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Abstract

In this paper a generalized nonlinear Van der Pol oscillator equation Ẍ+X(2m+1)/(2n+1) =
ε
(

1 − X2
)

Ẋ with m, n ∈ N will be studied. It will be shown that the recently devel-
oped perturbation method based on integrating vectors can be used to approximate
first integrals and periodic solutions. The existence, uniqueness and stability of time-
periodic solutions are obtained by using the approximations for the first integrals.

Keywords: Integrating vector, first integral, perturbation method, nonlinear oscilla-

tor, periodic solution.

1 Introduction

We consider a generalized nonlinear Van der Pol oscillator equation

Ẍ +X
2m+1
2n+1 = ε

(

1 −X2
)

Ẋ, (1.1)

where X = X(t), m, n ∈ N , and where ε is a small parameter satisfying 0 < ε � 1. The
dot represents differentiation with respect to t. Many researchers studied the unperturbed
nonlinear oscillator equation

Ẍ + f(X) = 0. (1.2)
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For instance, Awrejcewicz and Andrianov [1, 2] studied (1.2) using the so-called small
and large δ-method. Using a generalized harmonic balance method Mickens and his co-
authors [3]-[6] also studied equation (1.2). For a particular case of equation (1.2) with
f(X) = X1/(2n+1) some results have been presented in [2, 3, 5, 7]. The periods of the
periodic solutions for this particular case have been approximated by Mickens in [3, 5].
Moreover, exact expressions for the periods of the periodic solutions for this particular
equation (1.2) have been given by Van Horssen in [7]. Equation (1.1) with m = n = 0
is the well-known Van der Pol equation. Recently (1.1) with m = 0 and n = 1 has
been studied in [6]. Approximations of the periodic solution are constructed in [6] by
using the method of harmonic balance. In this paper the recently developed perturbation
method based on integrating factors (see [8]-[12]) is used to approximate first integrals and
periodic solutions for the generalized nonlinear Van der Pol oscillator (1.1). In this paper
not only asymptotic approximations of first integrals are constructed but also asymptotic
approximations of the periodic solutions and their periods are determined. The presented
results include existence, uniqueness, and stability properties of the periodic solutions. In
this paper we show that straightforward expansions in ε can be used to construct asymptotic
results on long time-scales. This paper is organized as follows. In section 2 of this paper
it is shown how approximations of first integrals can be constructed. It will be shown in
section 3 of this paper how the existence, the stability, and the period of time-periodic
solutions can be determined from the constructed approximations of the first integrals.
Finally in section 4 of this paper some conclusions will be drawn and some remarks will
be made.

2 Approximations of First Integrals

In this section we will show how the perturbation method based on integrating factors can
be applied to approximate first integrals for a generalized nonlinear Van der Pol oscillator.
Consider a generalized nonlinear Van der Pol oscillator equation

Ẍ +X
2m+1
2n+1 = ε

(

1 −X2
)

Ẋ. (2.1)

The unperturbed solutions of (2.1) with ε = 0 form a family of periodic orbits. This family
covers the entire ”phase plane” (X, Ẋ). Each periodic orbit corresponds to a constant

energy level E = 1
2
Ẋ2 + (2n+1)

(2m+2n+2)
X(2m+2n+2)/(2n+1). To a constant energy level E a phase

angle ψ can be defined by ψ =
∫ X

0
dr

√

2E−

(2n+1)
(m+n+1)

r(2m+2n+2)/(2n+1)
. We use the transformation

(X, Ẋ) 7−→ (E, ψ), and then obtain











Ė = εẊf = g1(E, ψ),

ψ̇ = 1 − ε
∫ X

0
dr

(2E−

(2n+1)
(m+n+1)

r(2m+2n+2)/(2n+1))
3
2
Ẋf = g2(E, ψ),

(2.2)
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where f = (1 −X2) Ẋ. By multiplying the first and the second equation in (2.2) by the
integrating factors µ1 and µ2 respectively it follows from the theory of integrating factors
as presented in [8]-[10] that µ1 and µ2 have to satisfy







∂µ1

∂ψ
= ∂µ2

∂E
,

∂µ1

∂t
= − ∂

∂E
(µ1g1 + µ2g2) ,

∂µ2

∂t
= − ∂

∂ψ
(µ1g1 + µ2g2) .

(2.3)

By expanding µ1 and µ2 in powers series in ε and by substituting g1, g2, and the expansions
for the integrating factors into (2.3), and by taking together terms of equal powers in ε,
we finally obtain the usual O(εn)-problems, for n=0,1,2,. . . (see also [9]-[12]). The O(ε0)-
problem is



























∂µ1,0

∂ψ
=

∂µ2,0

∂E
,

∂µ1,0

∂t
= −

∂µ2,0

∂E
,

∂µ2,0

∂t
= −

∂µ2,0

∂ψ
,

(2.4)

and for n ≥ 1 the O(εn)-problems are


























∂µ1,n

∂ψ
=

∂µ2,n

∂E
,

∂µ1,n

∂t
= − ∂

∂E
(µ1,n−1g1,1 + µ2,n−1g2,1 + µ2,n) ,

∂µ2,n

∂t
= − ∂

∂ψ
(µ1,n−1g1,1 + µ2,n−1g2,1 + µ2,n) ,

(2.5)

where εg1,1 = g1 , εg2,1 = g2 − 1. The O(ε0)-problem (2.4) can readily be solved, yielding

µ1,0 = h1,0(E, ψ− t) and µ2,0 = h2,0(E, ψ− t) with
∂h1,0

∂ψ
=

∂h2,0

∂E
. The functions h1,0 and h20

are still arbitrary and will now be chosen as simple as possible. We choose h 1,0 ≡ 1 and
h2,0 ≡ 0, and so (see also [8]-[12])

µ1,0 = 1, µ2,0 = 0. (2.6)

Then, from the order ε-problem (2.5) µ1,1 and µ2,1 can be obtained, yielding















µ1,1 = − ∂
∂E

(

∫ t
(

Ẋ2 − Ẋ2X2
)

dt̄
)

,

µ2,1 = − ∂
∂ψ

(

∫ t
(

Ẋ2 − Ẋ2X2
)

dt̄
)

.

(2.7)

An approximation F1 of a first integral F = constant of system (2.2) can now be obtained
from (2.6), (2.7), and the theory of integrating factors as presented in [8]-[12], yielding

F1 = E − ε

∫ t (

Ẋ2 − Ẋ2X2
)

dt̄, (2.8)
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where

Ẋ = ±

√

2E −
2n+ 1

m + n+ 1
X

2m+2n+2
2n+1 . (2.9)

The elementary procedure to construct F1 using the integrating factors is for instance given
in [8]-[12]. How well F1 approximates F in a first integral F = constant follows from the
theorems as presented in [9]-[12]. In this case it can be shown that (using the theory as
presented in [9]-[12])

dF1

dt
= εµ1,1g1 + εµ2,1(g2 − 1) = ε2R1(E, ψ), (2.10)

where g1 and g2, and µ1,1 and µ2,1 are given by (2.2) and (2.7) respectively. In a similar way
we can construct a second (functionally independent) approximations of a first integral by
taking

µ2,0 = 1, µ1,0 = 0, (2.11)

instead of (2.6). The O(ε)-problem (2.5) can now again be solved, yielding























µ1,1 = ∂
∂E

(

∫ t

(

∫ X

0
dr

(2E−

(2n+1)
(m+n+1)

r(2m+2n+2)/(2n+1))
3
2

(

Ẋ2 − Ẋ2X2
)

)

dt̄

)

,

µ2,1 = ∂
∂ψ

(

∫ t

(

∫ X

0
dr

(2E−

(2n+1)
(m+n+1)

r(2m+2n+2)/(2n+1))
3
2

(

Ẋ2 − Ẋ2X2
)

)

dt̄

)

.

(2.12)

An approximation F2 of a first integral F = constant of system (2.2) can now be obtained
from (2.11), (2.12), and the theory of integrating factors as presented in [8]-[12], yielding

F2(E, ψ, t) = (ψ− t)+ ε

[

∫ t
(

∫ X

0

dr

(2E −
(2n+1)

(m+n+1)
r(2m+2n+2)/(2n+1))

3
2

(

Ẋ2 − Ẋ2X2
)

)

dt̄

]

.

(2.13)
How well F2 approximates a first integral F = constant follows from the theorems as
presented in [9]-[12]. In this case we have

dF2

dt
= εµ1,1g1 + εµ2,1(g2 − 1) = ε2R2(E, ψ), (2.14)

where g1 and g2, and µ1,1 and µ2,1 are given by (2.2) and (2.12) respectively.

3 Approximations of time-periodic solutions

In section 2 we constructed asymptotic approximations of first integrals. In this section
we will show how the existence, the stability, and the approximations of non-trivial, time-
periodic solutions can be determined from these asymptotic approximations of the first
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integrals. Let T < ∞ be the period of a periodic solution and let c1 be a constant in
the first integral F (E, ψ, t; ε) = constant for which a periodic solution exists. Consider
F = c1 for t = 0 and t = T . Approximating F by F1 (given by (2.8)), eliminating c1 by
subtraction, we then obtain (using the fact that E(0) = E(T ) for a periodic solution)

ε

(
∫ T

0

(

Ẋ2
− Ẋ2X2

)

dt̄

)

= O(ε2) ⇔ ε

(

∫ X(T )

X(0)

(

Ẋ − ẊX2
)

dX

)

= O(ε2). (3.1)

Without loss of generality it can be assumed that at t = 0 in (X(0), Ẋ(0)) = (A, 0) with
A > 0. Because of the symmetry of the unperturbed orbits in the phase plane it follows

that
(

X
(

T
2

)

, Ẋ
(

T
2

)

)

= (−A, 0). From (3.1) it then follows that

εI(E) = O(ε2), where I(E) = 4

∫ A

0

(

Ẋ − ẊX2
)

dX. (3.2)

To have a periodic solution for (2.1) we have to find an energy E such that I(E) is equal to
zero (see also [11, 14, 15]). It should be observed that the same problem (that is, find zeros
of I(E)) is obtained when the Poincaré return map technique or the Melnikov method is
applied (see also [13]-[16]). To find this energy E we rewrite I(E) in (using (2.9))

I(E) = 4I1(E)

(

1 −
I2(E)

I1(E)

)

, where (3.3)



















I1(E) =
∫ A

0

(

2E − 2n+1
m+n+1

X
2m+2n+2

2n+1

)
1
2
dX,

I2(E) =
∫ A

0
X2
(

2E − 2n+1
m+n+1

X
2m+2n+2

2n+1

)
1
2
dX.

(3.4)

Now it should be observed that E(t) = 1
2

˙X(t)
2
+ (2n+1)

(2m+2n+2)
X(t)(2m+2n+2)/(2n+1), and

E(0) = (2n+1)
(2m+2n+2)

A(2m+2n+2)/(2n+1). From (2.2) we can see that E is constant up to O(ε)

on time-scales of O(1). By using the transformation X = Au in (3.4) and by using the
fact that E = E(0)+O(ε) for 0 ≤ t ≤ T it is easy to see from (3.2)-(3.4) that (3.2) can be
rewritten in

4εI1(E)(1 −Q) = O(εp) with p > 1, (3.5)

where

Q =

(

2E
m+ n+ 1

2n+ 1

)
2n+1

m+n+1 J2(m,n)

J1(m,n)
, (3.6)
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and where














J1(m,n) =
∫ 1

0

√

1 − u
2m+2n+2

2n+1 du,

J2(m,n) =
∫ 1

0

√

u4 − u
2m+10n+6

2n+1 du.

(3.7)

It is easy to see that J1(m,n) > 0 and J2(m,n) > 0 for all values of m, n ∈ N . It is
also easy to see from (3.6) that dQ

dE
> 0. This implies that Q is strictly monotonically

increasing. Since Q is strictly monotonically increasing in E we can conclude that there
exists a unique, nontrivial E-value such that I(E) = 0. From these results it can be
concluded (see also for instance [[11], section 4.2]) that there exists a unique, nontrivial,
stable time-periodic solution for (2.1). Suppose that at t = 0 X(0) = A0 and Ẋ(0) = 0 for
the periodic solution. Then,

1

2
Ẋ2 +

2n+ 1

2m+ 2n + 2
X

2m+2n+2
2n+1 =

2n+ 1

2m+ 2n+ 2
A

2m+2n+2
2n+1

0 ≡ E0, (3.8)

where E0 is the energy such that we have a periodic solution. Obviously E0 satisfies (see
also (3.3) and (3.5))

(

2E0
m + n+ 1

2n + 1

)
2n+1

m+n+1 J2(m,n)

J1(m,n)
= 1, (3.9)

up to O(εp−1) with p > 1. The period of the periodic solution can be calculated up to
O(εp) with p > 1 from (3.8), yielding

dX

dt
= ±

√

2n+ 1

m + n+ 1

√

A
2m+2n+2

2n+1

0 −X
2m+2n+2

2n+1 , (3.10)

or equivalently

√

m+ n + 1

2n+ 1

dX

dt

1
√

A
2m+2n+2

2n+1

0 −X
2m+2n+2

2n+1

= ±1, (3.11)

Then, integrating (3.11) with respect to t from t = 0 to T
2

yields

Tm,n = 4

√

m + n+ 1

2n+ 1
A

n−m
2n+1

0

∫ 1

0

du
√

1 − u
2m+2n+2

2n+1

. (3.12)

Using a standard numerical integration routine the period (3.12) of the periodic solution
can easily be approximated numerically (up to O(εp−1) with p > 1).
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4 Conclusions and remarks

In this paper it has been shown that the perturbation method based on integrating factors
can be used efficiently to approximate first integrals for a generalized nonlinear Van der
Pol oscillator. In section 2 of this paper it has been shown how approximations of first
integrals for this oscillator equation can be obtained. It has been shown in section 3 how
the existence, the stability, and the period of the time-periodic solution can be deduced
from the approximations of the first integrals.
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