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January 21, 2003

Abstract

In 1983, Bayliss, Goldstein, and Turkel [2] proposed a preconditioner based on
the Laplace operator for solving the discrete Helmholtz equation efficiently with
CGNR. The preconditioner is especially effective for low wavenumber cases where
the linear system is slightly indefinite. Laird [11] proposed a preconditioner where
an extra term is added to the Laplace operator. This term is similar to that in
the Helmholtz equation but with reversed sign. In this paper, both approaches are
further generalized to a new class of preconditioners, the so-called ”Shifted Laplace”
preconditioners of the form ∆φ−αk2φ with α ∈ C . Numerical experiments for various
wavenumbers indicate the effectiveness of the preconditioner in terms of numbers of
iterations and arithmetic operations. The preconditioner is evaluated in combination
with GMRES, Bi-CGSTAB, and CGNR.

Keywords: Helmholtz equation, preconditioners, GMRES, Bi-CGSTAB

1 Introduction

In this paper, the time-harmonic wave equation in 2D heterogeneous media is solved nu-
merically. The underlying equation governs wave propagations and scattering phenomena
arising in acoustic problems in many areas, e.g., in aeronautics, marine technology, geo-
physics, and optical problems. In particular, we look for solutions of the Helmholtz equa-
tion discretized by using finite difference discretizations. Since the number of gridpoints
per wavelength should be sufficiently fine to result in acceptable solutions, for very high
wavenumbers the discrete problem becomes extremely large, prohibiting the use of direct

∗This research is financially supported by the Dutch Ministry of Economic Affairs under the project
BTS01044 ”Rigorous modelling of 3D wave propagation in inhomogeneous media for geophysical and
optical problems”
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methods. Iterative methods are the interesting alternative. However, Krylov subspace
methods are not competitive without a good preconditioner. In this paper, we consider a
class of preconditioners to improve the convergence of the Krylov subspace methods.

Various authors contributed to the development of powerful preconditioners for Helm-
holtz problems. The work in [2] and the follow-up investigation in [9] can be considered as
the start for the class of preconditioners we are interested in. A generalization has been
recently proposed in [11]. In [2, 9, 11], the preconditioners are constructed based on the
Laplace operator. In [11], this operator is perturbed by a real-valued linear term. This
surprisingly straightforward idea leads to very satisfactorily convergence. Furthermore,
the preconditioning matrix allows the use of SSOR, ILU, or multigrid to approximate the
inversion within an iteration.

In this paper, we will generalize the approach in [2, 9, 11]. We give theoritical and
numerical evidence that introducing a complex perturbation to the Laplace operator can
result in a better preconditioner than using a real-valued perturbation. We call the resulting
class of preconditioners ”Shifted Laplace” preconditioners. This class of preconditioners is
simple to construct and is easy to extend to inhomogeneous media.

There are various other types of preconditioners for general indefinite linear systems,
e.g. [6, 8, 12, 14]. In particular for Helmholtz problems, [8] proposed a class of precon-
ditioners (so called AILU) based on a parabolic factorization of the Helmholtz operator.
In [12] another approach is pursued by perturbing the real part of the matrix to make it
less indefinite. An interesting alternative is also described in [14], where a preconditioner
based on the separation of variables is proposed. This preconditioner effectively accelerates
the convergence for high wavenumbers.

This paper is organized as follows. In Section 2 we describe the mathematical model
and the discretization used to solve wave propagation problems. Iterative methods used
to solve the resulting linear system and the preconditioner will be discussed in Sections 3
and 4 respectively. In Section 5, we present the Shifted Laplace preconditioners and show
theoretically the convergence of this type of preconditioner. Numerical results are then
presented in Section 6.

2 Mathematical model

We solve wave propagations in a two dimensional medium with inhomogeneous properties
in a unit (scaled) domain governed by the Helmholtz equation

∆φ + k2(x, y)φ = f, Ω = [0, 1]2, (1)

where ∆ ≡ ∂2/∂x2 + ∂2/∂y2, the Laplace operator, and k(x, y) ∈ R is the wavenumber,
which may depend on the spatial position in the domain. We consider a so-called ”open
problem”, i.e., outgoing waves penetrate at least at one boundary without (spurious) reflec-
tions. To satisfy this condition, a radiation-type condition is imposed. Several formulations
have been developed to model the non-reflecting condition at the boundary [1, 3, 4]. In
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this paper, the first order Sommerfeld condition is chosen of the form

∂φ

∂n
− ikφ = 0, on a part of Γ = ∂Ω (2)

with n an outward direction normal to the boundary. Eventhough (2) may not be suffi-
ciently accurate for inclined outgoing waves [4], it is state-of-the-art in industrial codes,
easy to implement in our discretization, and requires only a few gridpoints. We anticipate
for possible reflections by considering a sufficiently large domain enabling any wave reflec-
tions to be immediately damped out and therefore be localized in the neighborhood of the
boundaries.

To find numerical solutions of (1), the equation is discretized using the second-order
difference scheme, in x-direction:

∂2φ

∂x2
=

1

∆x2
(φi−1 − 2φi + φi+1) + O(∆x2), (3)

and similar in y-direction. The first order derivative in (2) is discretized with the first order
forward scheme

∂φ

∂n
=

1

∆n
(φi+1 − φi) . (4)

Substituting (3) and (4) into (1) and (2), one obtains a linear system

Ap = b, A ∈ C
N×N , (5)

where A is a large, sparse symmetric matrix, and N is the number of gridpoints. Matrix A
is complex-valued and indefinite for large values of k. Throughout this paper, we say ”A
is indefinite” if A has eigenvalues with a positive real part and eigenvalues with negative
real part [6].

3 Krylov subspace method

For a large, but sparse matrix, Krylov subspace methods are very popular. The methods
are developed based on a construction of iterants in the subspace

Kj(A, r0) = span{r0, Ar0, A
2r0, · · · , Aj−1r0}, (6)

where Kj(A, r0) is the j-th Krylov subspace associated with A and r0 (see, e.g., [16]).
The basic algorithm within this class is the Conjugate Gradient method (CG) which

has the nice properties that it uses only three vectors in memory and minimizes the error
in the A-norm. However, the algorithm mainly performs well if the matrix A is symmetric,
and positive definite. In cases where one of these two properties is violated, CG may break
down. For indefinite linear systems, CG can be applied to the normal equations since the
resulting linear system becomes (positive) definite. Upon application of CG to the normal
equations, CGNR [16] results. Using CGNR, the iterations are guaranteed to converge.
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The drawback is that the condition number of the normal equations equals the square of
the condition number of A, slowing down the convergence drastically.

Some algorithms with short recurrences but without the minimizing property are con-
structed based on the bi-Lanczos algorithm [16]. Within this class, BiCG [5] exists and
its modifications: CGS [19] and Bi-CGSTAB [20]. In BiCG, the Krylov subspace is con-
structed from the orthogonalization of two residual vectors based on actual matrix A and
its transpose AT . Accordingly, one extra matrix/vector multiplication and one transpose
operation are needed. In CGS, the extra transpose operation can be avoided. One can ac-
celerate the convergence by squaring the polynomial. Whenever the convergence is smooth,
CGS converges twice as fast as BiCG. However, if the BiCG iteration diverges, CGS also
diverges twice as fast as BiCG. To stabilize CGS, rather than taking the square of the
polynomial, another polynomial can be chosen and multiplied with the polynomial of A.
This results in Bi-CGSTAB. In many cases, Bi-CGSTAB exhibits a smooth convergence
behavior and often converges faster than CGS. Also within this class are QMR [7] and
COCG [21].

MINRES [13] can also be used to solve indefinite symmetric linear systems, as well
as its generalization to the nonsymmetric case, GMRES [17, 16]. Both algorithms have
the minimization property but GMRES uses long reccurences. GMRES has the advantage
that theoretically the algorithm does not break down unless convergence has been reached.
The main problem in GMRES is that the amount of storage increases as the iteration
number increases. Therefore, the application of GMRES may be limited by the computer
storage. To remedy this problem, a restarted version, GMRES(m), can be utilized [17].
Since restarting removes the previous convergence history, GMRES(m) is not guaranteed
to converge. There is no specific rule to determine the restart parameter m. In cases
characterized by superlinear convergence, m should often be chosen very large which makes
restarting much less attractive. Another way to remedy the storage problem in GMRES
is by including a so-called ”inner iteration” as in GMRESR [22] and FGMRES [15].

Since the convergence theory of GMRES is well established, in our numerical experi-
ments mainly full GMRES is used. Of course, experiments then become very restrictive
(in this paper, upto k = 30) and for large problems, restarts become necessary. We also
compute solutions using Bi-CGSTAB and compare the convergence results with GMRES.
For completeness, since the underlying theory on the preconditioners is developed based
on the normal equations [11], we also include the convergence results using CGNR in the
last experiment.

4 Preconditioner

To improve the convergence of iterative methods, a preconditioner should be incorporated.
By left preconditioning, one solves a linear system premultiplied by a preconditioning

matrix M−1,
M−1Ap = M−1b. (7)
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Often, right preconditioning is used, i.e.,

AM−1p̃ = b, (8)

where p̃ = Mp. Both preconditionings show typically a very similar convergence be-
havior. However, for left preconditioning GMRES computes the residuals based on the
preconditioned system. In contrast, for right preconditioning GMRES computes the ac-
tual residuals. This difference may affect the stopping criterion to be used (see discussions
in [16]).

The best choice for M−1 is the inverse of A, which is impractical. If A is SPD, one
can approximate A−1 by one iteration of SSOR or multigrid. However, most practical
wave problems result in an indefinite linear system, for which SSOR or multigrid are not
guaranteed to converge (and do not converge).

In general, one can distinguish two approaches for constructing preconditioners: matrix-
based and operator-based. Within the first class lie, e.g., incomplete LU (ILU) factoriza-
tions. Several ILU techniques have been developed with different choices of the tolerated
fill-in in the sparsity pattern of A, e.g., zero fill-in ILU, or ILU with drop tolerance. Another
different approach but falling into this category is the approximate inverse (see, e.g., [16]).
An example of an operator-based preconditioner is analytic ILU (AILU) [8], which is based
on the continuous Helmholtz operator.

In the next sections, we will briefly discuss some preconditioners for Helmholtz prob-
lems.

4.1 ILU preconditioner

An ILU preconditioner can be constructed by performing Gauss elimination and dropping
some elements based on certain criteria. One can, e.g., drop all elements except for those
in the same diagonals as the original matrix. This leads to ILU(0). ILU(p) allows fill-in
in p additional diagonals. One can also drop elements which are smaller than a specified
value, giving ILU(tol). In applications involving M -matrices, this class of preconditioners is
sufficiently effective. However, preconditioners from this class are not effective for general
indefinite problems. Reference [8] shows some results in which ILU-type preconditioners
are used to solve the Helmholtz equation using QMR. For high wavenumbers k, ILU(0)
converges slowly, while ILU(tol) encounters storage problems (and also slow convergence).
For sufficiently high wavenumbers k, the cost to construct the ILU(tol) factors may become
very high.

Instead of constructing the ILU factors from A, the Helmholtz operator Lh = ∆ + k2

can be used to set up ILU-like factors in so-called analytic ILU (AILU) [8]. Starting with
the Fourier transform of the analytic operator in one direction, one constructs parabolic
factors of the Helmholtz operator consisting of a first order derivative in one direction
and a non-local operator. To remove the non-local operator, a localized approximation is
proposed, involving optimization parameters. Finding a good approximation for inhomo-
geneous problems is the major difficulty in this type of preconditioner. This is because the
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method is sensitive with respect to small changes in these parameters. The optimization
parameters depend on k(x, y).

4.2 Shifted Laplace preconditioner

Another approach is found in not looking for an approximate inverse of the discrete in-
definite operator A, but merely looking for a form of M , for which M −1A has satisfactory
properties for Krylov subspace acceleration. A first effort to construct a preconditioner
in such a way is in [2]. An easy-to-construct M = ∆ preconditioner is incorporated for
CGNR. One SSOR iteration is used whenever operations involving M −1 are required. The
subsequent work on this preconditioner with multigrid was done in [9].

Instead of the Laplace operator as the preconditioner, [11] investigates possible improve-
ments if an extra term −k2 is added to the Laplace operator. So, the Helmholtz equation
with reversed sign is proposed as the preconditioner M . This preconditioner is then used
in CGNR. One multigrid iteration is employed whenever M −1 must be computed. Instead
of the normal equations, our findings suggest that GMRES can solve the preconditioned
linear system efficiently in less arithmetic operations, despite of a storage problem for high
k. However, the latter problem can be overcome, e.g., by applying GMRES(m) or GM-
RESR. Bi-CGSTAB, which is considered a good alternative except for more matrix/vector
multiplications, does not perform satisfactorily [11]. (See also results in Section 6.)

In the next section, we concentrate on this type of preconditioners and present a gen-
eralization.

5 Spectral properties of Shifted Laplace precondition-

ers

In this section we provide some analysis to understand the performance of the Shifted
Laplace preconditioners. The analysis is based on eigenvalue properties of the precondi-
tioned system. It is often that the eigenvalue distribution can help in understanding the
behavior of CG-like iterations. Since the spectra of M −1A and AM−1 are identical, we
concentrate on left preconditioning.

5.1 Real Shifted-Laplace preconditioner

The preconditioners in [2, 11] can be motivated as follows. Consider the continuous 1D
Helmholtz equation, subject to discretization. For simplicity, suppose that both boundary
conditions are either Dirichlet or Neumann conditions.

We first consider the eigenvalues for the 1D Helmholtz operator without any precondi-
tioning. Eigenvalues of this standard problem, denoted by λs, are found to be

λs
n = k2

n − k2, kn = nπ, n ∈ N\{0}. (9)
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In (9), kn is the natural frequency of the system. (We use n to indicate the eigenmodes).
If one considers the modulus of the eigenvalues (which in this case is simply their absolute
value), it is easily seen that |λ| becomes unbounded if either n or k are large. If the l 2-
condition number κ = |λmax/λmin| is used to evaluate the quality of eigenvalue clustering,
one concludes that for any sufficiently small λmin the condition number is extremely large.

Now, suppose an operator of the form

d2

dx2
− αk2, α ≥ 0 ∈ R (10)

is used as a preconditioner, constructed with the same discretization stencil and boundary
conditions. The following generalized eigenvalue problem is obtained, i.e.,

(

d2

dx2
+ k2

)

φv = λ

(

d2

dx2
− αk2

)

φv, x ∈ [0, 1] ⊆ R. (11)

For (11), we find the eigenvalues to be

λn =
k2

n − k2

k2
n + αk2

=
1 − (k/kn)

2

1 + α(k/kn)2
, n ∈ N\{0}. (12)

For n → ∞, λn → 1, i.e. the eigenvalues are bounded above by one. Examining the low
eigenmodes, for kn → 0, we obtain λ → −1/α. This eigenvalue remains below one unless
α ≤ 1. The maximum eigenvalue can thus be written as

|λmax| = max

(

| 1
α
|, 1
)

, α ≥ 0 ∈ R. (13)

To estimate the minimum eigenvalue, one can use a simple but rough analysis as follows.
It is assumed that the minimum eigenvalue is very close (but not equal) to zero. This
assumption indicates a condition kj ≈ k as obtained from (12). To be more precise, let
kj = k + ε, where ε is any small number. If this relation is substituted into (12), and if
higher order terms are neglected, and εk � k2 is assumed, then we find

λmin =
2

1 + α

( ε

k

)

. (14)

From (14), the minimum eigenvalue can be very close to zero as α goes to infinity. The
condition number of the preconditioned Helmholtz operator now reads

κ =

{

1

2
(1 + α)k/ε if α ≥ 1,
1

2α
(1 + α)k/ε if 0 ≤ α ≤ 1.

(15)

If α ≥ 1, κ is a monotonically increasing function with respect to α. The best choice is
α = 1, which gives minimal κ. If 0 ≤ α ≤ 1, κ is a monotonically decreasing function with
respect to α. κ is minimal in this range if α = 1. In the limit sense we find that

lim
α↓1

κ = lim
α↑1

κ = k/ε, (16)

which is the minimum value of κ for α ≥ 0 ∈ R.
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5.2 Generalization to complex α

The analysis on 1D Shifted Laplace preconditioners for α ∈ R gives α = 1 as the optimum
case. The nice property of the real Shifted Laplace operator, at least in 1D, is that the
eigenvalues have an upper bound. However, this property does not guarantee that the
eigenvalues are favourably distributed. There is still the possibility that one or some
eigenvalues (which are extremely small) can be very close to zero. We can improve the
preconditioner by preserving the upper boundedness and at the same time shifting the
minimum eigenvalue as far as possible from zero. In this section, we generalize α to be
complex-valued.

Consider the minimum eigenvalue λmin obtained from the 1D problem (14). We have
shifted this eigenvalue away from zero by adding some real values to λ. In general, this
addition will shift all eigenvalues, which is undesirable. An alternative is multiplying the
eigenvalues by a factor. From (12) the relation between eigenvalues for α = 0 and α = 1
reads

(λα=1)n =
1

1 + (k/kn)2
(λα=0)n . (17)

Equation (17) indicates that λα=0 is scaled by a factor 1 + (k/kn)2. Now we shift the
minimum eigenvalue as far as possible away from zero. Using (14), we obtain the following
relation:

(λα=1)min
=

1

2
(λα=0)min

. (18)

We generalize the same process to the complex plane: shifting the eigenvalues along
the complex axis away from zero. We introduce a complex coefficient of the form α + iβ,
and consider a more general complex-valued Shifted Laplace operator

d2

dx2
− (α + iβ)k2, α ≥ 0 ∈ R, β ∈ R . (19)

Eigenvalues of the premultiplied equation, denoted by λ c, are

λc =
k2

n − k2

k2
n + (α + iβ)k2

⇒ |λc|2 =
(k2

n − k2)2

(k2
n + αk2)2 + β2k2

. (20)

Evaluating λmax and λmin as in (13) and (14) one finds

|λc
max|2 = max

(

1

α2 + β2
, 1

)

, |λc
min|2 =

4

(1 + α)2 + β2

( ε

k

)2

. (21)

These results give the following condition numbers

κ2 =

{

1

4

(

1 + 1+2α
α2+β2

)

(k/ε)2, α2 + β2 ≤ 1,

1

4
((1 + α)2 + β2) (k/ε)2, α2 + β2 ≥ 1.

(22)

Since α2 + β2 is non-negative, for any given α taking the circle α2 + β2 = 1 in the first
expression in (22) provides the smallest κ2. Likewise, for any given α, κ2 is minimal for
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Figure 1: Generalized eigenvalues of the continuous 1D Helmholtz equation, k = 10

0 5 10 15 20 25
0

1

2

3

4

5

n

|λ
|

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

n

|λ
|

Figure 2: The modulus of eigenvalues of the continuous 1D Helmholtz equation. k = 10
and h−1 = 100 for various preconditioners: M0 (×), M1 (+), Mi (◦)

the second expression in (22) whenever α2 +β2 = 1. (One can verify that there is no other
circle giving κ2 lower than that on the circle with radius one. This can be seen, e.g., by
introducing condition α2 + β2 = 1 + ε1, ε1 ≥ 0). With condition α2 + β2 = 1, κ is minimal
if one takes α = 0, implying β = 1. This combination gives the lowest condition number
possible for the Shifted-Laplace preconditioner for the 1D model problem.

Figure 1 shows spectra of the preconditioned systems of the 1D Helmholtz problem using
Mα=0,β=0, Mα=1,β=0, and Mα=0,β=1 for our 1D problem. For simplicity, we denote these
preconditioners as M0, M1, and Mi, respectively. Figure 1 shows that the preconditioner
Mi clusters the eigenvalues stronger than M1 and pushes the eigenvalues in the negative
real plane towards the imaginary axis. This clustering may improve the performance of
the preconditioned iterative methods. However, with this preconditioner there is still a
possibility that some eigenvalues lie very close to zero causing unsatisfactory numerical
performance. To estimate the position of these minimum eigenvalues, we consider the real
part of (20). Similar as in (14), one finds that

Re(λc
min) = ε/k. (23)

This estimate is the same as the estimate for M1 and smaller than that for M0. However,
the modulus |λc

min| =
√

2(ε/k) > |λα=1
min | = ε/k because of the imaginary shift (see Figure

2). Because of the same upper bound as M1, Mi may perform better than M0 and M1.
In Figure 2, a comparison of the modulus of eigenvalues for k = 10 is shown, indicating

boundedness of eigenvalues of M1 and M0 near |λ| = 0. The right-hand figure zooms in
to show the minimum |λ|. Evidently, M i has small eigenvalues with the modulus slightly
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larger than M1, but smaller than M0.

5.3 Spectrum of the discrete Helmholtz equation

We extend the analysis to the discrete formulation of (1). Suppose that the Helmholtz
equation is discretized, we arrive at the linear system Ap = b.

Matrix A can be splitted into two parts: the Laplace component B and the additional
diagonal term k2I so that A = B + k2I and therefore

(

B + k2I
)

p = b. (24)

In this analysis, we use only Dirichlet or Neumann conditions at the boundaries in order
to keep the matrix A real-valued. We precondition (24) using M = B − (α + iβ)k 2I,
constructed with the same boundary conditions as for A. This gives

(

B − (α + iβ)k2I
)−1 (

B + k2I
)

p =
(

B − (α + iβ)k2I
)−1

b. (25)

The generalized eigenvalue problem of (25) is accordingly

(

B + k2I
)

pv = λv

(

B − (α + iβ)k2I
)

pv. (26)

Both systems (25) and (26) are indefinite if k2 is larger than the smallest eigenvalue
of B. In such a case, the convergence is difficult to estimate. Therefore, the subsequent
analysis will be based on the normal equations formulation of the preconditioned matrix
system (as in [11]).

Denote the eigenvalues of B as 0 < µ1 ≤ µ2 ≤ · · · ≤ µn. We find for the eigenvalues of
the four following cases:

λ (A∗A) =
(

µi − k2
)2

, (27)

λ
((

M−1
0 A

)∗ (

M−1
0 A

))

=

(

µi − k2

µi

)2

=

(

1 − k2

µi

)2

, (28)

λ
((

M−1
1 A

)∗ (

M−1
1 A

))

=

(

µi − k2

µi + k2

)2

=

(

1 − 2k2

µi + k2

)2

, (29)

λ
((

M−1

i A
)∗ (

M−1

i A
))

=

(

µi − k2

µi + ik2

)(

µi − k2

µi + ik2

)

= 1 − 2µik
2

µ2
i + k4

. (30)
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For all cases, we find for the minimal and maximal eigenvalue, if k ∈ R, 0 < k2 < µ1,

λ ((A∗A))
min

=
(

µ1 − k2
)2

,

λ ((A∗A))
max

=
(

µn − k2
)2

, (31)

λ
((

M−1
0 A

)∗ (

M−1
0 A

))

min
=

(

1 − k2

µ1

)2

,

λ
((

M−1
0 A

)∗ (

M−1
0 A

))

max
=

(

1 − k2

µn

)2

, (32)

λ
((

M−1
1 A

)∗ (

M−1
1 A

))

min
=

(

1 − 2k2

µ1 + k2

)2

,

λ
((

M−1
1 A

)∗ (

M−1
1 A

))

min
=

(

1 − 2k2

µn + k2

)2

, (33)

λ
((

M−1
i A

)∗ (

M−1
i A

))

min
= 1 − 2µ1k

2

µ2
1 + k4

,

λ
((

M−1
i A

)∗ (

M−1
i A

))

max
= 1 − 2µnk2

µ2
n + k4

. (34)

Since k2/µ1 < 1, one easily sees that

λ
(

(M−1
0 A)∗(M−1

0 A)
)

min
> λ

(

(M−1
1 A)∗(M−1

1 A)
)

min
.

As n → ∞, one finds also that

lim
µn→∞

λ
(

(M−1
0 A)∗(M−1

0 A)
)

max
= lim

µn→∞
λ
(

(M−1
1 A)∗(M−1

1 A)
)

max
= 1.

With respect to the l2-condition number, it becomes evident that for frequencies lower
than

√
µ1, M0 may be better than M1. For Mi, one can compute that

λ
((

M−1
i A

)∗ (

M−1
i A

))

min
/λ
((

M−1
0 A

)∗ (

M−1
0 A

))

min
=

(µ1 + k2)2

µ2
1 + k4

> 1,

lim
µn→∞

λ
((

M−1
i A

)∗ (

M−1
i A

))

max
= 1.

Furthermore, λ ((MiA)∗(MiA))
min

≤ λ ((M0A)∗(M0A))
min

. So, for frequencies lower than√
µ1, M0 may perform better than any other choice. However, the main focus is on high

wavenumbers which are of practical interests.
If now µ1 < k2 < µn, we encounter an indefinite problem. However, for the standard

A∗A, one finds

λ (A∗A)
min

=
(

µm1
− k2

)2
, where |µm1

− k2| ≤ |µi − k2|, ∀i,

λ (A∗A)
max

=
(

µn − k2
)2

,
(35)
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which is always positive definite. In this case, the eigenvalues are unbounded either for
large µn or large k. For the preconditioned system (M−1

0 A)∗(M−1
0 A) one finds

λ
(

(M−1
0 A)∗(M−1

0 A)
)

min
=

(

µm2
− k2

µm2

)2

,

where |µm2
− k2

µm2

| ≤ |µi − k2

µi

|, ∀i,

λ
(

(M−1
0 A)∗(M−1

0 A)
)

max
= max

(

(

µn − k2

µn

)2

,

(

µ1 − k2

µ1

)2
)

. (36)

In this case, there will be a possible boundedness for large µn, i.e., for µn → ∞, λn = 1 as
long as k is finite ( because limk→∞((µi − k2)/(µi))

2 = ∞). Furthermore, limµ1→0((µ1 −
k2)/(µ1))

2 = ∞. Therefore, λmax can become extremely large, which makes M0 less favor-
able for preconditioning.

For the preconditioned system (M−1
1 A)∗(M−1

1 A), one finds that

λ
(

(M−1
1 A)∗(M−1

1 A)
)

min
=

(

µm3
− k2

µm3
+ k2

)2

,

where |µm3
− k2

µm3
+ k2

| ≤ | µi − k2

µi + µm3

|, ∀i,

λ
(

(M−1
1 A)∗(M−1

1 A)
)

max
= max

(

(

µn − k2

µn + k2

)2

,

(

µ1 − k2

µ1 + k2

)2
)

. (37)

From (37), it is found that

lim
µn→∞

(

µn − k2

µn + k2

)2

= lim
µ1→0

(

µ1 − k2

µ1 + k2

)2

= lim
k→∞

(

µi − k2

µi + k2

)2

= 1. (38)

For all possible extreme cases, the preconditioned system M −1
1 A is always bounded above

by one, i.e. the eigenvalues are always clustered. We can conclude that in the indefinite
case M1 may be better than M0.

Finally, we are looking at the complex shifted preconditioned system with M i. One
finds that

λ
(

(M−1
i A)∗(M−1

i A)
)

min
=

(µm4
− k2)2

µ2
m4

+ k4
,

where |(µm4
− k2)2

µ2
m4

+ k4
| ≤ |(µi − k2)2

µ2
i + k4

|, ∀i,

λ
(

(M−1
i A)∗(M−1

i A)
)

max
= max

(

1 − 2µ1k
2

µ2
1 + k4

, 1 − 2µnk2

µ2
n + k4

)

. (39)
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The following results follow:

lim
µn→∞

λ
(

(M−1
i A)∗(M−1

i A)
)

max
= lim

µ1→0
λ
(

(M−1
i A)∗(M−1

i A)
)

max
=

= lim
k→∞

λ
(

(M−1
i A)∗(M−1

i A)
)

max
= 1. (40)

Hence, the eigenvalues of (M−1
i A)∗(M−1

i A) are always bounded above by one.
To determine the lower bound, we assume that λmin ≈ 0 implying µm = k2 + ε, ε > 0.

After substituting this relation to (39), one finds that

λ
(

(M−1
i A)∗(M−1

i A)
)

min
=

1

2

ε2

k4
. (41)

Comparing to M1 preconditioning (where λ
(

(M−1
1 A)∗(M−1

1 A)
)

min
= 1

4
ε2/k4), it follows

that λ
(

(M−1
i A)∗(M−1

i A)
)

min
= 2λ

(

(M−1
1 A)∗(M−1

1 A)
)

min
. With respect to the l2−condit-

ion number, one finds that

κ
(

(M−1
i A)∗(M−1

i A)
)

= 2

(

k4

ε2

)

< κ
(

(M−1
1 A)∗(M−1

1 A)
)

= 4

(

k4

ε2

)

.

We conclude that Mi may be a better preconditioner than M1. Mi also may be better
than M0, which has possibly unbounded eigenvalues (and therefore a very large condition
number) if µ is very small and µ � k.

6 Numerical results

We provide some numerical results for solving equation (1), and present three cases as the
model problems: (i) a 2-D closed-off problem with Dirichlet conditions at all boundaries,
(ii) a 2-D open problem in a homogeneous medium with Sommerfeld conditions on a part
of the boundary, and (iii) a 2-D open problem in an inhomogeneous medium.

For all cases, we solve the resulting linear system with full GMRES and compare three
preconditioners M0, M1, and Mi. We set the maximum number of GMRES iterations
to 150. Beyond this value, we restart GMRES. As k increases considerably, storing 150
vectors becomes too expensive, requiring a smaller restart parameter. This is the main
drawback of using GMRES. Therefore, for the third problem the GMRES convergence is
compared to that of CGNR and Bi-CGSTAB. The iteration is terminated at the k-th step if
‖rk‖2/‖b‖2 < 10−6. The step involving M−1 is accomplished by using Gauss elimination.
In practice this process is very costly. Of course, since M is symmetric and both the
real and imaginary parts are positive definite, the LDLT factorization can always be done
(without requiring pivoting) and is unique [10]. We can also approximate M −1 using SSOR
or multigrid. We do not implement these cheaper processes. The direct computation of
M−1 can be used as a reference for approximations of M−1.
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Figure 3: Some extreme eigenvalues of the preconditioned systems of Problem 1 with k = 5
and gridsize h−1 = 20

6.1 Closed-off problem

We consider a problem in a rectangular homogeneous medium governed by

(

∆ + k2
)

φ = (k2 − 5π2) sin(πx) sin(2πy), x = [0, 1], y = [0, 1],

φ = 0, at the boundaries.
(42)

The exact solution of (42) is φ = sin(πx) sin(2πy). Different grid resolutions are used
to solve the problem with various wavenumbers k = 2, 5, 10, 15, 20. k = 2 resembles the
definite problem. In Figure 3, spectra of the preconditioned system for k = 5, a ”slightly”
indefinite problem, are shown. All spectra are bounded above by one.

Table 1 shows the computational performance in terms of number of iterations and
number of arithmetic operations to reach the specified convergence. For low frequencies,
all preconditioners show a very satisfactorily comparable performance. It appears that M 0

becomes less effective for increasing values of k, where the number of iterations increases
somewhat faster than for M1 or Mi. This behavior agrees with the theory.

In Table 2, the numerical performance is shown for the preconditioners for different
grid resolutions. The preconditioners are sensitive with respect to the grid sizes. For all
cases, Mi outperforms the other preconditioners.

6.2 2-D open homogeneous problem

The second problem represents an open problem allowing waves to penetrate the bound-
aries. We first look at a homogeneous medium in which waves created at the upper surface
propagate. We consider

∆φ + k2φ = f, Ω = [0, 1]2,

f = δ(x − 1/2)δ(y), x = [0, 1], y = 0,

φ = 0, y = 0,

∂φ

∂n
− ikφ = 0, x = 0, 1, y = 1,

(43)

with k constant in Ω. The performance of GMRES with M0, M1, and Mi as the precon-
ditioners is compared.
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Table 1: Computational performance of GMRES for 2-D closed-off problem. The precon-
ditioner is the Shifted Laplace operator. 30 gridpoints per wavelength are used. The flops
are measured in millions

M0 M1 Mi

k Iter flops Iter flops Iter flops

2 4 0.008 4 0.008 4 0.010

5 6 0.093 7 0.106 6 0.012

10 10 0.628 11 0.684 10 0.752

15 16 2.223 18 2.481 16 2.623

20 30 7.256 25 6.091 23 5.627

30 38 20.753 34 18.633 31 17.046

40 57 55.133 46 44.677 37 36.157

Table 2: Number of GMRES iterations to solve Problem 1 with various grid resolutions.
The preconditioner is the Shifted Laplace operator

M0 M1 Mi

h−1 h−1 h−1

k 50 100 150 50 100 150 50 100 150

5 5 5 5 6 6 6 6 6 5

10 10 10 10 11 11 11 10 10 10

15 17 14 14 19 15 15 17 14 14

20 33 30 21 37 25 21 31 23 19

30 79 55 38 86 57 34 72 52 31
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Figure 4: Spectra of the linear systems from Problem 2 preconditioned with M0 (left), M1

(middle), and Mi (right). The radiation condition is replaced by a Dirichlet condition for
k = 5 with h−1 = 10 (∼ 10 gridpoints per wavelength)

The Sommerfeld condition is set in the problem to avoid non-physical reflections. How-
ever, this may not be important for the preconditioning operator. We prefer to replace
Sommerfeld’s condition in the preconditioner by simpler a boundary condition. For this
purpose, we use the Neumann or Dirichlet conditions in M . To see the effect of imposing
different types of boundary conditions on the convergence performance, we analyze the
spectra of the preconditioned linear systems.

Figure 4–6 show spectra of the preconditioned linear systems of Problem 2. The Jacobi-
Davidson algorithm [18] is used to compute some extreme eigenvalues. Imposing either
Dirichlet or Neumann conditions results in a good clustering of eigenvalues. For the exam-
ple at hand, it shows that imposing Neumann conditions in the preconditioning operator
gives better clustering and effectively pushes the negative real eigenvalues towards the
imaginary axis (see the effect in Figure 4 and 5 for k = 5) compared to the Dirichlet
conditions.

Figure 6 gives the spectra of the preconditioned linear system for k = 5, where the
preconditioning matrix M is constructed using the same physical boundary conditions.
With Mi, the eigenvalues are also pushed towards the positive real plane. But, some
eigenvalues still remain in the negative real plane. Compared to Figure 3, imposing the
same boundary conditions as the physics may lead to a better convergence rate than if
the Dirichlet condition is used to replace the Sommerfeld condition. However, this may
not be the case if the Sommerfeld condition is replaced by the Neumann condition. From
the spectra, it shows that the Neumann condition may be the best option to replace the
Sommerfeld condition for constructing M . Our numerical results (which are not shown in
this paper) also confirm this conslusion. Therefore, for constructing the preconditioner we
choose the Neumann condition to replace the Sommerfeld condition at the corresponding
boundary.

Table 3 shows the number of GMRES iterations to solve Problem 2. For all frequencies,
Mi outperforms M0 and M1. M0 still performs reasonably well compared to M i. This is not
explained by the theory and may be due to the influence of different boundary conditions
imposed in constructing the preconditioning matrix, which is not taken into account in our
analysis.

Figure 7 shows the updated residual computed at each iteration as well as the error
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Figure 5: Spectra of the linear systems from Problem 2 preconditioned with M0 (left), M1

(middle), and Mi (right). The radiation condition is replaced by a Neumann condition for
k = 5 with h−1 = 10 (∼ 10 gridpoints per wavelength)
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Figure 6: Spectra of the linear systems from Problem 2 preconditioned with M0 (left), M1

(middle), and Mi (right). The Sommerfeld conditions with the physical problems are used
to construct the preconditioner. k = 5, h−1 = 10 (∼ 10 gridpoints per wavelength)

for k = 20. The residual curve (in the left) indicates slow convergence for the first few
iterations and a convergence improvement later on, indicating a superlinear convergence.
(For the restarted version, choosing a low restart parameter may cause unacceptably slow
convergence or even stagnation.) The error curve in the right figure indicates that a
sufficiently small error (based on the l2-norm) is reached, and that the error convergence
closely follows the residual convergence.
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Figure 7: Convergence history of preconditioned GMRES iterations, k = 20
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Table 3: Computational performance of GMRES to solve Problem 2. The preconditioner
is the Shifted Laplace preconditioners. 30 gridpoints per wavelength are used

M0 M1 Mi

k Iter flops Iter flops Iter flops

2 8 0.019 8 0.019 6 0.014

5 12 0.171 14 0.197 11 0.158

10 24 1.476 26 1.596 19 1.179

15 38 5.098 43 5.770 30 4.040

20 59 14.454 68 16.715 46 11.255

30 115 63.984 131 73.479 80 43.997

6.3 2-D open inhomogeneous problem

In this example we repeat the computation of Problem 2 but now in an inhomogeneous
medium. The wavenumber varies inside the domain according to

k =











kref 0 ≤ y ≤ 1/3,

1.5kref 1/3 ≤ y ≤ 2/3,

2.0kref 2/3 ≤ y ≤ 1.0.

(44)

The number of gridpoints used is 5 × kref (i.e., approximately 30 gridpoints per reference
wavelength) in the x and y directions. As the preconditioners are sensitive with respect
to the gridsize (refer to Table 3), less gridpoints in layers with k > k ref may affect the
computational performance negatively. Numerical results are presented in Table 4. Here,
we compute the solutions using full GMRES, and compare the computational performances
with CGNR and Bi-CGSTAB. For the latter iterative methods, we limit the number of
iterations to 1000.

In this harder problem, Mi again outperforms M0 and M1 indicated by the smaller
number of iterations required to reach convergence. Compared to M0, M1 shows a less
satisfactorily performance, and based on our computational restrictions restart is needed.
For GMRES, restarting is needed for k > 20.

From Table 4, we also see that the preconditioned Bi-CGSTAB does not perform well
for M0 and M1, as already indicated in [11]. However, the convergence with M i as the
preconditioner is still satisfactory. Compared to GMRES, Bi-CGSTAB preconditioned
by Mi shows better convergence performance (despite of requiring two preconditioning
steps within one iteration). If Mi is used as the preconditioner, Bi-CGSTAB can be the
alternative to replace full GMRES.
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Table 4: Computational performance of GMRES, CGNR, and Bi-CGSTAB to solve Prob-
lem 3. The preconditioner is the Shifted Laplace operator. 30 gridpoints per k ref are
used

GMRES CGNR Bi-CGSTAB

kref M0 M1 Mi M0 M1 Mi M0 M1 Mi

2 6 10 8 12 12 10 6 7 5

5 17 20 14 39 31 23 17 15 10

10 39 47 31 189 88 66 150 56 22

15 73 85 54 647 175 126 685 113 40

20 120 >150 82 >1000 268 194 >1000 177 60

30 >150 >150 141 >1000 502 361 >1000 344 105

From Table 4, one also concludes that CGNR may not be a good iterative method to
solve the Helmholtz problem with the Shifted Laplace preconditioners. Since our analysis
is made for the normal equations, despite of worse performance compared to BiCGSTAB
and GMRES, the results of CGNR confirm our analysis for the preconditioners M0, M1,
and Mi.

7 Conclusion

In this paper, a class of preconditioners based on the Shifted Laplace operator for the
Helmholtz equation has been presented and analyzed. We find that the complex Shifted-
Laplace operator leads to the most effective preconditioning matrix within this class of pre-
conditioners. Numerical experiments have been presented to show the effectiveness of the
preconditioner. This preconditioner is easy to construct and to extend to inhomogeneous
medium cases. Our numerical experiments show that for the latter, this preconditioner
performs effectively. With respect to storage and CPU time requirements, we advocate the
complex shifted preconditioner in combination with Bi-CGSTAB.
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