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Abstract

In this paper, an eigenvalue analysis of the SIMPLE preconditioning for incom-

pressible flow is presented. Some formulations have been set up to characterize the

spectrum of the preconditioned matrix. This leads to a generalized eigenvalue prob-

lem. The generalized eigenvalue problem is investigated. Some eigenvalue bounds

and the estimation for the spectral condition number in the symmetric case are given.

Numerical tests are reported to illustrate the theoretical discussions.
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1 Introduction.

The steady state incompressible Navier-Stokes equations

{
−ν∆u + u · gradu + grad p = f,

− div u = 0,

combined with some boundary conditions, are widely used to simulate the incompressible
flow of a fluid. Discretization and linearization of the equations leads to the following large
sparse linear algebraic system

(
Q G

GT O

)(
u

p

)
=

(
b1

b2

)
, (1.1)
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where Q ∈ R
n×n , G ∈ R

n×m , m 6 n, det(Q) 6= 0, rank(G) = m; u ∈ R
n and p ∈ R

m are
the velocity vector and the pressure vector respectively. For problems with three space
dimensions, iterative solvers are required. Preconditioning often determines the numerical
performance of the Krylov subspace solvers [2].

In [9, 10], Vuik proposed GCR-SIMPLE(R) algorithm for solving the large linear system
(1.1). The algorithm can be considered as a combination of the Krylov subspace method
GCR [3] with the SIMPLE(R) algorithm[5]. In this combined algorithm, the SIMPLE(R)
iteration is collaborated as a preconditioner with the GCR method. Numerical tests indi-
cate that the SIMPLE(R) preconditioning is effective and competitive for practical use.

In this paper, we focus on the eigenvalue analysis of the SIMPLE preconditioned matrix
Ã. Two related formulations are derived to describe the spectrum of Ã. The spectrum
has some connection with that of the Schur complement of the matrix A. The relationship
between the two different formulations has been investigated by using the theory of matrix
singular value decomposition. A diagonal scaling technique proposed by Vuik[9] is studied.
Some useful eigenvalue bounds have been got in symmetric situation. Numerical tests are
used to illustrate the theoretical bounds.

In the remaining parts of this paper, the linear system (1.1) is abbreviated as Ax = b,
where A ∈ R

(n+m)×(n+m) , b ∈ R
n+m . Notations have the same meaning with references

[10, 9]. σ(A) represents the set of all eigenvalues of matrix A, for example. Besides, we
assume that the matrix Q, its diagonal matrix D := diag(Q), and its Jacobi iteration
matrix J (J := D−1(D − Q)), are all nonsingular in this paper.

2 Formulations of the spectrum of the SIMPLE pre-

conditioned matrix.

Consider the right preconditioning to the linear system (1.1)

AP−1y = b, x = P−1y. (2.1)

When the SIMPLE algorithm is used as preconditioning, it is equivalent to choose the
preconditioner P −1 as[10, 11]

P−1 = BM−1 , P = MB−1, (2.2)

where,

B =

(
I −D−1G

O I

)
, M =

(
Q O

GT R

)
, D = diag(Q), R = −GT D−1G.

We call this preconditioning a SIMPLE preconditioning, and the preconditioner P −1 as
SIMPLE preconditioner. For SIMPLE preconditioning, we have the following result:
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Proposition 2.1. If the right preconditioner P −1 is taken to be the matrix defined by
(2.2), then the preconditioned matrix is

Ã := AP−1 =

(
I − (I − QD−1)GR−1GT Q−1 (I − QD−1)GR−1

O I

)
. (2.3)

And, therefore, the spectrum of the SIMPLE preconditioned matrix Ã is

σ(Ã) = {1} ∪ σ(I − (I − QD−1)GR−1GT Q−1). (2.4)

Proof. It is easy to verify that

M−1 =

(
Q−1 O

−R−1GT Q−1 R−1

)
, (2.5)

and
Ã = AP−1 = ABM−1

=

(
Q G

GT O

)(
I −D−1G

O I

)(
Q−1 O

−R−1GT Q−1 R−1

)

=

(
I − (I − QD−1)GR−1GT Q−1 (I − QD−1)GR−1

O I

)
.

So, the fact about the spectrum of Ã, described by (2.4), follows.

Now, we study the spectrum defined by (2.4) in more detail. By multiplying with matri-
ces Q−1 and Q from the left- and right-hand side of the matrix I−(I−QD−1)GR−1GT Q−1

respectively, we get

σ(I − (I − QD−1)GR−1GT Q−1) = σ(I − (Q−1 − D−1)GR−1GT )
= σ(I − D−1(D − Q)Q−1GR−1GT )
= σ(I − J Q−1GR−1GT )

,

in which, the matrix J := D−1(D − Q) is the Jacobi iteration matrix for the matrix Q.
This observation leads to the following proposition:

Proposition 2.2. For the SIMPLE preconditioned matrix Ã,

1. 1 is an eigenvalue with multiplicity at least of m, and

2. the remaining eigenvalues are 1−µi, i = 1, 2, · · · , n, where µi is the i− th eigenvalue
of the generalized eigenvalue problem

Ex = µZx, (2.6)

where,
E = GR−1GT ∈ R

n×n , Z = QJ−1 ∈ R
n×n .
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Next, to investigate the spectrum of Ã more accurately, we derive another formulation
of it. Consider the eigenvalue problem

Ãx = λx,

i.e.,
AP−1x = λx. (2.7)

We know that AP−1 has the same spectrum as P −1A except for some possible zero eigenval-
ues [1]. When matrices A and P are both nonsingular, it holds that σ(AP −1) = σ(P−1A).
So, the eigenvalue problem (2.7) is equivalent to the generalized eigenvalue problem

Ax = λPx. (2.8)

Here,

A =

(
Q G

GT O

)
,

and

P = MB−1 =

(
Q O

GT R

)(
I D−1G

O I

)
=

(
Q QD−1G

GT O

)
.

The generalized eigenvalue problem (2.8) can be written as

(
Q G

GT O

)(
u

p

)
= λ

(
Q QD−1G

GT O

)(
u

p

)
, (2.9)

that is {
Qu + Gp = λ(Qu + QD−1Gp),

GTu = λGTu.

Multiply by Q−1 from the left to the first equation, and re-arrange the two equations as
{

(1 − λ)u = (λD−1 − Q−1)Gp,

GT (1 − λ)u = 0.
(2.10)

From (2.10), we see that 1 is an eigenvalue of (2.9).Note that the matrix D−1 − Q−1 =
−JQ−1 is nonsingular by assumption, from the right-hand side of the first equation of
(2.10)(λ = 1),we can see that the eigenvectors corresponding to eigenvalue 1 are:

vi =

(
ui

0

)
∈ R

(n+m) , ui ∈ R
n , i = 1, 2, · · · , n,

where, {ui}
n
i=1 is a basis of R

n .
For λ 6= 1, it follows from the second equation in (2.10) that GT u = 0. Multiplying the

first equation in (2.10) with GT shows that

0 = −GT Q−1Gp + λGT D−1Gp,

−GT Q−1Gp = −λGT D−1Gp.
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It follows that
Sp = λRp,

in which, S = −GT Q−1G ∈ R
m×m is the Schur complement of the matrix A, and R =

−GT D−1G ∈ R
m×m .

To conclude the above analysis, the following proposition is derived.

Proposition 2.3. For the SIMPLE preconditioned matrix Ã,

1. 1 is an eigenvalue with multiplicity of n, and

2. the remaining eigenvalues are defined by the generalized eigenvalue problem

Sp = λRp. (2.11)

In the following section, we investigate the generalized eigenvalue problems in more
detail.

3 Further investigation on the spectrum of Ã

In section 2, two different generalized eigenvalue problems (2.6) and (2.11) have been de-

rived to describe the spectrum of Ã. In this section, we shall show that the two generalized
eigenvalue problems are closely related.

Firstly, we investigate the generalized eigenvalue problem (2.11). Re-write matrix R as

R = −GT D−1G = −(D− 1

2 G)T (D− 1

2 G).

Making the singular value decomposition of the matrix D− 1

2 G ∈ R
n×m , we have

D− 1

2 G = UΣV T , (3.1)

in which,U ∈ R
n×n , V ∈ R

m×m are unitary matrices,i.e., U T U = I ∈ R
n×n , V T V = I ∈

R
m×m , and

Σ =




σ1

σ2 O
. . .

σm

O




∈ R
n×m ,

σi, i = 1, 2, · · · , m, are the singular values of the matrix D− 1

2 G, which are all positive
numbers since rank(D− 1

2 G) = m. So,

G = D
1

2 UΣV T ,

R = −(UΣV T )T (UΣV T ) = −V ΣT ΣV T ,

S = −GT Q−1G

= −(D
1

2 UΣV T )T Q−1(D
1

2 UΣV T )

= −V ΣT UT D
1

2 Q−1D
1

2 UΣV T .
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It follows that
R−1S = V (ΣT Σ)−1ΣT UT D

1

2 Q−1D
1

2 UΣV T . (3.2)

To study the generalized eigenvalue problem (2.6), by using the same singular value

decomposition for matrix D− 1

2 G, we have

E = GR−1GT

= (D
1

2 UΣV T )(−V (ΣT Σ)−1V T )(D
1

2 UΣV T )T

= −D
1

2 UΣ(ΣT Σ)−1ΣT UT D
1

2 .

The matrix Z is a notation for matrix QJ−1, so

Z−1 = JQ−1 = D−1(D − Q)Q−1 = (Q−1 − D−1).

Finally, we get
Z−1E = −(Q−1 − D−1)D

1

2 UΣ(ΣT Σ)−1ΣT UT D
1

2 . (3.3)

Multiplying by U T D
1

2 and D− 1

2 U to (3.3) from the left-side and right-side respectively, a
spectrum equivalent matrix is produced as

UT D
1

2 Z−1ED− 1

2 U = −UT D
1

2 Q−1D
1

2 UΣ(ΣT Σ)−1ΣT + Σ(ΣT Σ)−1ΣT .

We denote this equation by

UT D
1

2 Z−1ED− 1

2 U = −MN + N, (3.4)

in which,
M = UT D

1

2 Q−1D
1

2 U ∈ R
n×n ,

and

N = Σ(ΣT Σ)−1ΣT

=




σ1

σ2

. . .

σm

O




n×m




1
σ2

1
1
σ2

2
. . .

1
σ2

m




m×m




σ1

σ2

. . . O

σm




m×n

=




1
1 O

. . .

1
O O




n×n

=

(
Im O

O O

)
∈ R

n×n .
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Partitioning matrix M according to the structure of N , (3.4) can be written in a sub-
matrix form

UT D
1

2 Z−1ED− 1

2 U = −MN + N

= −

(
M11 M12

M21 M22

)(
Im O

O O

)
+

(
Im O

O O

)

=

(
Im − M11 O

−M21 O

)
.

(3.5)

Its characteristic polynomial is

det(µI − UT D
1

2 Z−1ED− 1

2 U) = µn−m det((µ − 1)Im + M11).

So, we get to know that 0 is an eigenvalue of Z−1E with multiplicity of n − m, and
the remaining eigenvalues are µi = 1 − ηi, i = 1, 2, · · · , m, where ηi is the i−th nonzero
eigenvalue of the sub-matrix M11. From (3.5),ηi is also an eigenvalue of MN at the same
time, since that

det(ηI − MN) = ηn−m det(ηIm − M11).

By Proposition 2.2, we have

σ(Ã) = {1} ∪ {1 − µi} = {1} ∪ {ηi}, (3.6)

in which, the eigenvalue 1 has the multiplicity of m + (n−m) = n, and η i ∈ σ(MN), ηi 6=
0, i = 1, 2, · · · , m.

On the other hand, if we denote

T1 := UT D
1

2 Q−1D
1

2 UΣ ∈ R
n×m ,

and
T2 := (ΣT Σ)−1ΣT ∈ R

m×n ,

then MN = T1T2. We know that T1T2 ∈ R
n×n and T2T1 ∈ R

m×m have the same spectrum
except for the possible zero eigenvalue [1, pp.69]. The spectrum of T2T1 is

σ(T2T1) = σ((ΣT Σ)−1ΣT UT D
1

2 Q−1D
1

2 UΣ)

= σ(V (ΣT Σ)−1ΣT UT D
1

2 Q−1D
1

2 UΣV T )
= σ(R−1S).

The last equation is based on the fact of equation (3.2). This relation motivates the
following proposition.

Proposition 3.1. For the two generalized eigenvalue problem (2.6) and (2.11), suppose
that µi ∈ σ(Z−1E), i = 1, 2, · · · , n, and λi ∈ σ(R−1S), i = 1, 2, · · · , m, the relationship
between the two problems is that µ = 0 is an eigenvalue of (2.6) with multiplicity of n−m,
which can be denoted as µm+1 = µm+2 = · · · = µn = 0, and that λi = 1−µi, i = 1, 2, · · · , m,

holds for the remaining m eigenvalues.
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4 The influence of the diagonal scaling.

Vuik [9, 10] proposed a diagonal scaling strategy for practical implementation of the SIM-
PLE preconditioning. Scale the coefficient matrix A by (left) multiplying the diagonal
matrix

D̂ :=

(
D−1 O

O D−1
R

)
, (4.1)

where,
D = diag(Q), DR = diag(R), R = −GT D−1G.

After the scaling, the coefficient matrix becomes to be

A := D̂A =

(
D−1Q D−1G

D−1
R GT O

)
. (4.2)

At this moment,

D = diag(D−1Q) = I ∈ R
n×n ,R = −(D−1

R GT )D−1(D−1G) = D−1
R R ∈ R

m×m ,

and

B =

(
I −D−1G

O I

)
,M =

(
D−1Q O

D−1
R GT R

)
,M−1 =

(
Q−1D O

−R−1D−1
R GT Q−1D R−1

)
.

The SIMPLE preconditioned matrix now is

Ã = ABM−1

=

(
D−1Q D−1G

D−1
R GT O

)(
I −D−1G

O I

)(
Q−1D O

−R−1D−1
R GT Q−1D R−1

)

=

(
Ã11 Ã12

Ã21 Ã22

)
,

in which, by doing some elementary matrix calculation, these sub-matrices are:

Ã11 = I + D−1
[
QD−1GR−1D−1

R GT Q−1 − GR−1D−1
R GT Q−1

]
D

= I − D−1Q(Q−1 − D−1)GR−1GT Q−1D,

Ã12 = −D−1QD−1GR−1 + D−1GR−1 = D−1(I − QD−1)GR−1,

Ã21 = D−1
R GT Q−1D + D−1

R GT D−1GR−1D−1
R GT Q−1D = O,

Ã22 = −D−1
R GT D−1GR−1 = I.

Finally, it follows that

Ã =

(
I − D−1Q(Q−1 − D−1)GR−1GT Q−1D D−1(I − QD−1)GR−1DR

O I

)
. (4.3)

Comparing the matrix Ã in (4.3) with the matrix Ã defined by (2.3), we find that
the spectra of both matrices are exactly the same. So, theoretically speaking, there is no
influence to the spectrum of the SIMPLE preconditioned matrix by the diagonal scaling
(4.1).
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5 Some eigenvalue bounds for symmetric case.

In this section, we assume that Q is symmetric positive definite, which corresponds to the
cases when term u gradu is deleted from Navier-Stokes equations in incompressible flow.
In this case, the coefficient matrix A is symmetric and indefinite.

Consider the generalized eigenvalue problem (2.11)

Sp = λRp. (5.1)

It is obvious that the problem −Sp = −λRp is completely equivalent to the problem
Sp = λRp. Since both −S and −R are s.p.d. matrices, we call (5.1) as a s.p.d. generalized
eigenvalue problem by neglecting the negative signs in both sides. For the s.p.d. generalized
eigenvalue problem, the extreme eigenvalues (λmax and λmin) are the extreme values of [1,
pp.379]:

pT Sp

pT Rp
=

pT GT Q−1Gp

pT GT D−1Gp
, p 6= 0, p ∈ R

m , (5.2)

which is the ratio of the Rayleigh quotients of S and R. So,

λmax = max
p6=0

pT GT Q−1Gp

pT GT D−1Gp
= max

p6=0

(Gp)T Q−1(Gp)

(Gp)TD−1(Gp)
. (5.3)

Since that the matrix G has column full rank, i.e. rank(G) = m, Gp = 0 if and only if
p = 0. Denoting y = Gp, it follows that

λmax ≤ max
y 6=0

yTQ−1y

yTD−1y
. (5.4)

Let µ1, µn be the largest and the smallest eigenvalues of the matrix Q, and d1, dn be the
largest and the smallest diagonal elements of Q respectively, then

λmax 6
d1

µn

. (5.5)

It is easy to show that

λmin >
dn

µ1
(5.6)

by a similar argument.
So, combining (5.5), (5.6) and Proposition 2.3, we get the following bounds for the

eigenvalues of the preconditioned matrix Ã:

min
{
1,

dn

µ1

}
6 λ 6 max

{
1,

d1

µn

}
, ∀λ ∈ σ(Ã). (5.7)

If the both sides of (5.7) are taken to be dn
µ1

and d1
µn

respectively, then

κ(Ã) =
λmax

λmin
6

d1

dn

·
µ1

µn

=
d1

dn

κ(Q), (5.8)

where, κ(·) represents for the (spectral) condition number.
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6 Numerical examples.

Two numerical test results are reported here to illustrate the discussions above.

Example 6.1. In this example, the coefficient matrix is taken from a discretised Navier-
Stokes equations on a 16×16 grid [10](length= 2, ν = 1).The dimensions are n = 544, m =
256, and n + m = 800. A ∈ R

800×800 is a nonsymmetric matrix.

The eigenvalues of the preconditioned matrix Ã were computed by both Proposition
2.2 and Proposition 2.3. The computing results were the same, which coincided with the
theoretical analysis. Spectra of A and Ã are plotted in Figure 6.1, and some extreme
eigenvalues are listed in Table 6.1.

0 0.5 1 1.5 2 2.5 3
−8

−6

−4

−2

0

2

4

6

8

Figure 6.1. Spectrum of A and Ã.

The ’+’ represents for the eigenvalues of A, while ’o’ for that of the preconditioned Ã.

Table 6.1. The extreme eigenvalues of A and Ã.

matrix max<(λi) min<(λi) max=(λi) max |λi| min |λi|
A 2.79074 0.03559 6.56341 6.76892 0.06018

Ã 1.46960 0.03000 0.70700 1.61894 0.21395

Example 6.2. The matrix A is obtained from a discretised Stokes equation on a 16×16 grid
by removing the Dirichlet boundary conditions. The resulted coefficient matrix A ∈ R

800×800

is symmetric, and Q ∈ R
544×544 is a s.p.d. matrix.

The extreme eigenvalues of A and Ã are listed in Table 6.2.
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Table 6.2. The extreme eigenvalues of A and Ã for example 6.2.

matrix λmin min |λi| λmax κ(·)
A −23.4555 0.0501 25.3762 1.7295 × 103

Ã 0.5049 0.5049 46.7880 344.1452
Q 0.0154 0.0154 2.5477 232.9809

diag(Q) 0.9600 0.9600 1.6000 1.6667

From example 6.1, we can see that the eigenvalues of the SIMPLE preconditioned
matrix Ã are clustered in a smaller region in the right -half plane. The results of example
6.2 agree with the theoretical eigenvalue bounds in section 5, which are:

0.96

2.547
= 0.377, and

1.6

0.0154
= 103.9.

Both examples indicate that the spectrum could be effectively improved by using the
SIMPLE preconditioner.

7 Concluding remarks and future work.

We have derived two formulations to describe the spectrum of the SIMPLE preconditioned
matrix Ã. These theoretical results could be helpful to achieve new insights for this pre-
conditioning. The methodology in this paper is instructive for the eigenvalue analysis for
this type of preconditioning ( for example, the SIMPLER preconditioning). The eigenvalue
bounds in the symmetric case could be useful for evaluating the efficiency of the SIMPLE
preconditioned iterative solvers for Stokes equations.

The results for general non-symmetric matrix in this paper mainly have some theoretical
meaning. More accurate and more practical estimations about the spectrum of Ã need to
be done. The main issues towards this aim are the investigations to the specific generalized
eigenvalue problems (2.6) and (2.11). Pseudo-spectra analysis [7, 8] might be needed to
analyze these non-symmetric problems.

SIMPLER preconditioning seems to be more effective [10]. Eigenvalue analysis for this
preconditioning is also necessary.

Elman, Silvester, and Wathen [4, 6] proposed a kind of preconditioners based on some
approximations to the Schur complement of A. The comparisons of the theoretical proper-
ties and the numerical performance of this kind of preconditioners with that of the SIMPLE
type preconditioners should be done.

Acknowledgements: The first author thanks the Numerical Analysis group of the
Delft University of Technology for giving him good facilities during his stay at the Univer-
sity.
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