordering

Since discretization of the Helmholtz equation results in a coefficient matrix A which is
sparse, it becomes important to maintain this sparsity. Unfortunately, a direct use of the
Cholesky factorization typically leads to fill-in, i.e. adding a number of nonzeros in the
factor L.

This is something one should avoid since such fill-in increases the storage requirements
and the number of operations. By introducing permutations, the fill-in can be kept min-
imum after factorization. If we introduce a permutation matrix P to the linear system
(4.1) so that

PAP"Px = Pb, (57)

we factorize the permuted system to obtain the following system
LL % = b. (58)

It is practically impossible to find permutations which are favorable for all sparse ma-
trice cases. Introducing permutations, however, can be regarded as introducing a reordering
of the matrix. From this point of view, one can set heuristic reordering methods without
having to find specific permutation matrices.

Standard reordering techniques are the band and the envelope reordering. In the band
reordering, the matrix elements are reordered in a way that the off-diagonal elements are
positioned as close as possible to the diagonal. This reordering is easy to implement and
sometimes efficient. However the band reordering exploits only the sparsity of the matrix
outside the bandwidth. If the matrix has a very wide bandwidth, the band method becomes
inefficient.

An alternative is the envelope method which also exploits sparsity inside the band.
Falling into this category is the Reverse Cuthill-McKee (RCM) method. Following the
idea of Cuthill-McKee reordering, if a labelled y and an unlabelled z are a pair of connected
nodes, the node z should be reordered directly after y reordering to minimize the bandwidth
of the matrix. In the RCM method, renumbering is done by reversing the Cuthill-McKee
reordering. This step is easily invoked by the statement y; = z,_;11, 7 =1,2,--- ,n. The
RCM method is found to be always superior over the original Cuthill-McKee even though
it never reduces the bandwidth of the matrix.

The envelope method usually becomes even more superior if a starting node (or root) is
appropriately chosen. One defines distance d(V,y) as the length of a shortest path joining
two nodes z and y in the graph G4(V4, E4) of the matrix A. The appropriate starting
node is often the one with maximum distance. Therefore, problems of finding the starting
node can be viewed as finding a pair of nodes having maximum distance. The rooted level
structure can be used to find a so-called pseudo-peripheral node [28].

4.3 Minimum degree (MD)

It has been noted earlier that it is not trivial to obtain an appropriate permutation matrix
A. In order to minimize fill-in, a heuristic strategy which is based on the elimination of
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the given graph can be designed. The first type of ordering within this category is the
so-called minimum degree algorithm (MD). The first description of MD and its use is due
to Tinney and Walker [61]. In the MD, ordering is done by first selecting the vertex in the
graph G which has the smallest degree. (Degree of the vertex x;, deg(i) is defined as the
number of neighbors). This vertex is numbered next in the ordering and then eliminated
from the graph G.

The MD algorithm is described below for a given unlabelled graph G = (V, E); see [28].
In line 2, the search for a minimum-degree vertex is performed. This vertex is then elimi-
nated to form the elimination graph.

Algorithm 4.3 Minimum degree algorithm

Let Gy = (V, E)) be an unlabelled graph.

1. Instialization: ¢ +— 1

2. Minimum degree selection: In G;_1 = (V;_1, E;_1), choose a node z; of minimum degree
in G;_1

3. Graph transformation: Form new elimination G; 1 = (V;_1, E;_1), deleting node z;
from Gz‘—l

4. Loop or stop: i «— i+ 1. If i > |V, stop. Else, go to 2.

The |V in Algorithm 4.3 indicates the size of V7. In this basic algorithm, an elimina-
tion graph is constructed on each loop and the nodes are renumbered. This process is very
costly and makes the algorithm inefficient. It is apparent that in minimum-degree-type re-
orderings, the most expensive operation takes part in the update step [44]. Improvements
are proposed by interpreting the construction of the elimination graph from a reachable set
point of view. Representing in this set a modified algorithm can be stated which is only
requiring information of the original graph. The degree then requires update only in the
adjacent nodes of the eliminated one. It is also possible to improve the algorithm by elim-
inating two or more nodes having the same reachable set with respect to the elimination
(or indistinguishable nodes).

One of the most popular algorithms falling into the MD-type ordering is the multiple MD
reordering (or MMD) due to Liu [44]. In order to reduce operations in the degree update
step, updating is only performed after several node eliminations. This process results in
a different minimum reordering. However, it is very effective in reducing operations and
in many cases it gives better reordering quality (less nonzero elements) than the standard
MD algorithm. Another popular variant is the Approximate MD ordering (or AMD) after
Davis, Amestoy, Duff [15]. As an improvement to the standard MD ordering, the AMD
offers faster ordering and better ordering quality. However, no significant improvements
are indicated from the results compared to the MMD ordering in terms of fill-in.
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4.4 Nested dissection (ND)

Since we want to exploit the sparsity of matrix A, it is expected that the number of nonzero
elements is preserved after reordering. If A is permuted using a permutation matrix P,
the nonzero structure of A and PAPT may differ after permutation. The ideal problem
of minimum reordering is given as follows.

Inz(F(P*AP*"))| = min  |nz(F(PAPY))| (59)

where F(X) indicates the fill-in of A. In Eq. (4.9), nz(A) means the number of nonzero
elements of matrix A. However, nonzero preservation is hard to fulfill during reordering.
Rather than trying to preserve the nonzero size, one applies a weaker constraint, i.e. to
find a permutation P* which gives an acceptable small number of nonzero elements.

For matrix A symmetric positive definite (SPD), the nested dissection method, see e.g.
George and Liu [28], can be used. This method offers advantages in comparison with the
minimum degree algorithm, in terms of speed and storage requirement. This method also
attemp to minimize fill-ins which is usually suffered by many direct solution methods.

The idea underlying the nested dissection method is explained as follows. Let G4 be
the undirected graph of symmetric coefficient matrix A. We consider a separator S in
G4 which disconnects the graph into two parts whose node sets are C'' and C2?. The
nodes in separator S are numbered following those in C'* and C?, introducing a partioning
of the ordered matrix. Since we try to preserve as much as possible nonzero elements,
the separator plays an important role during ordering; a proper choice of separator may
preserve zero elements in matrix A. A similar process of ordering can be done recursively
to the submatrices by choosing another sets of vertices

ST CRLj=1,2. (60)

The process is repeated until the components could not be dissected further.

The key feature in the ND method is finding a separator which disconnects a given
grids into two pieces with approximately equal size. Several methods have been proposed
for finding the separator; see [28].

4.5 Direct methods for the discrete Helmholtz equation

Plessix, Mulder, and Pratt [51] and Plessix and Mulder [52] note that the nested dissection
method can be applied to solve the linear system at efficient cost. However, such application
is restricted to 2-D cases. A case of 1000x 1000 grid points has been tested on a workstation.
In 3-D cases, problems arise in reordering because the amount of fill-in is too large.

It should be noted that the minimum degree and nested dissection method are de-
rived mainly for symmetric positive definite matrices, for which the Cholesky factorization
exists and is unique. For the Helmholtz equation, however, this necessary condition is
hardly satisfied except for very low frequency (or small wavenumber cases). Unfortunately,
applications are typically defined beyond this low frequency.
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For high aspect ratio grids, often the MD and ND reordering do not consistently pro-
duce good quality orderings. Ashcraft and Liu [1] show that the good performance of ND
ordering degrades in the case of high aspect ratio grids. In such a case, the multisection re-
ordering can be implemented, showing performance consistency (and therefore robustness)
in high aspect ratio grids.

A combination method is proposed by Hendrickson and Rothberg [35] to improve the
operation and quality of nested dissection orderings. The method is a hybrid of the ND
and MD algorithm. Starting with constructing a compressed graph, the incomplete nested
dissection is applied, i.e. the ND algorithm is used until fairly small sections have been
obtained. To find separators, a direct multilevel vertex separator approach is used. Local
improvement to the separator is done using a vertex Fiduccia-Mattheyses graph parti-
tioning. Following this, the MD is invoked on the small sections, improving the ordering
obtained from the ND. Implementation results show, in general, a gain of 10% and 39%
reduction of operations during ordering can be obtained compared to the ND and MD
alone respectively. Further, the nonzeros reduces about 10% compared to the ND and 17%
compared to the MD alone. However, for 3-D cases, it is expected that the cost to solve
the linear system remains unacceptably large.
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5 Iterative methods for solving discrete Helmholtz
equation

It has been cited in the previous section that application of the nested dissection method
on Helmholtz problem is restricted to the 2-D case. The problem lies in the fact that
reordering leads to fill-in, reducing the method’s efficiency when implemented in 3-D.

Solution methods with an acceptable efficiency can still be pursued by implementing
iterative methods for Ax = b. Recently, several iterative methods have been developed.
The underlying concept in deriving iteration methods is the so-called Krylov subspace
method. In this section, we will first describe some iterative methods relevant to problems
at hand. Since we aim at the numerical solution of a complex symmetric, non Hermitian,
and (highly) indefinite linear system, we will consider iterative methods feasible for this
linear system. We can list, e.g., Conjugate Gradient (CG), CGNR, Generalized Minimal
Residual (GMRES), BiCGSTAB, COCG, Quasi Minimum Residual (QMR) as the candi-
dates. We include also the conjugate gradient algorithm since, eventhough it is seemly not
applicable to our problem, this algorithm is of importance as a basis for deriving several it-
erative methods. In the early research on the numerical solutions of Helmholtz’s equation,
the conjugate gradient method gained popularity due to its better efficieny in comparison
with direct methods. However, modifications should be done to the standard conjugate
gradient method as, for instance, proposed Bayliss, Goldstein, and Turkel [4].

In practice, standard iterative methods are not sufficiently efficient for solving a sparse,
large linear problem without a modification of the linear system. It is known that in
order to obtain a very efficient algorithm, the linear system should be transformed into a
formulation which is similar and, therefore, gives the same solution but is much simpler to
solve. This process is called preconditioning. Without preconditioning, iterative methods
are not so attractive. We will deal with preconditioners in the next section.

For simplicity and to avoid ambiguity, we redefine the linear system (3.5) with new
variables. All related variables with (3.5) are no longer used throughout this section. Let

us consider the linear system
Ax=b, AeC™" (61)

where A is an n X n matrix. The matrix A is sparse and assumed in general to be complex.
We intend to solve (5.1) iteratively.
For general discussions, we refer to [2, 9, 32, 33, 54].

5.1 Krylov subspace method

The iterative methods explained in the subsequent subsections are basically developed from
constructing consecutive iterants on Krylov subspaces, i.e., subspaces of the form

K7 (A, 1o) = span{ry, Arg, A’rg, -, AT rp}. (62)

The dimension of K7 is equal to j and increases by one at each step of the approximation
process.
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The idea of Krylov subspace methods can be outlined as follows. For an initial solution
X, approximations to the solution x are computed every step by iterants x; of the form

x; € X0+ K/ (A, rg), j > 1. (63)
Krylov subspaces K7 are constructed by basis vy, -+, v, where
Vj: [Vl,"' ,Vj] E’Cj. (64)

Defining residual r; = b — Ax;, application of condition (5.2) gives an expression for the
residual at j-step,
r; =19 — AV,y,, (65)

where y; € C and x; = x0 + V,y;. From (5.5) we can observe that Krylov subspace
methods rely on constructing basis a V; and a vector y,. In general, we identify two
general methods can be used for constructing basis the V;: Arnoldi’s method and Lanczos’
method. y; can be constructed by the residual projection or the residual norm minimization
method.

5.2 Conjugate Gradient (CG) method

We consider the matrix A in Ax = b to be a symmetric and positive definite (SPD)
matrix. In the CG, we want to construct a vector x; € K/(A, rg) such that ||x — x;||4 is
minimal. For this purpose, the vector x,; is expressed as

Xj+1 = X +a;P;; (66)
where p; is the search direction. The residual vectors satisfy the recurrence

rji1 =r; +a;Ap;. (67)
For r;’s to be orthogonal, it is necessary that (r; — a;Ap;, r;) = 0, resulting in

ey o

Since the next search direction p;, is a linear combination of r;,; and p;, i.e.,

Oéj:

Pji1 =Ty + ﬁjpja (69)

the denominator in Eq. (5.8) can be written as (Ap,,p; —fj-1P;_1) = (Ap;, p;), knowing
that Ap; is orthogonal to p,_;. Because p,,, is also orthogonal to Ap;, by making use of
Eq. (5.9), §; can be written as

(Tjy1,Tj41)
R S b S b VA 7

The algorithm for CG method is given as follows.
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Algorithm 5.1 Conjugate Gradient Algorithm

1. Compute ry := b — Axg, py := T

2. For j =0,1,---, until convergence Do:
aj = (r;,r;)/(Ap;, p;)

4 Xjr1 ‘=X + Q;P;

) rii 1 =7r; — OéjApj

6. B = (rjs1,1501)/(xs,r5)

7

8.

w0

Pji1 = Tj1 + 5;p;
Enddo

CG algorithm works well for an SPD matrix with real coefficients. With a suitable
choice of preconditioner, the algorithm runs very efficiently. The CG method encounters
problems when A is indefinite, i.e., when matrix A has real positive and negative eigen-
values. Paige and Saunders [49] show that if definiteness is not guaranteed, the matrix
T, = V]TAVJ- is possibly singular or near-singular. Since T; is required to determine z;
(i.e. x; = V;T,Be;), at each sequence z; is poorly determined.

To overcome the indefiniteness of A, and if A is nonsymmetric, modifications are intro-
duced to the standard CG algorithm. These lead to several variants of CG, for instance:
CGS and BiCGSTAB. These variants preserve not only the nice property of the CG algo-
rithm but also extend the methods to be able to solve non-SPD matrices. Differently, by
transformation into the normal equation, the CG algorithm still works nicely to solve (5.1)
as reported in [4]. We will discuss this approach in the next subsection.

5.3 CGNR

For nonsymmetric, indefinite linear systems the CGNR can be used. Consider the linear
system

ATAx = A"b. (71)
Applying CG to this system we need to compute the residual z;1, = z; — OszTApj.
Actually we can compute this residual in two steps: 141 :=r;—a;Ap; and z;,, = Alrj,,.
The CGNR algorithm is given as follows, according to [54].

Algorithm 5.2 CGNR algorithm

1. Compute rg :=b — Axy, 2o = ATy, Py ‘= Zo

2. For j =0,1,---, until convergence Do:
3. w;=Ap;

4. «a;:=(z;,2;)/(Ap;, Ap,)

9. Xji1:=Xj + ayp;

6. ri 1 =7r; — OéjApj

7. Zj1 = ATrj+1

8. 0= (2j11,2i11)/(2,2)
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9. Pju1 =z 1 Gp;
10. Enddo

CGNR is considered the simplest algorithm to solve nonsymmetric or indefinite lin-
ear systems. Expression (5.11) ensures that the related linear system is symmetric and
definite. However, the convergence becomes slow in comparison with the original lin-
ear system due to the square of the condition number. In line 4, a can be written as
a; = (z5,25)/ (P, ATApj) which is the direct result of applying CG algorithm to (5.11).
However, algorithm using this formulation is less stable than the algorithm 5.2.

5.4 Generalized Minimum Residual (GMRES) method

The GMRES method is of Galerkin type and minimizes the residual norm over the Krylov
subspace.
The GMRES algorithm is given as follows (see Saad [54] and Saad and Schultz [55]).

Algorithm 5.3 Generalized Minimum Residual Algorithm

1. Choose xy. Compute rg = b — Axq, 3 := [|ro||2, and vy :=1(/0

2. Forj=1,2,--- mdo:

3 Compute w; := Av;

4 Fori=1,2,---,m do:

5. hz’,j = (Wj,VZ'), W, = WwW; — h@jVi

6. Enddo

T hipay = llwille.

8 Vit = Wi/l

9. Enddo

10. Compute y,, the minimized of ||Be; — H,y|l2 and x,, = Xo + V¥,

Line 2 to 9 represent the Arnoldi algorithm for orthogonalization. In line 10, we define
a minimalization process by solving a least squares problem

J(y) = |Ib — Ax]),, (72)

where x = xq + V}y is any vector in K¥. Except for line 10, the GMRES algorithm is
almost identical with the Full Orthogonalization Method (FOM). (In FOM, we compute
y,, = H_'(Be1), where e; is the first unit vector.) Inserting the expression of x to (5.12)
and making use of the following property:

AV, =V, H; (73)
(see Preposition 6.5 in [54]), we arrive at the following result:

J(y) = [|Ber — Hpyllo, (74)

which is subjected to minimization. In (5.14), 8 = ||r¢||, and e; = {1,0,--- ,0}7.
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It is worth noting some properties of the GMRES algorithm. The GMRES algorithm
may break down if at iteration step j, hjt1; = 0 (see line 8). However, this situation
implies that residual vector is zero and therefore, the algorithm gives the exact solution at
this step. Hence, examination of value h;; ; in algorithm step 7 becomes important.

If the iteration number m is large, the GMRES algorithm becomes impractical because
of memory and computational requirements. This is understandable from the fact that
during the Arnoldi steps the number of vectors requiring storage increases. To remedy this
problem, a restarted algorithm can be designed. The restarted GMRES follows the idea of
the original GMRES except after the [-th step, the algorithm is repeated by setting [ = 0.
Below is the restarted GMRES algorithm.

Algorithm 5.4 Restarted GMRES(/) Algorithm

1. Choose jmer = [. Start the unrestarted GMRES algorithm
2. Restart: Compute r; = b — Ax;. If satisfied then stop.
Else, compute xq := x; and vy :=r;/||r;]|, go to 1.

However, the restarted GMRES algorithm may lead to difficulties if A is not positive
definite [54]. For such a type of matrix, the algorithm can stagnate, which is not the case
for the unrestarted GMRES algorithm since the latter is guaranteed to converge in at most
N steps [55].

5.5 Biconjugate Gradient (BiCG) method

For solving non-Hermitian systems, an approach can be designed by combining the Lanczos
biorthogonalization method with the Petrov-Galerkin condition. The method based on this
approach is known as the Biconjugate Gradient (BiCG) method. In the algorithm, a dual
linear system is solved ATx* = b* together with the original Ax = b. If there is a dual
system to solve with A’ then the Petrov-Galerkin condition is satisfied by scaling the
initial residual r§ = b* — ATx}. The BiCG algorithm is given as below.

Algorithm 5.5 Biconjugate Gradient algorithm

1. Compute ry = b — Axy, choose r{ such that (rg,rj) # 0
2. Set py =10, P; =T}

3. For j=0,1,---, until convergence Do:
4. oy = (r;,r})/(Ap;, Pj)

5. X; = Xj + a;p,

6 rj1 =r; — a;Ap;

7 I =1 — ajATp}‘

8. B =(rjs1,1j)/(r),1})

9. Pjy1 = Tj+1 + 0P

10.  pj=rj,+ Bj(u; + ﬁjp;)

11. Enddo
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In many cases, the algorithm may break down if the linear system determining the
vector y; becomes rank deficient. To overcome the breakdown, a look-a-head strategy
needs to be incorporated. Also, if the system for determining y; is poorly conditioned,
the convergence becomes irregular. Computation involving A7 can also be costly if the
solution for the dual system is not of interest.

5.6 Conjugate Gradient Squared (CGS) method

In [58] Sonneveld proposed a modification of the CG algorithm for handling nonsymmetric
linear systems. Prior to the modification, the residual r ; and search direction p; recursions
in CG are reinterpreted in a polynomial sense as

r; = ¢(A)I’o,

75
P; = Y (A)py. )

with ¢(A) and 1(A) polynomials of degree less than or equal to n.
In such relations, these polynomials behave like contracting operators to rg since in
a sequential process, r; — 0 as j increases. Using polynomial formulations in the CG
algorithm (r;,1;) = [6;(A), 6;(A)] and (Ap;,p,) = [15(A), vi(A)], where v(r) = T.
During implementation, such polynomials are not involved explicitly in the algorithm.
The Conjugate Gradient-Squared (CGS) algorithm is described as follows.

Algorithm 5.5 Conjugate Gradient-Squared

1. Compute rg = b — Axg, rj arbitrary
2. Set pp=1up=ry

3. For j=0,1,---, until convergence Do:
1oy = (,m)/(Ap,. )
5 q;=u; —a;Ap;
6. X1 =%+ ;(u;+qp)
7. rjga=r;—a;A(u; +q))
8. B = (rjs1,15)/(r),x5)

9. W1 =rjpq + 5;'(1]'
10 pjy1 =101+ B(u; + Bjq;)
11. Enddo

From the algorithm, CGS avoids matrix-by-vector product with A7 as in the BiCG
algorithm. In many cases, this causes the algorithm to converge twice as fast as BiCG [58].
However, because of squaring of polynomials, jumps in the residual errors tend to be more
damaging than in the standard BiCG algorithm (see [58, 66]).
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5.7 Biconjugate Gradient Stabilized (BiCGSTAB) method

In CGS, we take the square of polynomial ¢(A) in defining the new recursion factor r.
However, this squaring may lead to build-up of rounding errors in the case of irregular con-
vergence. To avoid irregular convergence, van der Vorst [66] uses a different expression for
the residual vector. Rather than taking the square of the polynomial, another polynomial
¥(A) is defined and the residual vector to be determined during reccursion is given as

r; = ;(A)p;(A)r.

(76)

In (5.16), v is defined recursively at each step to stabilize the convergence behaviour

according to the relation
(1 - ij)v

which wj is selected at the j-th iteration to minimize r;. Furthermore,
¢j(A)ro = (¢j-1(A) — a;AT;_1(A))ro,

and
T;j(A)ro = (¢;(A) + 51 AT;1(A))ro.

The parameters 3; and o; are determined from the relations below:

I
’ (ApjarS)
Pi+1 Gy
ﬂ]: J‘ X _J'u
Pj Wi

pj = (Fo,Tj-1).
The optimal value for w; is given as

(ASj7 Sj)
(AS]', AS]’)’

Wy =

which optimizes the 2-norm of the vector (I — w;A)y;(A)@p;+1(A)r.

algorithm is described as follows.

Algorithm 5.6 BiCGSTAB algorithm

1. Compute ry := b — Axy; rj; arbitrary.

2. py =Ty

3. Forj=1,2,---, until convergence Do:
4 a5 i= (v, 15)/(Apy, 1)

5 Sj = I'j — OéjApj

6. wj:=(As;;s;)/(As;, As;)

7

Xj+1 = Xj + O{jpj + szj
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The BiCGSTAB



8. i1 :=8; — u}]A]S]

9. Bji=(rjp,rp)/(r),r5) X o /w;
11. Enddo

Investigation of the BiCGSTAB algorithm has been reported as in [66] for various
applications and compared to BiCG and CGS. In general, BICGSTAB converges more
smoothly than the CGS or the BiCG. However, the convergence rate is typically the same.
This becomes more significant in cases where the linear system is nonsymmetric. In some
nonsymmetric cases, it is also revealed that when CGS fails to converge and shows spurious
irregularity, BICGSTAB still converges. The convergence rate is also faster than CGS or
BiCG. However, for symmetric matrix cases, these significances are not clearly seen.

Even though BiCGSTAB is an attractive alternative to CGS, further investigations
reveal a weakness of this algorithm. If the parameter w becomes very close to zero during
recursion, the algorithm may stagnate or break down. Numerical experiments confirm that
this is likely to happen if A is real and has complex eigenvalues with imaginary part larger
than the real part. To overcome this, improvements to BICGSTAB have been proposed,
e.g., by Gutknecht [31] and Sleijpen and Fokkema [57]. In such a case, one may expect
that the situation where w is very close to zero can be better handled by the minimum-
residual polynomial of higher order. Gutknecht [31] proposed the use of second order of
this polynomial in his BICGSTAB2 algorithm. However it becomes clear from experiments
that for the same situation in which BICGSTAB breaks down, BICGSTAB2 stagnates or
also breaks down. Sleijpen and Fokkema [57] proposed a modification by forming a general
[-order minimum-residual polynomial, resulting in the BICGSTAB(/) algorithm. For [ = 1,
the algorithm resembles van der Vorst’s BICGSTAB.

Numerical experiments reveal that BiCGSTAB(/) improves BiCGSTAB in the case
of stagnation or breakdown. It is known also that a higher order of [ can be used to
improve the convergence. In general, BICGSTAB(!) is more superior than BiCGSTAB or
BiCGSTAB2.

The original BICGSTAB has been used, e.g., in [52] to solve the discrete Helmholtz
equation.

5.8 Conjugate Orthogonal Conjugate Gradient (COCG) method

In CG we find that the solution of a linear system can be found from an iterative process
using a three term recursion of the residual vectors r. However, CG is restricted only to
the Hermitian matrix, i.e. A = A”. From Section 3, we know that discretization of the
Helmholtz problem leads to a symmetric non-Hermitian matrix.

Van der Vorst and Melissen [67] observe that the nice property of three term recursion
in CG still can be used to solve a symmetric non Hermitian matrix but with an additional
modification to the orthogonality condition. Instead of using Hermitian orthogonality, they
propose the use of conjugate orthogonality, i.e.,

(Fjom) = 0 j # k. (82)
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The sequence v; is generated using the Lanczos algorithm by forcing the conjugate or-
thogonality condition to define o and 3 in recurrence v, = Av; + a;v; + B;v;_1. The
vectors v, v, - -+, v; will then form the basis for the Krylov subspace /1 (A, r). We can
construct an algorithm known as Conjugate Orthogonal Conjugate Gradient (COCG).

Algorithm 5.7 Conjugate Orthogonal Conjugate Gradient

1. Choose xy. Compute ry :=b — Axg, py := o
2. For j =0,1,---, until convergence Do:

3. v;:=Ap;

3. o= (Ty,15)/(V5,py)

4 Xj+1 = Xj + ;P

5. rjy1:=r; —a;Ap;

6. 0= (Tiyr, 1j41)/ (T, ;)

7. Pji1=Tj1+ 6ip;

8. Enddo

5.9 Quasi Minimum Residual (QMR) method

One advantage of the Conjugate Gradient-type algorithms is the small storage requirement
needed during iteration. Because there is no minimization process incorporated in the
algorithm the convergence may suffer from irregularity. As mentioned in subsection 5.6
— 5.7, CGS and BiGSTAB were proposed to attain smoother convergence behaviour of
CG-like algorithms. In comparison with the GMRES, however, no minimization process is
involved. Another CG-type algorithm which maintains the low storage property and the
small number of recursion but also imposes an minimization process is Quasi Minimum
Residual (QMR) method.

The idea of QMR is based on the look-ahead Lanczos algorithm [24] and solving a
least-squares problem

" — QH 2| = min [ld" — Q"HZ"| (53)
zeC™
The basic algorithm of the QMR is described as follows.

Algorithm 5.8 Quasi Minimum Residual

1. Choose xo. Compute ry := b — Axg, py := 1o

2. For j =0,1,---, until convergence Do:

3. Perform the n-th iteration of the look-ahead Lanczos algorithm
3. Update the QR factorization of Q"H] and the vector t"

4. Compute x, = xo + V" (R") " t"

5. Enddo
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In comparison with the CG-like methods, e.g., BiCG, CGS, and BiCGSTAB, QMR
shows smoother convergence. This property becomes significant when problems to be
solved are near breakdown in the case of the BiCG algorithm. However, QMR is not
guaranteed to converge faster than BiCG. In fact, in cases in which BiCG shows irregular
convergence, QMR and BiCG converge with typically the same number of iterations. Even
though the GMRES converges smoother than the QMR, both methods have basically
the same convergence behaviour. In many cases, QMR is outperformed by the restarted
GMRES algorithm.

5.10 Iterative methods for solving Helmholtz’s equation

Even though various iteration methods have been developed, not all of them are applicable
for Helmholtz’s problem. CGS, for example, is not known to be used for solving Helmholtz’s
problem. Also CG so far is only used for comparison studies since theoretically it is not
suitable for indefinite problems. For indefinite problems, the CG for normal equations —
CGNR —is used due to its simplicity. However, without good preconditioners CGNR is not
practical because of slow convergence. We refer to Bayliss, Goldstein, and Turkel [4] and
Laird [41] for CGNR applications. Some authors use GMRES, BiCGSTAB, COCG, and
QMR to solve Helmholtz problems. Again, without good preconditioners these methods
are not efficient.

Since all authors use different test cases, it is somewhat difficult to compare one itera-
tive method with another. Furthermore, the fact that the methods show slow convergences
without being preconditioned makes it impossible to compare the methods without incor-
porating preconditioners. Just for a performance estimation, Table 5.1 provides the cost
of the iteration methods measured in the number of matrix/vector multiplications without
preconditioners.

Table 5.1: Matrixz/vector multiplications for one iteration step without preconditioners

Iter. methods No. of mat/vec mults.
CG 1
CGNR
BiCGSTAB
GMRES
QMR
COCG

NN~ NN

For large wavenumbers, GMRES usually encounters memory problems as shown, e.g.,
in [41] using an SPD perturbed Helmholtz operator. This is because one tends to use
a high resolution grid leading to a very large matrix. The restarted GMRES can be
used to overcome this issue. However, the iteration is not guaranteed to converge after
a prescribed number of iterations. At the end, the number of inner iterations should be
made close to full GMRES, even though this does not always ensure convergence [41].
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BiCGSTAB and QMR, although still show comparable performance with GMRES for
k < 20, become inefficient in terms of mat/vec multiplications for high wavenumbers.
However, a different preconditioner used in [27] allows QMR to obtain converged solutions
even for high wavenumbers at acceptable costs.
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6 Preconditioners

The weak point in solving Ax = b with iterative methods comes from the lack of robustness
and efficiency [54]. In general, this linear system can be transformed into another form
having the same solution but being simpler to solve with iterative methods. The original
linear system is preconditioned. A proper choice of preconditioner is expected to improve
the robustness and efficiency of iterative methods. With a preconditioner, the problem of
solving linear systems can be reformulated as follows:

Find Cp, and Cg such that CLACry = Crb, y = CI_%lX s easier to solve

A linear system obtained from discretizations of a PDE can have a highly distributed
spectrum and can result in an indefinite linear system (the spectrum consists of both
positive and negative real eigenvalues). For such problems the iterative methods show slow
convergence or even breakdown. A good preconditioner can transform the original linear
system into a system with a clustered spectrum. It is also important that a preconditioned
system does not have an eigenvalue close to zero.

In the subsequent subsections, the Jacobi and Gauss-Seidel iteration will be revisited
because they do not only pave the way of constructing the widely-used incomplete 1LU
preconditioner but also the recently popular method to improve convergence of iterative
methods: multigrid. We will see how the Jacobi and Gauss-Seidel iterations can be inter-
preted as a preconditioner to the linear systems and be generalized to the so-called ILU
preconditioner.

6.1 Jacobi preconditioners

In this type of preconditioner, one takes a splitting to the matrix A according to the
following;:
A=M-N, (84)

where M and N are any suitable matrices for improving the iterative algorithms. Substi-
tuting (6.1) in the linear system Ax = b, an iterative formulation can be constructed to
obtain the solution x, namely

Xj+1 = GXj + f, (85)

where f = M~'b, and
G=M'N=I-M"'A. (86)

This formulation is identical for Jacobi and Gauss-Seidel iteration to obtain solution x
with Gjuc =TI - DA and Ggs = I — (D — E)"'A, wherein A =D —E — F, and E
and F strictly lower and upper triangular part of A, respectively. In this sense, Jacobi or
Gauss-Seidel iteration can be seen as preconditioners for solving a preconditioned linear
systems with MJAC =D and MGS =D - E.

Generalization can be made for the Gauss-Seidel-type preconditioner by relaxing the
preconditioner with a factor w. In such a case, a Successive Quverrelazation (SOR) precon-
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ditioning is obtained, i.e.,
1
Mgsor = ;(D—E) (87)

If extra sweeping is performed over unknowns in reverse order of the SOR algorithm, a
symmetric version of SOR results. The Symmetric SOR (or SSOR) preconditioner is given
as

Mssor = (D —wE)'D™/(D — wF). (88)

If w =1 then the symmetric Gauss-Seidel iteration is found:
Mggs = (D —E)"'D7/(D — F) (89)
which can be expressed in L and U as
Mgsas = LU, (90)

where L = (D — E)D™' = I — ED ! is unit lower triangular and U = D — F is upper
triangular. Since all methods described above rely on a splitting of A, (see (6.1)), these pre-
conditioners are categorized as the matrix-splitting class. Generalization in the form (6.7)
leads to an important result which becomes the foundation for developing another type of
preconditioners discussed in the next subsection. In many cases, the performance of the
Jacobi or SOR/SSOR preconditioner is rather poor unless modifications are incorporated
into the original algorithm.

6.2 Preconditioners for normal equation

In Section 5 we discussed CGNR and considered it to be the simplest algorithm to solve
indefinite or nonsymmetric linear systems. However, the algorithm produces very slow
convergence rates. In this subsection, we discuss two preconditioners especially for the
standard CGNR algorithm for solving Helmholtz’s problem.

6.3 Laplace operator as a preconditioner

We first consider a classical method of Bayliss, Goldstein, and Turkel [4]. The method
was developed based on solving a preconditioned normal equation with CG. To construct
the algorithm, the standard SOR preconditioner is modified by approximating A with its
discrete Laplacian term A . This can be simply done by setting k£ = 0 in the Helmholtz
operator L. The preconditioner M then follows (6.4).

Since the system is highly indefinite for large k, the first step to be performed is to
transform the linear system into a normal equation by multiplying it with its adjoint A T
This results in a positive semidefinite matrix for any type of boundary conditions and
a positive definite matrix for Sommerfeld’s radiation condition. However, the resulting
normal equation is ill-conditioned, and therefore the CG method is very slow to converge.
To improve the convergence, Bayliss, Goldstein, and Turkel used the discrete Laplace
operator as a preconditioner to approximate the inverse of the discrete Helmholtz operator.
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Let A’ be the preconditioned A. The equivalent linear system in normal form takes
the form
A/*A/X/ — A/*b/, (91>

where A™ the adjoint of A’. Further, A’ = M'AM, x¥' = M 'x, b’ = M 'b, and
M = D, — E;. With this formulation, the preconditioned linear system can be solved
iteratively using CG method (see Section 5.3).

In the implementation, the factor A” A’ is never computed. However, this approach
requires the inversion of M. This matrix is obtained from point SSOR applied to A ;. This
matrix is then multiplied by A and A*. The latter is an additional multiplication which
doubles the number of operations in one CG-iteration.

6.3.1 Generalized positive definite operator as a preconditioner

The approach used by Bayliss, Goldstein, and Turkel can be regarded as preconditioning
the normal equation with a perturbed Helmholtz equation. The constraint which allows
such a perturbation is that the perturbed Helmholtz equation should have positive definite
properties. In their case, setting & = 0 reduces the Helmholtz equation to the Laplace
equation which is positive definite. This approach can be generalized by replacing the
positive k% with —k? ensuring a positive definite system.
We can set e.g.
M = (A - K)p, (92)

with prescribed boundary conditions as the preconditioner. Reference [41] gives detailed
investigation of this type of preconditioner for 2D Helmholtz problems. It is shown there
that the preconditioner efficiently clusters eigenvalues and reduces the condition number
to a value independent of grid resolution. This property is proven for both the standard
system and the normal equation. From the numerical results, the number of matrix/vector
multiplications needed to reach convergence is by factor of 4 larger compared to the non-
restarted GMRES with the same preconditioner. The matrix/vector multiplications also
increase rapidly for higher wavenumbers. However, GMRES can not be used further for
sufficiently high wavenumbers, since the grid resolution requirement causes storage prob-
lems. The restarted GMRES can solve the storage problems, however, the number of
restart should be large to avoid stagnation. Even though BiICGSTAB and QMR outper-
form the CGNR for low wavenumber cases, their performances become severely worse for
high wavenumber cases.

6.4 ILU preconditioner

In Section 6.1, the general pattern of preconditioner M can be written as an L- and U-part
of A. In practice, the exact factorization of A into L and U is not necessarily required.
Rather, an approximate factorization is still useful for preconditioning. Since the degree
of approximation is rather arbitrary, constraints should be added to the factorization.

36



An Incomplete LU (ILU) factorization can be obtained by computing a sparse lower
triangular matrix L and upper triangular matrix U by which the residual matrix R =
LU — A satisfies certain constraints. In a practical implementation, the ILU factorization
depends on the implementation of the Gaussian elimination. The general ILU factorization
is given in the following algorithm [54]. In this algorithm, the IJK version of Gaussian
elimination has been incorporated. In the algorithm below, P is the non zero pattern set
such that P C {(7,7)]i # j;1 <14,j <n}.

Algorithm 6.1. General ILU factorization

1. Fori=2,--- ,n Do:

2. Fork=1,---,i—1andif (i,k) > P, Do:

3 ik, *= Qi Ok,

4 Forj=k+1,--- ,nand for (i,j) 2 P, Do:
5. Q5 = Q5 — Qi Qgj

6 Enddo

7 Enddo

8. Enddo

6.4.1 Variants of ILU factorization

The first ILU variant is the so-called zero fill-in ILU factorization or ILU(0). In general, if
one takes any lower triangular matrix L and upper triangular matrix U the product LU
does not have the same structure as A. In ILU(0), one takes any pair of L and U having
the nonzero pattern set to be precisely the same as the nonzero pattern of the lower and
upper triangular of A. This defines the ILU(0): if A — LU is computed, then the nonzero
elements of A are set to zero.

In order to improve the convergence rate, more accurate ILU factorizations can be
performed by allowing some fill-ins. Falling into this category is ILU(p), especially ILU(1).
The ILU(1) factorization results from taking the zero pattern to be that of the product LU
obtained from ILU(0). In other words, we consider a matrix with additional off-diagonal
components which are actually zero in the original matrix. The factors L; and U; of
ILU(1) are obtained by performing ILU(0) to this matrix.

Also within this class is the Modified ILU (or MILU) factorization in which the dropping
process for the extra diagonals is compensated at the k-loop of Algorithm 6.1. In an MILU
factorization, after the k-loop the diagonal element a,; is modified by adding it with the
sum of the row 7. Also, preconditioners such as ILUT can be used to have a more accurate
factorization that improves the convergence rate. Details about MILU and ILUT can be
found in [54].

Made [45] used the positive definite or slightly indefinite preconditioner to construct the
factorization. Since one of the requirements to have a good convergence performance is that
the real part of the eigenvalues of the preconditioned system is positive, Made proposed
perturbations to the real components of the matrix A. In determining the perturbation, a
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parameter is introduced acting only on the diagonal components of A. This parameter is
determined so that the perturbed A is positive definite or slightly indefinite.

To reduce the number of fill-in, the ordering may become very important in any type
of ILU factorizations. Several ordering methods are possible to be incorporated into ILU
preconditioners, e.g., Cuthill-McKee, minimum degree, and nested dissection ordering,
discussed in Section 4.

The use of ILU(0) is reported in [27] and compared with AILU (Section 6.3.3). Numeri-
cal experiments show that the ILU(0) breaks down for large k (highly indefinite problems).

6.4.2 Nested Grids ILU (NGILU) and Matrix Renumbering ILU (MRILU)

Van der Ploeg, Botta, and Wubs [65] use another strategy to factorize A using partitioning
based on multigrid. For the m-th grid level, €2,, is the set of unknowns involved in the
grid and is defined as W,,, = Q,, \ Qna1, where €, is one level coarser than €2,,. Using
a lexicographical-type numbering, a system of linear equations is obtained in the form

A Ap|xg b,

|:A21 A22] [Xz} B {bz] (9?))
for the finest grid level €2; and its one-level coarser grid €25. This partitioning can be done
repeatedly until a coarsest grid is reached.

After renumbering, the preconditioner is constructed using incomplete LU-decomposition
with a drop tolerance. In order to obtain this preconditioner, the standard splitting
A = LU + R is used with a condition that the elements of residual matrix R satisfy
rij < €, where ¢; is the threshold parameter. In [65], to obtain the factors L and U, first

the diagonal of A is scaled to unity. This is then followed by a row-by-row incomplete
decomposition. To construct row ¢ of L and U, the relation

k—1
Tik + ligUkk = Qi — Z lijuje, k<1 (94)

j=1

is used. If the absolute value of the right-hand side of (6.10) is less then €;;, fill-in on
position (7, k) is added to the main diagonal. The drop tolerance €;; is determined as
follows,

e = " Le | max(i, ) € W, (95)

For such a choice of drop tolerance, one allows the increase of fill-in per grid level. According
to [65], in 2-D the choice ¢ = 0.25 is sufficient.

Comparisons with ILU and MILU(0.02) preconditioners for solving Poisson’s equa-
tion shows the superiority of NGILU. All three preconditioners are combined with the
BiCGSTAB iteration for solving the discrete Poisson equation. The number of flops af-
ter using NGILU shows an almost 10-times reduction of that of MILU(0.02). However,
the MRILU and NGILU have not been tested to accelerate convergence on the Helmholtz
problem.
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The limitation NGILU has is that the numbering is based solely on the grid and does
not take into account the size of nonzero elements of the matrix. For obtaining an effi-
cient factorization process it is crucial that A is always well-conditioned. Eventhough for
standard rectangular grids the ill-conditioned A 1; may not appear, this problem can arise
if (highly) stretched grids are used or in the case of finite element grids. Botta and Wubs
suggest that the numbering should be determined during the incomplete factorization pro-
cess, not on the basis of grids or sparsity patterns [10]. This results in a new preconditioner
called Matrix Renumbering ILU (MRILU). During the factorization, one guarantees that
the diagonal blocks to be inverted are strongly diagonally dominant. This condition can
be expressed mathematically as

> la| < €lag| with e < 1. (96)
ik

The threshold € can be chosen small to approximate A ; with a diagonal matrix, which
simplifies the factorization process on the next coarser grid level. During factorization,
small elements are dropped to limit the number of nonzeros. However such a dropping is
only limited to the diagonal block A{; and two blocks A5 and As;. Modification in A
is to be avoided because it can cause the diagonal of A, on the next coarser grid level to
become very small. In such situations, the factorization may break down.

6.4.3 Analytic ILU preconditioner

Recently, Gander and Nataf [25, 26, 27] proposed an ILU preconditioner based on the
analytic parabolic factorization for Helmholtz problems. Instead of finding a proper pre-
conditioner for the discrete Helmholtz problems, the preconditioner is determined from
an analytical factorization of the continuous differential operator. It is expected that the
resulting preconditioner, which is called Analytical ILU (AILU) preconditioner, will be a
good approximation to the differential operator and will also be easy to invert.

The main idea of AILU preconditioner is based on the parabolic factorization of the
Helmholtz operator £ = A + k? into the form

L= (0, +M)(0: — Ag), (97)

where Ay and A, are positive operators. The term (0, + A1) represents a parabolic operator
acting in the positive a-direction, while the term (0, + Ay) represnts a parabolic operator
acting in the negative x-direction.

If Fourier transformation is applied in y-direction to the operator £, we get the relation

Fy (k2 + A) = (8, + VET — 02) (9, — VIZ — o2). (98)

The continuous parabolic operator (6.13) can be obtained with A} = Ay = F, ' (VA2 — w?).
Both A; and Ay are nonlocal operators in y because of the square root.

The parabolic factorization can be related to an exact LU decomposition of the linear
system after discretizing the Helmholtz operator £ in z-direction and computing another
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analytic factorization for the semi-discrete operator £, = Ay, +k?, where A, = DTD™+49,,
where DT and D~ are the first order forward and backward discretizations in z-direction.
Following the same idea with the exact analytical factorization of the Helmholtz operator,
the following relation is obtained,

Fy(k*+ Ap) = <D; + <7’h— %)) % <D; — <7’h — %)) : (99)

with h the mesh size and 7 the nonlocal operator in y introduced due to discretization. It
is easy to find that (6.13) is recovered for h — 0.

Eq. (6.15) can be used to solve the Helmholtz problem using the defect correction-type
technique as explained in [30] (or [47]). However, since this equation contains nonlocal
operators in y, we should first approximate these nonlocal operators. Approximation can
be made to the nonlocal operator 7 in the following form:

1 k? — w? 2

_ 2
Tapp = 75 + 5 + ﬁ(qjtpk: ), p,geC, Re(p) > 0. (100)

In (6.16), p and ¢ are optimization parameters and the subscript ,,, indicates ”approxi-
mation”. This approximate operator is then used as the ILU-type preconditioner. After
substituting 7,,, into (6.15) and denotinf the right-hand side as L,,,, the approximate
factorization can be cast, namely

1 2

Lopp =DID, — Tpp — —— + —.
Tapph* — h?

(101)

A more detail analysis including the convergence properties of the AILU can be found
in [25]. One important result from the discussion is that the convergence rate for a station-
ary iterative method with given optimized parameters p and ¢ is bounded by 1 — O(h?/3).
For CG-like iterative method the convergence rate is bounded by 1 — O(h'/3).

In [27], comparisons have been made with ILU(0), ILU(1e-2) preconditioners for 2D
Helmholtz problem. The QMR algorithm solves the linear system with the initial guess
p© = 0. In addition, the unpreconditioned QMR is used. A wide frequency range is used
during the test campaign, from k& = 5 to 50 with the stepsize of 5. It can be deduced that
with the AILU preconditioner, the QMR shows better computation performance in terms
of iteration count and flops count for the solution process. A significant improvement is
shown for high frequency cases whenever QMR with two other preconditioners fails to
converge within the allocated iteration hour. In such cases, QMR with the AILU precon-
ditioner converges to the solution. In terms of operation count required for computing the
preconditioner, AILU is comparable to ILU(0).

Because of the interesting computational performance provided by the AILU precondi-
tioner, numerical experiments on the Helmholtz problem as described in Section 2 will be
performed. The results are given in a separate report.
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6.4.4 Preconditioner for a highly indefinite matrix

One problem arising in solving linear equations derived from the discretization of the
Helmholtz equation is the indefiniteness of matrix A. Freund [23] proposes a method for
constructing indefinite preconditioner for the symmetric QMR algorithm. In this case, two
types of preconditioners can be developed.

First, a preconditioner can be derived based on block SSOR preconditioner. A permu-
tation P is determined such that

PAP' =L +A+L" (102)

where L is strictly lower triangular and A is a non-singular and ”close” to diagonal matrix.
The preconditioner developed is

M =P (A+L)A (A +L"P. (103)
Using (6.19) and (6.20) the "error” of the SSOR preconditioner can be determined, i.e.,
M- A =P'LA'LTP. (104)

Relation (6.21) suggests that P should be chosen such that A is as "large” as possible.

Another type of preconditioner suitable for an indefinite matrix can be developed from
an adaptation of the ILUT preconditioner. To construct the preconditioner, we compute
an incomplete factorization

PAPT = LAL” + R. (105)

where A is block diagonal with 1 x 1 and 2 x 2 blocks which are non-singular and " close”
to diagonal, and L is block lower triangular. The sparsity of L is controlled by removing
undesired elements and putting them into R.

A test using QMR algorithm is performed in [23] for an elliptic PDE system (Stokes
equation) and compared with the MINRES algorithm. It is seen at least for the experiment
presented that QMR is superior to MINRES in terms of number of iteration. Further, it is
shown that the preconditioner based on an ILUT adaptation clusters the spectrum better

than SSOR. Numerical experiments show a faster convergence with the preconditioner
based on ILUT adaptation than on SSOR.

6.5 Preconditioner based on separation of variables

The Helmholtz operator can be viewed a the Laplace operator A with an additional term
k. For the Laplace equation, an analytic solution can be obtained using the separation
of variables method. One may consider the same solution procedure could work nicely
for the Helmholtz equation. However, the presence of k actually prevents application of
the same method on the latter problem. We can decompose k leading to a formulation
suitable for a separation of variables method and use it as a preconditioner for solving the
Helmholtz equation. Refering back to the discretization given in Section 3, the matrix A
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consists of two parts: Laplace’s equation with related boundary conditions and a block
diagonal matrix K consisting of k?I. Since k prevents us from directly implementing the
separation of variables method, we look for a decomposed formulation of k& which allows
us to include k in the separation of variables method. We decompose k as follows (Plessix
and Mulder [52]):

K2y, 2) = K2(x) + K2 (y, ) + B2y, 2), (106)

which & satisfies conditions
/l?(m7 y,z)dx =0 Vy, z

) (107)
/k2(x, y, z)dydz = 0 V.
Introducing this decomposition, we can rewrite matrix A as the following:
A=A, -K,)oL.+L®A,.-K,.) -K (108)

Let the eigenvalues and eigenvectors of the linear system A, — K, satisfy the relation
WH(A, —K,)Wr=A. (109)
If we multiply A from the left with Wf ® I, and with Wy ® I, from the right, we get

B = (Wi{ X Iyz)A(WR ® IyZ)

- (110)
=ARL.+L®A,, - (WL, )KWz®L,).
If we introduce a permutation matrix P such that the nonzero elements of P are
Pli+(G—-1M,j+(@—1)NL)=1;1>i>Mand1>j>NL (111)
the following simple relation is obtained, namely
P’BP =D + K, (112)
where D is a block diagonal matrix consisting of M blocks with
D,, = \01,. + A, — K., (113)
and
P'WH @1, ) K(Wr®1,.)P. (114)

Finally, the separation of variables method gives the solution, if we assume constant &

implying K = 0, .
Dp=f (115)

with new variables
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The linear system (6.31) is easy to solve, because D is block diagonal. Moreover, since p
and f are actually comprising of M separate blocks of size NL the overall problem also
reduces to solving M 2D problems of size N L.

Even though the final cost for computing the solution is low, one should anticipate the
overhead cost involving the computation of M eigenvectors and eigenvalues of the system
A, —K, and also matrix/matrix (of order N) multiplication to construct the block diagonal
D.

Until this point, we have only discussed solution of the discrete Helmholtz equation us-
ing the separation of variables method which is workable for constant k& due to the condition
K = 0. Extension to inhomogeneous media can not be done in the same way because of
the restriction imposed by K = 0. However we can use (6.32) as the preconditioner of the
original linear system and solve the preconditioned linear system iteratively. To cope with
the varying k£ in the medium, we interprete the subsurface interfaces as boundaries with
outgoing conditions imposed. Since on the adjacent of these boundaries the values of k are
varied, we simply take the averaged value of two adjacent k. With this we can construct
the preconditioner. The preconditioned linear system for iterative solution is now given as

M 'Ap=M"'f. (117)

where

M =(Wi®IL,)PD'PT(WI®L,). (118)

Since M can be considered as an approximate system of A, M ~*A multiplication should
provide a system which is relatively easy to solve. This is proved for very low frequency
cases and relatively smooth media. However, the degree of accuracy of this approximate
depends largely on how k varies in the medium. Numerical examples show that for largely
varying k, the methods fail. Moreover, the methods also fail for large frequency cases,
which are of practical interest.

6.6 Approximate inverse

We have cited when discussing the standard ILU preconditioner that this class of precondi-
tioner can often fail if the matrix A is not an M-matrix. Moreover, breakdown due to zero
pivoting may be encountered if A is indefinite. The approximate inverse of A can be de-
termined by seeking a sparse matrix M which minimizes the residual matrix R = I — AM.
A standard method is by minimizing the Frobenius norm of R.

For example, for the left-preconditioning matrix the minimization process can be de-
fined as

Find M such that || I — MA||r is minimal.

The Frobenius norm of an arbitrary matrix X is defined as

1/2

1X||F = [tr(XHX)] 2 = [te(XXH)] (119)

43



A similar expression can be determined for the right-preconditioning and for splitting
preconditioning.

Two approaches can be used in order to proceed the minimization. First, a global
minimization is applied which is similar to a gradient-type method. In global minimization
the steepest descent method can be implemented. Secondly, we can minimize the residual
row-wise by considering the equivalence

IT—MA[[F =) lle; —myAll3, (120)

j=1

in which e and m are the j-th rows of the identity matrix I and of the matrix M. Therefore,
we minimize the function

fi(m) = lle; — mA][5. (121)

For detailed discussions, we refer to [54]. In the case of a nonsymmetric or an ill-conditioned
linear system, the left-preconditioning usually results in a good approximate inverse [8].

Another method is to construct an approximate inverse based on the factorization
A = LDU. Inverting A gives A = ZD'W”, where Z = U™ and W = L™7. The
approximate inverse of the factorized A is determined by computing sparse approximations
Z~7 W~ W, and D ~ D, giving M ~ A~'. In this method, there are several
techniques that can be used to compute M. These include the FSAI method and the
incomplete (bi)conjugation-based method. We refer to [8] and references therein for further
discussions of the two methods.

6.7 Multi-Grid Method

In this subsection another class of convergence accelerators is described, namely multigrid.
General idea of multigrid can be observed from a stationary iteration case.

6.7.1 Stationary iterations as smoothers

A detailed explanation of multigrid can be found, e.g., in Wesseling [68] and Trottenberg,
Oosterlee, and Schiiller [62]. Using the standard Gauss-Seidel iteration a given linear
equation system can be solved. The iteration usually converges fast in the initial stage of
the iteration but then slows down and tends to stall. A Fourier analysis, e.g. as described
in [68], shows that the Gauss-Seidel iteration effectively removes high frequency errors but
fails to remove the low ones. Rather the errors are smoothened (see e.g. Lahaye [40] for
a more illustrative example). From this point of view the Gauss-Seidel iteration can be
considered as a smoother. The same property is also possessed by the Jacobi iteration.
On coarser grids, the smooth, low frequency error can become oscillatory. In such
an oscillatory case, the Gauss-Seidel iteration becomes a very effective method to remove
oscillatory errors. The idea of multigrid is derived from this fact. Multigrid uses coarse
grid discretizations to remove smooth errors which can not be wiped out efficiently by
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stationary iteration techniques in the fine grids. In terms of errors the smoothers can be
expressed by the following:

e"t =8em S=(1-M'A) (122)

where M the splitting matrix depending on the type of the stationary iteration.

6.7.2 Geometric Multi-Grid

Let the domain §2 be discretized with h and H are mesh sizes of a fine and coarse grid
discretization. A classical way of coarsening is by taking information of the fine grid
structure and then removing some gridpoints from the finer grid in a systematic way.
There are several ways to coarsen the grids. For the most standard technique is by halving
the grid in all directions (identified as standard h — 2h coarsening). This method falls
into the so-called Geometric Multi-Grid (GMG).

Discretization on the fine and coarse grid results in the linear systems

Alxh = ph (123)

and

AfxH = p? (124)
respectively. To relate the two grid levels, prolongation and restriction operator are used,
denoted by P};I and RhH respectively. These operators map the solution of the coarse grids
into the fine grids and vice versa.

In a two-grid case, a multigrid cycle is described as follows. Let x” be an approximate
solution of (6.24) after (m — 1) multigrid cycles. The high frequency errors are eliminated
by applying a few steps of the smoother on the fine grid. This smoothing — so-called pre-
smoothing — results in a new approximate solution %" . The low frequency errors will be
eliminated by restricting the residual after the smoothing onto the coarse grid, by solving
the defect equation

Aflell = RITyM (125)
where /' = b" — Ahf(ffn the residual of the fine grid after smoothing. This process is called
the coarse grid correction. The error after the coarse grid correction is interpolated onto
the fine grid using the prolongation operator and then added to the approximate solution

Sh

Xy, 1.€.,

=x! + Plell (126)
where, from (6.25), e/ = (A")"'Rr" . Because of adding the correction, the approxi-
mation (6.26) may contain high frequency errors which can be removed by applying post-
smoothing (see [40, 68]).

Extension to more-than-two (or multi)grid levels can be done by applying the two-grid
algorithm recursively on the subsequent coarser grids. In the multigrid algorithm, several
standard cycles can be distinguished by implementation of the pre-smoothing, coarse grid
correction, and post-smoothing on each grid level. Figure 6.1 shows an illustration of the
often-used standard cycles, namely the V-, W-, and F-cycle.

=h
Xm
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Figure 3: Types of standard multigrid cycles: V-;W-, and F-cycle.

6.7.3 Algebraic Multi-Grid (AMG)

In applications with unstructured grids the GMG becomes unattractive because of the
difficulty of constructing the coarse grid. Applications of the GMG to problems with
discontinuities also often give very low convergence rate [40].

Another class of multigrid methods is the so-called Algebraic Multi-Grid (AMG). In
contrast with GMG, the construction of the coarse grid in AMG does not require explicit
information about the fine grid structure. Rather the coarse grid is constructed using the
matrix A" which implicitly contains the information of the fine grid structure. The general
AMG algorithm uses the standard GMG algorithm for fine grid-coarse grid cycling except
for an additional setup phase. The setup phase is needed to automatically construct a
hierarcy of coarser grids. After the setup phase, the cycle algorithm follows.

The first coarse level is constructed by selecting a proper subset C" of the fine grid
space ", inducing a partitioning of Q". This results in a linear system for the coarse grid
equivalent to the linear system for the fine grid, namely

AfxH — pH. (127)

Having obtained the coarse level system, the prolongation and restriction operator
should be determined. Since AMG does not rely on geometrical information of the fine
and coarse grid, both operators should be constructed directly from the matrix A”*. The
relation between the fine level system and the coarse level system is built, satisfying the

Galerkin formula, namely
A" =RIA"PY,. (128)

The next coarser level system can then be constructed with the same algorithm as the
above-mentioned. In practice one may prescribe the number of grid levels to be constructed.
In this case the automatic coarser level construction will be terminated after reaching the
prescribed number of grid levels. Another option is to let the setup algorithm continues
until the fill-in elements in the coarsest level becomes inefficiently large.

Lahaye [40] implements AMG on the 2D time-harmonic magnetic field equation (which
has different properties from our Helmholtz equation due to a complex sign). For Helmholtz’s
equation Vanek, Mandel, and Brezina [64, 63] have developed a solver based on a two-level
AMG method. A common disadvantage of multigrid is that the coarser grid must be fine
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enough to capture the wave character of the problem. One way to overcome this is by
employing basis functions for coarse grids which are derived from plane waves. Another
way is by contructing coarse spaces based on a plane wave within an aggregate of nodes,
being zero outside the aggregate, and then smoothened by a Chebyshev type iteration us-
ing the original fine level matrix. Compared to the first coarsening the latter shows better
computational complexity and scalability.
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7 Domain decomposition

So far, we have surveyed methods working on one domain 2. In the case (2 is very large or
a discretization is very fine, discretization may result in an extremely large matrix. In this
situation, it will be helpful to devide the domain under consideration into subdomains.

The early work on the domain decomposition method (DDM) to solve the Helmholtz
equation is due to Despres [16]. Improvements to this original work are given, e.g., by
Ghanemi [29], Colloni, Ghanemi, and Joly [12]. Similar work can also be found in Be-
namou and Despres [5, 6], and Susan-Resiga and Atassi [59]. Other contributions can
be also found in the work of Kim [36, 37, 38, 39] on finite difference and finite element
discretizations. Extension to the case with variation of the wavenumber is done by in-
troduding an Alternating Direction Optimal Procedure (ADOP). Larsson [42] approaches
the problem by constructing DDM subproblems identical with a single domain problem
with Dirichlet boundary conditions. In the later problem results in Otto and Larsson [48]
shows the effectiveness of a fast Poisson-type preconditioner incorporated in the iterative
methods. Having identical problem on the subdomain level, DDM can be solved combined
with iterative methods.

In DDM, several issues are still open for further research. The DDM is easy to imple-
ment in parallel. Parallelization is considered a powerful method to speed-up computa-
tions. In this section, we will outline some methods related to the DDM. We restrict to
the methods developed for Helmholtz’s equation.

7.1 DDM for constant k& problems

Consider a domain 2 with the boundary 0f€). This domain is partitioned into several

(finite) nonoverlapped subdomains Q;, j =1,---, M, satisfying:
M
Q=19
]L:Jl ! (129)
O, N0 £ .

Let I'; = T'n0Q;, I'jp = I'y; = 082 N 0. On each subdomain, the Helmholtz problem

can be restated as )
Apj +kp; = f; in€Y

. 130
ai;j - lkp] = on Fj ( )
with the consistency condition
dp; O
p; = pi and ai: = % on ['j. (131)

Condition (7.3) is refered to as transmission condition [16]. In a more convenient way,

this condition can be expressed by the Robin condition [16, 36], namely
Ip;

) 0

+ikpy, i # 7. 132
o o P #J (132)
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Together with (7.2), condition (7.4) gives a well-posed problem. This problem is subjected
to the local solution in the subdomains, and with the transmission condition leads to the
complete solution. In an iterative way, the algorithm is written as follows.

Ap? + k:Qp? =f in Q;
oy .

ap;% apn—l

i, +1kD; O + 1k, in [

On a differential level, the convergence analysis has been given in [16]. On a discrete
level, the convergence analysis depends on the discretization scheme used. For the centered
second order accurate discretization, [36] gives details about the convergence analysis for
2-D problems. Similar results can be found in [38] for finite element discretizations.

Enhancing the convergence of the DDM can be done via a generalization of the Robin
condition by replacing k£ with an arbitrary constant #. The constant 6 is subject to opti-
mization with the condition that the spectral radius of the iteration matrix should become
close to zero; i.e p(G) ~ 0 where G is the iteration matrix derived from (7.5) (see [36]).
This can be done automatically and in a cheap way by performing an eigenvalue analysis
on the reduced iteration matrix G, where G~ is obtained by reducing zero columns in G.
This process is effectively done using a permutation matrix.

7.2 DDM for non-constant k£ problems

For a possibly non-constant k inside the domain €2, the optimal 6 obtained from the above
procedure would not be the optimal value. In such case, the DDM will converge very
slowly. Enhancement by the so-called Alternating Direction Optimal Procedure (ADOP)
is introduced in [36] and further used in [37, 38, 39|, keeping the idea of an optimal
Robin condition. The approach is based on strip-type problems allowing to reduce the 2-D
Helmholtz problem into a set of 1-D problems. Instead of finding an optimal 6 for the
complete 2-D domain, with this approach the problem now reduces to finding an optimal
6 on a strip.

Consider a domain §2 decomposed into three subdomains (fig. 7.1) with the bold-lines
the interfaces of the subdomains. The method tries to find the optimum value 0 spop in
one grid layer (in fig. 7.1 is the horizontal grid line yq). The optimality condition is that
for the selected 0 4pop, the spectral radius of the iteration matrix of the reduced problem
is zero. After obtaining 6 spop in layer yg, the procedure is repeated on the next layer.

The overall method can be made automatic and is cheap. However, the latter property
can not be maintained if the number of subdomain grows. If direct methods are used, the
convergence rate of the large number of subdomains case deteriorates and becomes very
slow. (One tends to reduce the size of the subdomains to save memory when implementing
direct methods.)
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Figure 4: A strip-type decomposition (from [36]).

Instead of using direct methods to attack the problem locally, iterative methods can also
be used for the local problems. Since iterative methods are not so competitive without pre-
conditioners, a preconditioner should be incorporated. However, rather than constructing
a preconditioner for the complete linear system, the preconditioner is constructed locally
in the subdomains. What follows is a DDM method based on generalization of the single
domain problem provided in [48].

In the general case (see Larsson [42]), a linear system of the decomposed domain after
proper reordering can be written as

Aw Ao Po) <b0)
= ) 134
(Am A11) <P1 b; (134)

where p, consisting of interface points of p and p; containing the interior points. In (7.6),
A, contains coupling between points in the interior of the subdomains and therefore is
very large. By block Gauss elimination, system (7.6) reduces to a system for the unknowns
on the interface, with the coefficient matrix

C =Agp— AnAjl'A, (135)

is the Schur complement. However, to solve (7.7) exactly is impractical. A more efficient
way can be done by suggesting an approximate to Aq;.

It is found that A, takes a similar form as the complete matrix A of the single domain
problem when Dirichlet boundary conditions are imposed. However, from the DDM point
of view this single domain problem now belongs to each subdomain. Therefore, efficient
methods to solve the single domain problem can be adopted on the subdomain level (we
think of a possible generalization to the method explained by Larsson [42]). In [42] pre-
conditioner for each subdomain is defined based on a fast Poisson-type preconditioner. In
a single domain with Dirichlet boundary conditions, the eigenfunctions at the boundary
would take the form of sine functions. These functions will be used as the fast transforms
in the fast Poisson preconditioner, which is found to be very efficient [48].

The subdomain preconditioner M; is constructed with the same block structure as
A, given as

My, = nODadk,mz (Mkz,—4> Mk,—:a, Mk,—z, Mk,—b Mkz,Oa Mk,la Mk,2, Mk,?n Mk;,4) ) (136)
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where each block is diagonalized by a block diagonal matrix Q consisting of the eigenfunc-

tions
. 2 ,m
Sm(7, k) = ”m—i—lsm (]km—i—l) : (137)

The M'’s are given as follows:

Mk,r = QAk,TQTa k= 17 T, My, T = _47 e 747 (138)

with
Ak,r:O, k:2,---,m2—1, "I"|>1;

Ay, = diag (QTAL, Q) , k=1, my, |r| > 1; (139)
Ak,r = dlag (QTAk,TQ) ) k= 17 T, Mo, T = _1707 L.

The resulting structure now has decoupled subdomain problems allowing (in general) any
type of iterative methods to be applied. A comparative study between the restarted
GMRES(/) and the band Gauss elimination is given in [42] indicating a further reduction in
terms of total complexity and memory requirement. However, to form the preconditioner
is an expensive process.

7.3 Domain decomposition based on Lagrange multipliers

Another approach developed for finite element discretizations of the Helmholtz equation
is the so-called FETI-H method [21, 60]. This method is favourable not only in terms
of computational performance but also from a numerical scalability point of view. The
method has been proved to be scalable both with respect to mesh size and subdomain size.
Literature [21] provides a concise discussion about the FETI method and its extension to
the FETI-H method.

The main concept of the FETI method is based on expressing the discrete Helmholtz
equation in a discrete Lagrange multipliers form. This formulation allows the splitting of
the complete formulae into two parts: the classical Lagrange function and the interface
quantity:.

Using the non-overlapping domains (7.1), we partition the solution vectors p ; into two
parts: the internal solution pé- and boundary solution pg’-. The system Ap = f can be
rewritten in the form of the system of constrained equations

(K; +ikMp;) p; = f; — Bl A

M (140)
> Bjp; =0
j=1
where
0 0
M, . = , ) 141
1 <0 Zﬂjﬂﬁk#@ E]kM??’C) ( )
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Here B, are signed Boolean matrices due to interface continuity conditions and e/* =
—M = 41,

Solving the first equation of (7.12) for p; and substituting the results to the second
equation of (7.12), we have a dual interface problem:

F/\=d, (142)

where

M
F; =) Bj(K;+ikM,;)"'B]

Vi Y
j=1

y (143)
d=> Bj(K;+ikM;;)'f].

j=1

The dual interface problem (7.15) is numerically scalable with respect to the mesh
size. However, it is not ensured that the problem is also scalable with respect to the
subdomain size. In order to attain the latter scalability, the domain decomposition is
globally preconditioned. This is achieved by introducing a second level FETI-H problem
derived by forcing the residual of (7.14) to be orthogonal to Q, an interface matrix subspace.
However Q should be chosen coarse enough to make this process efficient. This is realized
by introducing the splitting

A=2"+PA (144)
with P a projector given by
P=1-Q(Q'F,Q'Q'F; (145)
and A is the initial solution according to the following:
A =Q(Q'F;Q)'Q"d. (146)

Introducing this splitting transforms (7.14) into
(P"F;P)\ = (F/P)\ = P'd, (147)

where P can be considered as the right preconditioner for the dual interface problem. In
[60] the GCR algorithm is used to solve (7.19). For this algorithm, at every iteration, the
product P\ entails the solution of a problem

(Q'F/Q)g" =17, (148)

where gP and h” are two interface vectors. The problem (7.20) is a projection of problem
(7.14) onto the subspace Q and is a second-level problem. If this subspace is chosen
small, the second-level problem also becomes a coarse level. If one looks at the domain
decomposition where Q is determined inside the subdomain, the factor Q“F;Q becomes
sparse with a structure determined from the connectivity with the other subdomains.
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Extension of the FETI-H method to the case of multiple right hand sides
Apz:fla 1= 17 s Nrhs (149)

can be done by considering properties of GCR iterations. Since at each GCR step a search
direction is generated which is A7 A-orthogonal, we have

(ATAzZ' 77) = (Az', Az?) = 0. (150)
where z is the search direction. If the first problem (n,,; = 1) has been solved in n; GCR
iterations, we have n; search directions available and (7.22) is valid for 4,5 = 1,--- ,nq,
i

To solve the second problem (n,,s = 2), an initial solution which approximates the
Krylov space of the first problem is constructed. This initial solution can be written as

P) = S1Ys, (151)
where S; = [z1,2z%,- -+ ,z}'] and y, is determined from
(ATA(xy — x9),S1y,) = 0. (152)
Because Ap, = f5, we find that
(STATAS,)y, = STATE,. (153)

Solving (7.25) is trivial because S{ A]AS; is a diagonal matrix. To find the research
direction in the second problem z,, the GCR algorithm is applied on Ap, = f5.

From the fact that the solution of the (j + 1)th problem is initiated by solving (7.25),
we can extend the method to n,,s > 2.
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8 Summary and outlook

In Sections 4-7, we have given some details about methods implemented for the Helmholtz
problem. In this section, we will conclude and summarize the information. We restrict on
the methods which are used to solve the discrete Helmholtz problem. We also discuss our
plans towards developing a general Helmholtz solver for 3-D inhomogeneous media. This
is not meant to restrict ourselves within the methods listed in this section.

8.1 Review on the present methods

Various methods and approaches have been used to solve the discrete Helmholtz equation.
Most efforts are aimed at methods to attack indefinite non-Hermitian matrices arising
from various discretizations. The degree of indefiniteness increases with the increase of
wavenumber k. High wavenumber problems are usually of practical interest.

Reference [52] notes that the use of direct methods based on Nested Dissection is
restricted to 2-D cases. In general 3-D cases with inhomogenity, the direct methods suffer
from too much fill-in. Some authors direct the research towards iterative methods. The
early work of Bayliss, Goldstein, and Turkel [4] marked the use of iterative methods (CG) on
a Helmholtz problem. It is a well-known fact that the iterative methods are not competitive
without a preconditioner incorporated. For example, Bayliss, Goldstein, and Turkel [4] used
the discrete Laplace operator to precondition the normal equations. For a 2-D problem
with one radiation condition and three Dirichlet conditions at the boundaries, the number
of iterations increases significantly for high wavenumbers. For £ = 4.16 and k& = 21.33 the
numbers of iterations required are 308 and 915, respectively, which is considerably large in
comparison with recent preconditioners.

Recently, investigations on good preconditioners for Helmholtz problems are heavily
pursued. An example is AILU by Gander and Nataf [25, 26]. Numerical experiments for
the 2-D homogeneous case show that AILU outperforms the ILU(0) and ILU(0.02). (For
k = 5.0 the number of iterations to converge is 25). However, no results are reported
for general 3-D inhomogeneous problems so far. Another example is the preconditioner
based on separation of variables [52]. For 2-D test cases with simple inhomogenity the
linear system can be solved nearly independent of the domain and mesh size. However,
the preconditioner breaks down for complex inhomogeneous media.

Table 8.1 lists and summarizes some methods currently used for solving the Helmholtz
equation with some notes regarding their observable properties.

The domain decomposition method has also been investigated. From a practical imple-
mentation point of view, the domain decomposition method allows us to exploit parallelism.
Some methods are found to be nonscalable, e.g. the ADOP [36, 37, 38, 39]. For scalabil-
ity, the FETI-H [21, 60] method seems to be a good candidate for domain decomposition.
This method is not only scalable with respect to mesh size h but also with respect to the
subdomain size.

For the application of Algebraic Multigrid (AMG), we refer to references [64, 63].
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Table 8.1: [terative methods for solving the discrete Helmholtz equation for a single
domain and homogeneous medium (except indicated differently).

Iter. method Preconditioner Ref

note

CGNR Laplace operator  [4]

Generalized SPD  [41]

GMRES Spectral prec. [50]
Fast Poisson-type  [42]
Multigrid [17]
Generalized SPD  [41]

BiCGSTAB  Sep. of Variables  [52]

QMR SSOR 46, 23]
TLU(0) [27]
TLU(0.02) [27]
AILU [27]

GCR Local lump (60, 21]

easy to implement

slowly converging

easy to implement

fast converging

works for high k

easy for inhomog. medium
enhancement by MG

multi layer DDM

difficult to implement

fast for low k

storage problem for £ > 30
inhomogeneous medium

mesh independent
breakdowns for high inhomogenity
Never tested for Helmholtz eq.
comparison test

breakdowns

comparison test

memory problems

fast converging

difficult to optimize p and ¢
further testing required

DDM: FETI-H

promising for parallelism

8.2 Problem generalization in 2D

We aim at the solutions of the Helmholtz problem for general situations, i.e. the wave
propagates in a 3D inhomogeneous medium. As an intermediate step, investigations on a
2D inhomogeneous problem will be pursued. We will start with a simple problem: a 2D
problem with two different media constant as depicted in Figure 8.1a. Our first idea is to
generalize the AILU preconditioner to such a problem. So far, the AILU preconditioner
has only been used on a constant medium. Since AILU is constructed using the parabolic
factorization, the issue stemming directly from this problem is how to tackle the varying

k in the parabolic factorization.

For a more realistic geophysical problem, we first consider radiation conditions on all
boundaries except for the earth surface as a test case (corresponding to z = 0). There, we
impose either the Dirichlet or Neumann conditions.
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Figure 5: 2D test cases. S = Sommerfeld, D = Dirichlet, N = Neumann

A more difficult problem is the 2-D wedge problem [52] which is roughly sketched in
Figure 8.1b. The same boundary conditions will be imposed.

The AILU preconditioner has a similarity with the separation of variables from the
fact that the waves are decomposed allowing us to reduce the dimension of the problem.
Therefore, some ideas from the separation of variables may also be implemented on the
AILU preconditioner.

In this part, the study will include the spectral analysis of AILU. The analysis will be
done for a moderate wavenumber which already causes the discrete system to be indefinite.
From this analysis, we aim for two objectives: first, to gain a deeper insight in AILU, and
secondly to find a possible improvement of the present AILU preconditioner. We summarize
our plans in Table 8.2.

In order to allow less gridpoints per wavelength (about 10 to 20 per wavelenght) higher
order finite difference discretizations will be used. We will investigate the nine-point stencil
discussed in Section 3 providing fourth-order accuracy.

8.3 3-D Problem generalization

Generalization to 3-D problem is done by first considering a 3-D homogeneous medium case.
After discretizing with the fourth-order accurate finite difference scheme, the Helmholtz
problem is solved using several iterative methods. We consider QMR, BiICGSTAB, and
GMRES following the experience we have from 2-D. To enhance convergence, the AILU
preconditioner for 3-D problems will be constructed. We compare the results with several
other preconditioners, e.g. the ILU(0) and ILU(%0l). As an addition, spectral analysis will
also be performed to look for possible enhancements.
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Table 8.2: Plans for developing 3D Helmholtz solver.

2-D problem Deeper insight on AILU with possible generalizations
Relation with separation of variables and FF
Spectral analysis
Test 1: Simple imhomogeneous medium (Figure 8.1a)
Test 2: Wedge problem (Figure 8.1b)
p and ¢ optimization issue
Resonance problem
Comparison with CGNR
3-D problem Generalization of AILU in 3-D inhomogeneous problem
(AILU-related) Spectral analysis
Convergence acceleration: Deflation
Convergence acceleration: FETI-H method
Parallelisation
Resonance problem
Comparison with CGNR
3D problem ILUT [54]
(non-AILU) MRILU [10] and NGILU [65]
AMG-type [40]
Normal equation (with CGNR)

Following this is the solution of a 3D inhomogeneous medium problem with a typical
wedge. This problem is solved using the same iterative algorithms: QMR, BiCGSTAB,
and GMRES with the AILU as the preconditioner. Improvement of the convergence is
investigated. We will study and implement two domain-decomposition-type methods to
accelerate convergence. The first one is the Deflation [22] and the second one is the FETI-
H method [21]. At this stage parallelization will also be part of the implementation.
Recently, results on 3-D inhomogeneous problems are not yet available and the research
wiil be directed towards a more general problem.

In the case that AILU can not improve the computational performance, investigations is
turned to other matrix-based preconditioners. Falling into this category is a preconditioner
with more fill-in. We will investigate the use of ILUT [54]. The MRILU and NGILU which
have less complexity compared to AMG but have very similar convergence will also be
studied. Investigations include the algebraic multigrid (AMG) and the normal equation
with CGNR (see Table 8.2).

From our first experience with the preconditioned CGNR algorithm, it is found that this
algorithm is very simple to implement and shows comparable convergence performance with
QMR and the AILU precondtioner. We will also investigate an efficient implementation
of CGNR in 3-D case, especially in handling the matrix inversion of the preconditioned
system. The resulting performance will be compared with other methods.
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