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On the vibrations of a simply supported square plate on a weakly

nonlinear elastic foundation.

M.A. Zarubinskaya and W.T. van Horssen

Abstract

In this paper an initial-boundary value problem for a weakly nonlinear plate equation with a

quadratic nonlinearity will be studied. This initial-boundary value problem can be regarded as a

simple model describing free oscillations of a simply supported square plate on an elastic foundation.

It is assumed that the foundation has a different behavior for compression and for expansion. An

approximation for the solution of the initial-boundary value problem will be constructed using a

two-timescales perturbation method. The existence and uniqueness of the solution of the problem

will be proved. Also the asymptotic validity of the constructed approximations will be shown on long

time-scales. For specific parameter values it turns out that complicated internal resonances occur.

Key words: weakly nonlinear plate equation, asymptotics, two-timescales perturbation method,
internal resonanses.

AMS subject classifications: 35B20, 35B40, 35Q72, 74K20.

1 Introduction

It is well known that flexible structures like suspension bridges or overhead power transmission lines
can be subjected to oscillations due to various causes. Simple models for such oscillations are described
with second- and fourth-order partial differential equations as can be seen for example in [1]-[7]. Usually
asymptotic methods can be used to construct approximations for solutions of these second- and fourth-
order partial differential equations. For a long time initial-boundary value problems for weakly nonlinear
wave equations have been studied, for example, in [7]-[9] and in [14], [16], [17]. In [7]-[9] a two-timescales
perturbation method has been used to construct approximations. In [7]-[9], [16], [17] asymptotic theories
which justify these approximations are presented. The analysis becomes more complicated for beam
equations. These equations are discussed for instance in [3], [4], [5], [6], [10], [11], [18] and [19]. Only a
little is known about weakly nonlinear plate equations. In this paper an initial-boundary value problem
for a simply supported square plate on a weakly nonlinear, elastic foundation will be studied in detail. The
analysis includes the well-possedness of the problem in classical sense, the construction of approximations
of the solution, and a justification of the obtained asymptotic results on long timescales. The presented
analysis in this paper can also be seen as a starting point to study more complicated problems such as
wind-induced oscillations of suspension bridges.

A square plate with side length l will be considered. The displacement of the plate in z direction
(see also Figure 1(a)) is denoted by w = w(x, y, t), in which t is time. The following symbols will be
used: µ is the mass of the plate per unit area perpendicular to z-axis, ρ is the mass density of the plate,
A is the area of the cross section of the plate perpendicular to the x-axis, (so A = lh, where h is the
thickness of the plate), E is the elasticity modulus, I is the moment of inertia of the cross section with
respect to the x-axis, and F is the force (in z-direction) per unit area acting on the plate due to the
elastic foundation. We neglect internal damping and consider the weight W of the plate per unit area to
be constant (W = µg, g is the gravitational acceleration). No other external forces are assumed to be
present. The equation of motion for the vertical displacement of the plate is given by

µwtt +EI(wxxxx + 2wxxyy + wyyyy) + F (w) = −µg. (1)
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Figure 1: Sketch of (a) a square plate on an elastic foundation and (b) a detail of a simply support on
an edge of the plate.

It is assumed that the force F can be expanded in a Taylor series with F (0) = 0 : F (w) = kw+bw2+...,
where k and b are spring constants. It is assumed that the elastic foundation has a different behaviour
for compression and for expansion, i.e., for w < 0 and w > 0. It is also assumed that the vertical
displacements of the plate are small compared to the length l, and that terms of degree three and higher
in F can be neglected. Equation (1) then becomes

wtt +
EI

µ
(wxxxx + 2wxxyy + wyyyy) +

k

µ
w +

b

µ
w2 = −g. (2)

To simplify (2) the term −g will be removed from (2) by introducing the transformation w(x, y, t) =
w̃(x, y, t)+ µg

k s(x, y), where s(x, y) satisfies the following time-independent linear boundary value problem

sxxxx(x, y) + 2sxxyy(x, y) + syyyy(x, y) +
k

EI
s(x, y) = − k

EI
, 0 < x < l, 0 < y < l,

s(0, y) = s(l, y) = sxx(0, y) = sxx(l, y) = 0, 0 < y < l, (3)

s(x, 0) = s(x, l) = syy(x, 0) = syy(x, l) = 0, 0 < x < l.

In fact the term µg
k s(x, y) represents the deflection of the plate in static state due to gravity. The solution

of the boundary value problem (3) can be constructed by using the method of separation of variables (see
[12], or [13]) or by just assuming that

s(x, y) =
∞
∑

n=1

∞
∑

m=1

snm sin
(nπx

l

)

sin
(nπy

l

)

, (4)

where the smn are constants. These constants can then be determined by substituting (4) into the PDE
in (3), by multiplying the so-obtained equation with sin

(

pπy
l

)

sin
(

qπy
l

)

, and then by integrating the
equation with respect to x and y (from x is 0 to l, and from y is 0 to l), yielding

snm =
−4k

π2EInm
(1 − (−1)n)(1 − (−1)m).

Using the dimensionless variables w̄ = l
A w̃, x̄ = π

l x, ȳ = π
l y, t̄ = (π

l )2(EI
µ )1/2t, (2) becomes

w̄t̄t̄ + w̄x̄x̄x̄x̄+2w̄x̄x̄ȳȳ + w̄ȳȳȳȳ+ (5)

l4

π4EI

(

kw̄ +
bA

l
w̄2 + 2

bµg

k
s
( l

π
x̄,
l

π
ȳ
)

w̄ +
bl

A

(µg

k
s
( l

π
x̄,
l

π
ȳ
))2
)

= 0.
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Assuming that the area A of the cross section is small compared to the plate side length l, we put
ε̃ = A

l with ε̃ a small parameter. Furthermore, we assume that the deflection of the plate in static
state due to gravity (that is µg

k s(x, y)) is small with respect to the vertical displacement w̃, which is

of order ε̃. This means we assume that µg
k s(x, y) is O(ε̃n) with n > 1. Setting ε = −bε̃( l

π )4 1
EI , (5)

becomes w̄t̄t̄ + w̄x̄x̄x̄x̄ + 2w̄x̄x̄ȳȳ + w̄ȳȳȳȳ + p2w̄ = εw̄2 + O(εn), with n > 1, p2 = ( l
π )4 k

EI , and ε is
a small dimensionless parameter. We can now formulate the following initial-boundary value problem,
which describes up to O(εn), n > 1, the vertical displacement of a plate on a weakly nonlinear, elastic
foundation: (for convenience all bars will be dropped)

wtt + wxxxx + 2wxxyy + wyyyy + p2w = εw2, 0 < x < π, 0 < y < π, t > 0, (6)

w(0, y, t) = w(π, y, t) = wxx(0, y, t) = wxx(π, y, t) = 0, t ≥ 0, (7)

w(x, 0, t) = w(x, π, t) = wyy(x, 0, t) = wyy(x, π, t) = 0, t ≥ 0, (8)

w(x, y, 0) = w0(x, y; ε), wt(x, y, 0) = w1(x, y; ε), 0 < x < π, 0 < y < π, (9)

where ε and p are parameters with 0 < |ε| � 1 and p > 0, w = w(x, y, t) is the vertical displacement of
the plate, w0(x, y) is the initial displacement of the plate in vertical direction, and w1(x, y) is the initial
velocity of the plate in vertical direction. All functions are assumed to be sufficiently smooth. The first
four terms in the left-hand side of (6) are the linear part of the plate equation and p2w− εw2 represents
the restoring force due to the elastic foundation. The boundary conditions describe a simply supported
plate. Since no other external forces are considered, the initial boundary value problem (6)-(9) can be
considered as a simple model to describe the free oscillations of a simply supported plate on an elastic,
weakly nonlinear foundation.

In this paper an asymptotic theory will be presented for a more general case of (6)-(9), where the
nonlinearity in the right-hand side of (6) is of the form εf(x, y, t, w; ε). We will show that the initial-
boundary value problem is well-posed in classical sense, i.e., we will show that there exists a unique,
classical solution for this initial-boundary value problem. We will also show the asymptotic validity of
approximations, which are constructed by using formal perturbation methods. We will construct order
ε approximations for the solution of the initial-boundary value problem (6)-(9) by using a Fourier series
expansion and a two-timescales perturbation method. We will consider the energy exchange between
different oscillation modes for different values of the parameter p2. For almost all values of p2 only
an interaction of order ε between different oscillation modes occurs on a timescales of order 1/ε, but
for certain specific values of p2 mode interactions of order 1 occur on a timescale of order 1/ε, i.e.,
energy transfer of order 1 occurs between two or more modes on an 1/ε timescale. We will show that,
for instance, for p2 = 68

3 an energy transfer of order 1 occurs between modes 2-2 and 3-3 (that is, for
oscillation modes described by sin (2x) sin (2y) and sin (3x) sin (3y)). For p2 ≈ 35.40 an energy transfer of
order 1 occurs between the modes 1-9, 9-1, 2-2 and 6-6 (that is, between the oscillation modes described
by sin (x) sin (9y), sin (9x) sin (y), sin (2x) sin (2y), and sin (6x) sin (6y)).

The outline of this paper is as follows. In section 2 the well-possedness of the initial-boundary value
problem (6)-(9) is considered and established on a timescale of order 1/ε. In section 3 the asymptotic
validity of approximations of the solution of this initial-boundary value problem is studied. In sections 4
and 5 the asymptotic theory is applied. On a timescale of order 1/ε an order ε asymptotic approximation,
as ε→ 0, for the solution of (6)-(9) will be constructed using a two-timescales perturbation method. For
some specific values of p2, modes with zero initial energy will also be excited. For different values of p2

these mode interactions will be studied in section 5. In section 6 some conclusions will be drawn and
some remarks will be made.
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2 The well-possedness of the problem.

In this section we consider the well-possedness in classical sense for the following class of weakly nonlinear,
initial-boundary value problems for a real valued function w(x, y, t):

wtt+wxxxx+2wxxyy+wyyyy+p2w=εf(x, y, t, w; ε), (10)

0 < x < π, 0 < y < π, t > 0,

w(0, y, t) = w(π, y, t) = wxx(0, y, t) = wxx(π, y, t) = 0, t ≥ 0, (11)

w(x, 0, t) = w(x, π, t) = wyy(x, 0, t) = wyy(x, π, t) = 0, t ≥ 0, (12)

w(x, y, 0) = w0(x, y; ε), wt(x, y, 0) = w1(x, y; ε), 0 < x < π, 0 < y < π, (13)

where ε, p are constants, ε ∈ [−ε0, ε0], and p ≥ 0, and where f, w0, w1 satisfy

f and all first-, second-, and third-order partial derivatives of f with (14)

respect to x, y, t, w are ∈ C([0, π] × [0, π] × [0,∞] × R × [−ε0, ε0],R),

and f(0, 0, t, 0; ε) = f(π, π, t, 0; ε) ≡ 0 for t ≥ 0,

w0,
∂w0

∂x
,
∂2w0

∂x2
,
∂3w0

∂x3
,
∂4w0

∂x4
,
∂w0

∂y
,
∂2w0

∂y2
,
∂3w0

∂y3
,
∂4w0

∂y4
,
∂2w0

∂x∂y
,
∂3w0

∂x2∂y
,
∂3w0

∂x∂y2
,

∂4w0

∂x2∂y2
,
∂4w0

∂x3∂y
,
∂4w0

∂x∂y3
, w1,

∂w1

∂x
,
∂2w1

∂x2
,
∂w1

∂y
,
∂2w1

∂x∂y
,
∂2w1

∂y2
,
∂3w1

∂x3
,
∂3w1

∂x2∂y
,
∂2w1

∂x∂y2
,

∂2w1

∂y3
∈ C([0, π] × [0, π] × [−ε0, ε0],R), with w0(0, y; ε) = w0(π, y; ε) =

∂2w0

∂x2
(0, y; ε) =

∂2w0

∂x2
(π, y; ε) ≡ 0, (15)

and w0(x, 0; ε) = w0(x, π; ε) =
∂2w0

∂y2
(x, 0; ε) =

∂2w0

∂y2
(x, π; ε) ≡ 0, and

w1(0, y; ε) = w1(π, y; ε) =
∂2w1

∂x2
(0, y; ε) =

∂2w1

∂x2
(π, y; ε) ≡ 0, and w1(x, 0; ε) =

w1(x, π; ε) =
∂2w1

∂y2
(x, 0; ε) =

∂2w1

∂y2
(x, π; ε) ≡ 0,

f and all first-, second-, and third-order partial derivatives of f with (16)

respect to x, y, t are uniformly bounded for all x, y, t, ε as considered.

We define a classical solution as a function that is three times continuously differentiable on [0, π] ×
[0, π]× [0,∞], for which the fourth order partial derivatives with respect to x, y are continuous on [0, π]×
[0, π]×[0,∞], and that satisfies (10)-(13), where f, w0, w1 satisfy (14)-(16). In order to prove existence and
uniqueness of a classical solution of the initial-boundary value problem (10)-(13) an equivalent integral
equation will be used. We obtain this integral equation by using the Green’s function G for the linear

operator ∂4

∂x4 + 2 ∂4

∂x2∂y2 + ∂4

∂y4 + ∂2

∂t2 + p2 and the simply supported boundary conditions (see Appendix

A):

w(x, y, t) = ε

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t)f(ξ, η, τ, w; ε)dξdηdτ + wl(x, y, t; ε) ≡ (Tw)(x, y, t), (17)

where

G(ξ, η, τ ;x, y, t) =
4

π2

∞
∑

n=1

∞
∑

m=1

1
√

(n2 +m2)2 + p2
sin
[
√

(n2 +m2)2 + p2(t− τ)
]

(18)

×H(t− τ) sin (nξ) sin (mη) sin (nx) sin (my)
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for ξ, x, η, y ∈ [0, π], τ, t ≥ 0, where the Heaviside function H(a) is equal to 1 for a > 0 and equal to 0 for
a < 0. The solution of the initial-boundary value problem (10)-(13) with f ≡ 0 is

wl(x, y, t; ε) =

π
∫

0

π
∫

0

(

G(ξ, η, 0;x, y, t)w1(ξ, η; ε) −Gτ (ξ, η, 0;x, y, t)w0(ξ, η; ε)
)

dξdη. (19)

It can be shown elementarily that the integral equation (17) and the initial-boundary value problem
(10)-(13) are equivalent when three times continuously differentiable functions with continuous fourth
order partial derivatives with respect to x, y (on [0, π]× [0, π]× [0,∞]) are considered. This means that if
w(x, y, t) is a three times continuously differentiable solution of the initial-boundary value problem (10)-
(13) and wxxxx, wyyyy, wxxyy are continuous, then w(x, y, t) is also a solution of the integral equation
(17) and that, if v(x, y, t) is a three times continuously differentiable solution of the integral equation
(17) and vxxxx, vyyyy, vxxyy are continuous, then v(x, y, t) is also a solution of the initial-boundary value
problem (10)-(13). We will start with some definitions. Let

ΩL =
{

(x, y, t)
∣

∣

∣
0 ≤ x ≤ π, 0 ≤ y ≤ π, 0 ≤ t ≤ L|ε−1|

}

, (20)

with L a sufficiently small, positive constant independent of ε. Let the Banach space B of all real-valued
continuous functions w on ΩL be given and let CM (ΩL) be the closed subset CM (ΩL) = {w ∈ B

∣

∣ ‖ w ‖=
max(x,y,t)∈ΩL

|w(x, y, t)| ≤M}. We now state the following theorem.

Theorem 1. Suppose f, w0, w1 satisfy (14)-(17). Then for every ε and p satisfying 0 < |ε| � 1 and
p ≥ 0 the initial-boundary value problem (10)-(13) has a unique and three times continuously differentiable
solution with continuous fourth order partial derivatives with respect to x, y for (x, y, t) ∈ ΩL, with L a
sufficiently small, positive constant independent of ε. This unique solution depends continuously on the
initial values .

Proof. As stated above the initial-boundary value problem (10)-(13) is equivalent to the integral
equation (17). To prove existence and uniqueness of the solution of (17) a fixed point theorem will be

used. Using the fact that w0,
∂2w0

∂x2 ,
∂2w0

∂x∂y ,
∂2w0

∂y2 , and w1 are continuous on the closed and bounded interval

[0, π] × [0, π] × [−ε0, ε0] and therefore uniformly bounded on the interval, and using the estimates (141),
(142) as obtained in Appendix B, it follows that there is a constant M1 independent of ε such that, for
fixed w0 and w1,

‖ wl ‖≤
1

2
M1, (21)

i.e., wl as given by (19) is bounded. Since f and ∂f
∂w are assumed to be continuous and uniformly bounded

for those values of x, y, t, ε under consideration, there are constants M2 and M3 independent of ε such
that

|f(x, y, t, w; ε)| ≤M2, (22)

|f(x, y, t, v1; ε) − f(x, y, t, v2; ε)| ≤M3 ‖ v1 − v2 ‖ (23)

for all (x, y, t) ∈ ΩL, ε ∈ [−ε0, ε0], and w, v1, v2 ∈ CM1(ΩL). Using (22), (23), (142), and the fact that
(x, y, t) ∈ ΩL, we can show that Tw ∈ CM1(ΩL), i.e., the integral operator T maps CM1(ΩL) into itself:

|(Tw)(x, y, t)| ≤
∣

∣

∣
ε

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t)f(ξ, η, τ, w; ε)dξdηdτ
∣

∣

∣
+ |wl(x, y, t; ε)|

≤
∣

∣

∣
ε

t
∫

0

π2 max
0≤x,y≤π

|f(x, y, τ, w(x, y, τ); ε)|dτ
∣

∣

∣
+

1

2
M1

≤ |ε|tπ2M2 +
1

2
M1.
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If the maximum of the left-hand side is taken for (x, y, t) ∈ ΩL, we obtain

‖ Tw ‖≤ π2LM2 +
1

2
M1.

If the constant L is taken such that π2LM2 ≤ 1
2M1, it follows that

‖ Tw ‖≤M1 for all w ∈ CM1(ΩL).

Hence it follows that T : CM1(ΩL) −→ CM1(ΩL). In a similar way it can be shown that the integral
operator T is a contraction on CM1(ΩL). Let v1, v2 ∈ CM1(ΩL), then

|(Tv1)(x, y, t) − (Tv2)(x, y, t)| ≤ |ε|
∣

∣

∣

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t){f(ξ, η, τ, v1; ε)

−f(ξ, η, τ, v2; ε)}dξdηdτ
∣

∣

∣

≤
∣

∣

∣
ε

t
∫

0

π2 max
0≤x,y≤π

|f(x, y, τ, v1(x, y, τ); ε)

−f(x, y, τ, v2(x, y, τ); ε)|dτ
∣

∣

∣

≤ π2M3L max
(x,y,t)∈ΩL

|v1(x, y, t) − v2(x, y, t)|

≤ π2M3L ‖ v1 − v2 ‖

If the constant L is taken such that π2LM2 ≤ 1
2M1 and π2LM3 ≤ k with 0 < k < 1, it follows that

‖ Tv1 − Tv2 ‖≤ k ‖ v1 − v2 ‖ with 0 < k < 1 for all v1, v2 ∈ CM1 (ΩL),

i.e., T is a contraction on CM1(ΩL). Then, Banach’s fixed point theorem implies that the integral
operator T has a unique fixed point w ∈ CM1(ΩL), i.e., a continuous function w on ΩL satisfying the
integral equation (17). It can be shown elementarily that T maps C i functions into Ci functions for
i = 1, 2, 3. Furthermore, it can be shown that T maps C3 functions into functions that have continuous
fourth order derivatives with respect to x, y. So, the unique solution of the integral equation (17) is a
three times continuously differentiable function, with continuous fourth order derivatives with respect to
x, y. Since the integral equation (17) and the initial-boundary value problem (10)-(13) are equivalent, it
follows that the initial-boundary value problem has a unique and three times continuously differentiable
solution w, with wxxxx, wyyyy, wxxyy continuous. This proves the first part of Theorem 1.

Next it will be shown that the solution of the initial-boundary value problem depends continuously
on the initial values. Let w(x, y, t) satisfy (10)-(13) and let w̃(x, y, t) satisfy (10)-(12) with w̃(x, y, 0) =
w̃0(x, y; ε), w̃t(x, y, 0) = w̃1(x, y; ε), where w̃0 and w̃1 satisfy the same properties (15) as for w0 and
w1. Using the equivalent integral equation (17), (23), (141), the fact that (x, y, t) ∈ ΩL, and taking

6



w, w̃ ∈ CM1(ΩL), we obtain

|w(x, y, t) − w̃(x, y, t)|

≤ |ε|
∣

∣

∣

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t){f(ξ, η, τ, w; ε)−

f(ξ, η, τ, w̃; ε)}dξdηdτ
∣

∣

∣

+
∣

∣

∣

π
∫

0

π
∫

0

G(ξ, η, 0;x, y, t){w1(ξ, η; ε) − w̃1(ξ, η; ε)}dξdη
∣

∣

∣

+
∣

∣

∣

π
∫

0

π
∫

0

Gτ (ξ, η, 0;x, y, t){w0(ξ, η; ε) − w̃0(ξ, η; ε)}dξdη
∣

∣

∣

≤
∣

∣

∣
ε

t
∫

0

π2 max
0≤x,y≤π

|f(x, y, τ, w(x,y, τ); ε) − f(x, y, τ, w̃(x, y, τ); ε)|dτ
∣

∣

∣
+

π2 max
0≤x,y≤π

‖ w1(x, y; ε) − w̃1(x, y; ε) ‖

+π2 max
0≤x,y≤π

{

p2|w0(x, y; ε) − w̃0(x, y; ε)| +
∣

∣

∣

∂2

∂x2
w0(x, y; ε) −

∂2

∂x2
w̃0(x, y; ε)

∣

∣

∣

+2
∣

∣

∣

∂2

∂x∂y
w0(x, y; ε) −

∂2

∂x∂y
w̃0(x, y; ε)

∣

∣

∣
+
∣

∣

∣

∂2

∂y2
w0(x, y; ε) −

∂2

∂y2
w̃0(x, y; ε)

∣

∣

∣

}

≤ π2LM3 ‖ w − w̃ ‖ +π2 ‖ w1 − w̃1 ‖ +π2p2 ‖ w0 − w̃0 ‖

+π2
w

w

w

∂2w0

∂x2
− ∂2w̃0

∂x2

w

w

w
+ 2π2

w

w

w

∂2w0

∂x∂y
− ∂2w̃0

∂x∂y

w

w

w
+ π2

w

w

w

∂2w0

∂y2
− ∂2w̃0

∂y2

w

w

w

≤ k ‖ w − w̃ ‖ + π2
{

‖ w1 − w̃1 ‖ +p2 ‖ w0 − w̃0 ‖

+
w

w

w

∂2w0

∂x2
− ∂2w̃0

∂x2

w

w

w
+ 2
w

w

w

∂2w0

∂x∂y
− ∂2w̃0

∂x∂y

w

w

w
+
w

w

w

∂2w0

∂y2
− ∂2w̃0

∂y2

w

w

w

}

for all (x, y, t) ∈ ΩL and with 0 < k < 1. If the maximum of |w − w̃| on the left-hand side is taken for
(x, y, t) ∈ ΩL, we obtain

‖ w − w̃ ‖≤ π2

1 − k

{

p2 ‖ w0 − w̃0 ‖ +
w

w

w

∂2w0

∂x2
− ∂2w̃0

∂x2

w

w

w
+ 2
w

w

w

∂2w0

∂x∂y
− ∂2w̃0

∂x∂y

w

w

w
+

w

w

w

∂2w0

∂y2
− ∂2w̃0

∂y2

w

w

w
+ ‖ w1 − w̃1 ‖

}

.

This means that small differences between the initial values cause small differences between the solutions
w and w̃ on ΩL. This completes the proof.

3 On the asymptotic validity of formal approximations.

In section 4 an approximation of the solution of the initial-boundary value problem (10)-(13) will be
constructed for f(x, y, t, w; ε) = w2. This approximation is a formal approximation, i.e., a function which
satisfies the partial differential equation (10) and the initial conditions (13) up to some order depending
on the small parameter ε. The formal approximation in section 4 satisfies (10) and (13) up to O(ε2). In
this section it will be shown that a formal approximation of the solution of the initial-boundary value
problem (10)-(13) is also an asymptotic approximation, i.e., the difference between the formal approxi-
mation and the exact solution → 0 as ε→ 0, on a timescale of order 1/ε.
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Suppose a three times continuously differentiable function v(x, y, t; ε) is constructed on ΩL with vxxxx,
vyyyy, vxxyy continuous, and which satisfies

vtt+vxxxx+2vxxyy+vyyyy+p2v = εf(x, y, t, v; ε)+|ε|mR1(x, y, t; ε), (24)

0 < x < π, 0 < y < π, t > 0,

v(0, y, t) = v(π, y, t) = vxx(0, y, t) = vxx(π, y, t) = 0, t ≥ 0, (25)

v(x, 0, t) = v(x, π, t) = vyy(x, 0, t) = vyy(x, π, t) = 0, t ≥ 0, (26)

v(x, y,0; ε) = w0(x, y; ε) + |ε|m−1R2(x, y, t; ε) = v0(x, y; ε), 0 < x, y < π, (27)

vt(x, y,0; ε) = w1(x, y; ε) + |ε|m−1R3(x, y, t; ε) = v1(x, y; ε), 0 < x, y < π, (28)

with m > 1, where ε, p, f, w0, w1 satisfy the same conditions as in section 2 (that is, (14)-(16)), and where
R1, R2, R3 satisfy

R1 and all first-, second-, and third-order partial derivatives of R1 (29)

with respect to x, y, t, are ∈ C([0, π] × [0, π] × [0,∞] × [−ε0, ε0],R),

and R1(0, 0, t, 0; ε) = R1(π, π, t, 0; ε) ≡ 0 for t ≥ 0,

R2,
∂R2

∂x
,
∂2R2

∂x2
,
∂3R2

∂x3
,
∂4R2

∂x4
,
∂R2

∂y
,
∂2R2

∂y2
,
∂3R2

∂y3
,
∂4R2

∂y4
,
∂2R2

∂x∂y
,
∂4R2

∂x2∂y2
,
∂3R2

∂x2∂y
,

∂3R2

∂x∂y2
,
∂4R2

∂x3∂y
,
∂4R2

∂x∂y3
, R3,

∂R3

∂x
,
∂2R3

∂x2
,
∂R3

∂y
,
∂2R3

∂y2
,
∂2R3

∂x∂y
,
∂3R3

∂x3
,
∂2R3

∂x2∂y
,
∂2R3

∂x∂y2
,

∂2R3

∂y3
∈ C([0, π] × [0, π] × [−ε0, ε0],R), with R2(0, y; ε) = R2(π, y; ε) = (30)

∂2R2

∂x2
(0, y; ε) =

∂2R2

∂x2
(π, y; ε) ≡ 0 and R2(x, 0; ε) = R2(x, π; ε) =

∂2R2

∂y2
(x, 0; ε) =

∂2R2

∂y2
(x, π; ε) ≡ 0 and R3(0, y; ε) = R3(π, y; ε) =

∂2R3

∂x2
(0, y; ε) =

∂2R3

∂x2
(π, y; ε) ≡ 0

and R3(x, 0; ε) = R3(x, π; ε) =
∂2R3

∂y2
(x, 0; ε) =

∂2R3

∂y2
(x, π; ε) ≡ 0

R1 and all first-, second-, and third-order partial derivatives of R1 (31)

with respect to x, y, t, are uniformly bounded for all x, y, t, ε considered.

We now formulate the following theorem.

Theorem 2. Let v satisfy (24)-(28), where f, w0 and w1 satisfy (14)-(17) and R1, R2 and R3 satisfy
(29)-(32). Then for m > 1 the formal approximation v is an asymptotic approximation (as ε→ 0) of the
solution w of the nonlinear initial-boundary value problem (10)-(13) for (x, y, t) ∈ ΩL. This means that,
as ε→ 0,

|w(x, y, t) − v(x, y, t; ε)| = O(|ε|m−1) for 0 ≤ x ≤ π, 0 ≤ y ≤ π and 0 ≤ t ≤ L|ε|−1,

in which L is a sufficiently small, positive constant independent of ε.

Proof. Let f̂(x, t, v; ε) = f(x, t, v; ε) + |ε|m−1R1(x, t; ε), and let vl be given by

vl(x, y, t; ε) =

π
∫

0

π
∫

0

{G(ξ, η, 0;x, y, t)v1(ξ, η; ε) −Gτ (ξ, η, 0;x, y, t)v0(ξ, η; ε)}dξdη.
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Suppose vl satisfies ‖ vl ‖≤ 1
2M1 and f̂ satisfies (22)-(23). It then follows from Theorem 1 that (24)-(28)

has a unique, three times continuously differentiable solution v(x, y, t; ε) on ΩL, with vxxxx, vyyyy, vxxyy

continuous, v is also a solution of the equivalent integral equation

v(x, y, t; ε) = ε

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t)f̂ (ξ, η, τ, v; ε)dξdηdτ + vl(x, y, t; ε) ≡ (Tv)(x, y, t; ε). (32)

Since the functions R1, R2, R3 satisfy (29)-(32), it follows that there are constantsM5,M6,M7,M8,M9,
and M10 such that

|R1(x, y, t; ε)| ≤M5, |R2(x, y, t; ε)| ≤M6, |R3(x, y, t; ε)| ≤M7, (33)
∣

∣

∣

∂2R2(x, y; ε)

∂x2

∣

∣

∣
≤M8,

∣

∣

∣

∂2R2(x, y; ε)

∂y2

∣

∣

∣
≤M9,

∣

∣

∣

∂2R2(x, y; ε)

∂x∂y

∣

∣

∣
≤M10 (34)

for all (x, y, t; ε) ∈ ΩL, ε ∈ [−ε0, ε0], and w, v1, v2 ∈ CM1(ΩL). Subtracting the integral equation (32) from
the integral equation (17), using (23), (33), (34), (141), the fact that w, v ∈ CM1(ΩL), and the fact that
(x, y, t; ε) ∈ ΩL, it follows that

|w(x, y, t) − v(x, y, t; ε)|

≤|ε|
∣

∣

∣

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t)
{

f(ξ, η, τ, w; ε) − f̂(ξ, η, τ, v; ε)
}

dξdηdτ
∣

∣

∣

+ |wl(x, y, t; ε) − vl(x, y, t; ε)|

≤|ε|
∣

∣

∣

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t){f(ξ, η, τ, w; ε) − f(ξ, η, τ, v; ε)}dξdηdτ
∣

∣

∣

+ |ε|m
∣

∣

∣

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t)R1(ξ, η, τ ; ε)dξdηdτ
∣

∣

∣

+
∣

∣

∣

π
∫

0

π
∫

0

G(ξ, η, 0;x, y, t){w1(ξ, η; ε) − v1(ξ, η; ε)}dξdη
∣

∣

∣

+
∣

∣

∣

π
∫

0

π
∫

0

Gτ (ξ, η, 0;x, y, t){w0(ξ, η; ε) − v0(ξ, η; ε)}dξdη
∣

∣

∣

≤|ε|
t
∫

0

π2M3 ‖ w − v ‖ dτ + |ε|m
t
∫

0

π2M5dτ + |ε|m−1

π
∫

0

π2M7

+ |ε|m−1π2 max
0≤x,y≤π

{

p2|R2(x, y; ε)| +
∣

∣

∣

∂2R2(x, y; ε)

∂x2

∣

∣

∣
+
∣

∣

∣

∂2R2(x, y; ε)

∂y2

∣

∣

∣
+
∣

∣

∣

∂2R2(x, y; ε)

∂x∂y

∣

∣

∣

}

≤ |ε|tπ2M3 ‖ w − v ‖ +|ε|mtπ2M5 + |ε|m−1π2(M7 + p2M6 +M8 +M9 +M10)

≤ π2LM3 ‖ w − v ‖ +|ε|m−1π2(LM5 +M7 + p2M6 +M8 +M9 +M10)

≤ k ‖ w − v ‖ +|ε|m−1π2(LM5 +M7 + p2M6 +M8 +M9 +M10)

for all (x, y, t; ε) ∈ ΩL and with 0 < k < 1. If the maximum of |w − v| on the left-hand side is taken for
(x, y, t; ε) ∈ ΩL, we obtain

‖ w − v ‖≤ |ε|m−1 π2

1 − k
(LM5 +M7 + p2M6 +M8 +M9 +M10).
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So, for (x, y, t; ε) ∈ ΩL, |w(x, y, t) − v(x, y, t; ε)| = O(|ε|m−1) as ε → 0. Hence, for m > 1 the function
v is an asymptotic approximation (as ε → 0) of the solution w of the initial-boundary value problem
(10)-(13). This completes the proof.

4 The construction of asymptotic approximations: general case.

In this section and in the following section asymptotic approximations of the solution of the initial-
boundary value problem (6)-(9) will be constructed. When straightforward ε−expansions are used to
approximate solutions, secular terms can occur for specific values of p2. To avoid these secular terms a
two-timescales perturbation method is used. The initial-boundary value problem (6)-(9) is extended to
an initial value problem by extending all functions in x and y. The boundary conditions imply that w
should be extended as an odd 2π-periodic function in x and as an odd 2π-periodic function in y. Let us
write w as a Fourier sine-series in x and y:

w(x, y, t) =

∞
∑

m=1

∞
∑

n=1

qmn(t) sin(mx) sin(ny). (35)

This extension implies that all terms in (6) should be extended as odd, 2π-periodic function in x and
in y. For the nonlinearity on the right-hand side of (6) this means that (6) has to be rewritten as

wtt + wxxxx + 2wxxyy + wyyyy + p2w = εh(x)g(y)w2, (36)

where the functions h and g, defined on R, are given by h(x) = 1 for 0 < x < π, h(0) = h(π) = 0, and
h is an odd and 2π-periodic function in x; g(y) = 1 for 0 < y < π, g(0) = g(π) = 0, and g is an odd
and 2π-periodic function in y. The functions h(x) and g(y) can then be written in the following Fourier
sine-series:

h(x) =
4

π

∞
∑

j=0

sin ((2j + 1)x)

2j + 1
, g(y) =

4

π

∞
∑

i=0

sin ((2i+ 1)y)

2i+ 1
. (37)

By substituting (35) and (37) into (36) we obtain

∞
∑

m=1

∞
∑

n=1

(

q̈mn(t) + (m4 + 2m2n2 + n4 + p2)qmn

)

sin(mx) sin(ny) =

ε
16

π2

∞
∑

m,h=1

∞
∑

n,s=1

∞
∑

i,j=0

qmn(t)qhs(t)

(2i+1)(2j+1)
sin(mx) sin(hx) sin(ny) sin(sy) sin((2j+1)x) sin((2i+1)y). (38)

The right-hand side of (38) can be rewritten by using the goniometric formula sin(mx) sin(hx) sin((2j +
1)x) = 1

4

(

sin((m+h−(2j+1))x)−sin((m−h−(2j+1))x)−sin((m+h+(2j+1))x)+sin((m−h+(2j+1))x)
)

.
The equations for qkl is obtained by multiplying (38) with 4

π2 sin (kx) sin (ly) and then by integrating the
so-obtained equation with respect to both x and y from 0 to π. Using the orthogonality relations of the
sin-functions and the symmetry in m,n and h, s the following equation for each qkl for k, l = 1, 2, 3, . . . is
obtained:

q̈kl + d2
klpqkl =

ε

π2

(

2
∑

k=m−h+(2j+1)

−2
∑

k=m−h−(2j+1)

+
∑

k=m+h−(2j+1)

−

∑

k=m+h+(2j+1)

−
∑

k=−m−h+(2j+1)

)(

2
∑

l=n−s+(2i+1)

−2
∑

l=n−s−(2i+1)

+ (39)

∑

l=n+s−(2i+1)

−
∑

l=n+s+(2i+1)

−
∑

l=−n−s+(2i+1)

)

qmn(t)qhs(t)

(2i+ 1)(2j + 1)
,
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where dklp =
√

(k2 + l2)2 + p2 and qkl has to satisfy the following initial conditions

qkl(0) =
4

π2

π
∫

0

π
∫

0

w0(x, y) sin (kx) sin (ly)dxdy, q̇kl(0) =
4

π2

π
∫

0

π
∫

0

w1(x, y) sin (kx) sin (ly)dxdy.

It should be observed that (39) also can be obtained by substituting (35) into (6), and by multiplying
the so-obtained equation with sin (kx) sin (ly), and then by integrating with respect to x and y from 0 to
π. Equation (39) can be rewritten in the following form

q̈kl + d2
klpqkl =

ε

π2

(

4
∑

k=m−h+(2j+1)
l=n−s+(2i+1)

−4
∑

k=m−h−(2j+1)
l=n−s+(2i+1)

+2
∑

k=m+h−(2j+1)
l=n−s+(2i+1)

−

2
∑

k=m+h+(2j+1)
l=n−s+(2i+1)

−2
∑

k=−m−h+(2j+1)
l=n−s+(2i+1)

−4
∑

k=m−h+(2j+1)
l=n−s−(2i+1)

+4
∑

k=m−h−(2j+1)
l=n−s−(2i+1)

−

2
∑

k=m+h−(2j+1)
l=n−s−(2i+1)

+2
∑

k=m+h+(2j+1)
l=n−s−(2i+1)

+2
∑

k=−m−h+(2j+1)
l=n−s−(2i+1)

+2
∑

k=m−h+(2j+1)
l=n+s−(2i+1)

−

2
∑

k=m−h−(2j+1)
l=n+s−(2i+1)

+
∑

k=m+h−(2j+1)
l=n+s−(2i+1)

−
∑

k=m+h+(2j+1)
l=n+s−(2i+1)

−
∑

k=−m−h+(2j+1)
l=n+s−(2i+1)

− (40)

2
∑

k=m−h+(2j+1)
l=n+s+(2i+1)

+2
∑

k=m−h−(2j+1)
l=n+s+(2i+1)

−
∑

k=m+h−(2j+1)
l=n+s+(2i+1)

+
∑

k=m+h+(2j+1)
l=n+s+(2i+1)

+

∑

k=−m−h+(2j+1)
l=n+s+(2i+1)

−2
∑

k=m−h+(2j+1)
l=−n−s+(2i+1)

+2
∑

k=m−h−(2j+1)
l=−n−s+(2i+1)

−
∑

k=m+h−(2j+1)
l=−n−s+(2i+1)

+

∑

k=m+h+(2j+1)
l=−n−s+(2i+1)

+
∑

k=−m−h+(2j+1)
l=−n−s+(2i+1)

)

qmnqhs

(2i+ 1)(2j + 1)
.

In the literature, for example in [15], systems similar to (40) ara analyzed using averaging methods. In this
paper, however, as in [11] we use the method of multiple scales for its efficiency and wider applicability.
Terms that give rise to secular terms may occur in the right-hand side of (40). To eliminate these terms
we introduce two time scales, t0 = t and t1 = εt, and assume that qkl can be expanded in a formal power
series in ε, that is, qkl(t) = qkl,0(t0, t1) + εqkl,1(t0, t1) + ε2qkl,2(t0, t1) + . . .. We substitute this into (40)
and collect equal powers in ε. The O(ε0)-problem becomes

∂2qkl,0

∂t20
+ d2

klpqkl,0 = 0, t > 0, (41)

qkl,0(0, 0) =
4

π2

π
∫

0

π
∫

0

w0(x, y) sin (kx) sin (ly)dxdy, (42)

∂

∂t0
qkl,0(0, 0) =

4

π2

π
∫

0

π
∫

0

w1(x, y) sin (kx) sin (ly)dxdy

for k, l = 1, 2, 3,... The general solution of (41)-(42) is

qkl,0(t0, t1) = Akl,0(t1) cos(dklp t0) +Bkl,0(t1) sin(dklp t0), (43)

where Akl,0, Bkl,0 satisfy the following initial conditions:

Akl,0(0) = qkl,0(0, 0), Bkl,0(0) =
1

dklp

∂

∂t0
qkl,0(0, 0). (44)
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Next we consider the O(ε1)-problem

∂2qkl,1

∂t20
+ d2

klpqkl,1 = −2
∂2qkl,0

∂t0∂t1
+

1

π2
R, (45)

qkl,1(0, 0) = 0,
∂

∂t0
qkl,1(0, 0) = − ∂

∂t1
qkl,0(0, 0), (46)

for k, l = 1, 2, 3,..., where

R =

(

4
∑

k=m−h+(2j+1)
l=n−s+(2i+1)

−4
∑

k=m−h−(2j+1)
l=n−s+(2i+1)

+2
∑

k=m+h−(2j+1)
l=n−s+(2i+1)

−2
∑

k=m+h+(2j+1)
l=n−s+(2i+1)

−

2
∑

k=−m−h+(2j+1)
l=n−s+(2i+1)

−4
∑

k=m−h+(2j+1)
l=n−s−(2i+1)

+4
∑

k=m−h−(2j+1)
l=n−s−(2i+1)

−2
∑

k=m+h−(2j+1)
l=n−s−(2i+1)

+

2
∑

k=m+h+(2j+1)
l=n−s−(2i+1)

+2
∑

k=−m−h+(2j+1)
l=n−s−(2i+1)

+2
∑

k=m−h+(2j+1)
l=n+s−(2i+1)

−2
∑

k=m−h−(2j+1)
l=n+s−(2i+1)

+ (47)

∑

k=m+h−(2j+1)
l=n+s−(2i+1)

−
∑

k=m+h+(2j+1)
l=n+s−(2i+1)

−
∑

k=−m−h+(2j+1)
l=n+s−(2i+1)

−2
∑

k=m−h+(2j+1)
l=n+s+(2i+1)

+2
∑

k=m−h−(2j+1)
l=n+s+(2i+1)

−

∑

k=m+h−(2j+1)
l=n+s+(2i+1)

+
∑

k=m+h+(2j+1)
l=n+s+(2i+1)

+
∑

k=−m−h+(2j+1)
l=n+s+(2i+1)

−2
∑

k=m−h+(2j+1)
l=−n−s+(2i+1)

+

2
∑

k=m−h−(2j+1)
l=−n−s+(2i+1)

−
∑

k=m+h−(2j+1)
l=−n−s+(2i+1)

+
∑

k=m+h+(2j+1)
l=−n−s+(2i+1)

+
∑

k=−m−h+(2j+1)
l=−n−s+(2i+1)

)

qmn,0qhs,0

(2i+ 1)(2j + 1)
.

By substituting (43) into (45) the following equation is obtained

∂2qkl,1

∂t20
+ d2

klpqkl,1 = 2dklp

(dAkl,0

dt1
sin(dklp t0) −

dBkl,0

dt1
cos(dklp t0)

)

+
1

π2
H, (48)

where

H =

(

4
∑

k=m−h+(2j+1)
l=n−s+(2i+1)

−4
∑

k=m−h−(2j+1)
l=n−s+(2i+1)

+2
∑

k=m+h−(2j+1)
l=n−s+(2i+1)

−2
∑

k=m+h+(2j+1)
l=n−s+(2i+1)

−2
∑

k=−m−h+(2j+1)
l=n−s+(2i+1)

−

4
∑

k=m−h+(2j+1)
l=n−s−(2i+1)

+4
∑

k=m−h−(2j+1)
l=n−s−(2i+1)

−2
∑

k=m+h−(2j+1)
l=n−s−(2i+1)

+2
∑

k=m+h+(2j+1)
l=n−s−(2i+1)

+2
∑

k=−m−h+(2j+1)
l=n−s−(2i+1)

+

2
∑

k=m−h+(2j+1)
l=n+s−(2i+1)

−2
∑

k=m−h−(2j+1)
l=n+s−(2i+1)

+
∑

k=m+h−(2j+1)
l=n+s−(2i+1)

−
∑

k=m+h+(2j+1)
l=n+s−(2i+1)

−
∑

k=−m−h+(2j+1)
l=n+s−(2i+1)

− (49)

2
∑

k=m−h+(2j+1)
l=n+s+(2i+1)

+2
∑

k=m−h−(2j+1)
l=n+s+(2i+1)

−
∑

k=m+h−(2j+1)
l=n+s+(2i+1)

+
∑

k=m+h+(2j+1)
l=n+s+(2i+1)

+
∑

k=−m−h+(2j+1)
l=n+s+(2i+1)

−

2
∑

k=m−h+(2j+1)
l=−n−s+(2i+1)

+2
∑

k=m−h−(2j+1)
l=−n−s+(2i+1)

−
∑

k=m+h−(2j+1)
l=−n−s+(2i+1)

+
∑

k=m+h+(2j+1)
l=−n−s+(2i+1)

+
∑

k=−m−h+(2j+1)
l=−n−s+(2i+1)

)

1

2i+ 1

1

2j + 1

(

(Amn,0(t1)cos(dmnp
t0)+Bmn,0(t1)sin(dmnp

t0))(Ahs,0(t1)cos(dhsp
t0)+Bhs,0(t1)sin(dhsp

t0)
)

.

Since cos(dklp t0) and sin(dklp t0) are part of the homogeneous solution of the equation for qkl,1, it
follows that the coefficients of cos(dklp t0) and sin(dklp t0) in the right-hand side of (48) have to be equal
to zero (elimination of secular terms). This gives us differential equations for Akl,0 and Bkl,0. Now we
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show that to find the equations for Akl,0 and Bkl,0, the terms in (48) that give rise to secular terms in
the approximation have to be determined. Using some goniometric formulas H can be rewritten as:

H =
1

2

(

(

4
∑

k=m−h+λ

l=n−s+β

−4
∑

k=m−h−λ

l=n−s+β

+2
∑

k=m+h−λ

l=n−s+β

−2
∑

k=m+h+λ

l=n−s+β

−2
∑

k=−m−h+λ

l=n−s+β

−

4
∑

k=m−h+λ
l=n−s−β

+4
∑

k=m−h−λ
l=n−s−β

−2
∑

k=m+h−λ
l=n−s−β

+2
∑

k=m+h+λ
l=n−s−β

+2
∑

k=−m−h+λ
l=n−s−β

+

2
∑

k=m−h+λ

l=n+s−β

−2
∑

k=m−h−λ

l=n+s−β

+
∑

k=m+h−λ

l=n+s−β

−
∑

k=m+h+λ

l=n+s−β

−
∑

k=−m−h+λ

l=n+s−β

−

2
∑

k=m−h+λ
l=n+s+β

+2
∑

k=m−h−λ
l=n+s+β

−
∑

k=m+h−λ
l=n+s+β

+
∑

k=m+h+λ
l=n+s+β

+
∑

k=−m−h+λ
l=n+s+β

− (50)

2
∑

k=m−h+λ
l=−n−s+β

+2
∑

k=m−h−λ
l=−n−s+β

−
∑

k=m+h−λ
l=−n−s+β

+
∑

k=m+h+λ
l=−n−s+β

+
∑

k=−m−h+λ
l=−n−s+β

) 1

λ

1

β

[

(Amn,0Ahs,0 −Bmn,0Bhs,0) cos([
√

(m2 + n2)2 + p2 +
√

(h2 + s2)2 + p2]t0)+

(Amn,0Ahs,0 +Bmn,0Bhs,0) cos([
√

(m2 + n2)2 + p2 −
√

(h2 + s2)2 + p2]t0)

(Bmn,0Ahs,0 +Amn,0Bhs,0) sin([
√

(m2 + n2)2 + p2 +
√

(h2 + s2)2 + p2]t0)+

(Bmn,0Ahs,0 −Amn,0Bhs,0) sin([
√

(m2 + n2)2 + p2 −
√

(h2 + s2)2 + p2]t0)
]

)

,

where λ = 2j + 1 and β = 2i+ 1.The terms given in (50) can cause secular terms if

±
√

(k2 + l2)2 + p2 = ±
√

(m2 + n2)2 + p2 ±
√

(h2 + s2)2 + p2.

To determine the contribution of the summations in (48) to the coefficients of cos(dklp t0) and sin(dklp t0)
in the right-hand side of (48), the following equations have to be examined:

√

(k2 + l2)2 + p2 =
√

(m2 + n2)2 + p2 +
√

(h2 + s2)2 + p2,
√

(k2 + l2)2 + p2 =
√

(m2 + n2)2 + p2 −
√

(h2 + s2)2 + p2,

−
√

(k2 + l2)2 + p2 =
√

(m2 + n2)2 + p2 −
√

(h2 + s2)2 + p2,

(51)

It should be noted that the three cases in (51) are in fact equivalent. For that reason only the first case
is considered. By putting: k2 + l2 = N, m2 + n2 = K, h2 + s2 = S, the first equation in (51) can be
written in the following form

√

N2 + p2 =
√

K2 + p2 +
√

S2 + p2. (52)

For p = 0 it follows directly from (52) that N = K + S. To solve the problem for p > 0 the following
inequality will be used:

√

j2 + p2 ≤ j − 1 +
√

1 + p2 for all p, and all j ∈ Z
+. (53)

Using (52) and (53) we obtain for p > 0

N <
√

N2 + p2 =
√

K2 + p2 +
√

S2 + p2 ≤ K + S + 2(
√

1 + p2 − 1).

By squaring (52) it follows for p > 0 that :

N2 + p2 = K2 + p2 + S2 + p2 + 2
√

K2 + p2
√

S2 + p2 ⇔
(54)

N2 = (K + S)2 + 2(
√

K2 + p2
√

S2 + p2 −KS) + p2 ≥ (K + S)2 + p2.
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Since K,S,N ∈ Z
+ it follows that N > K + S for p > 0. So, if (52) is considered, we conclude that

secular terms can occur for
N = K + S + λ∗, (55)

where K,S,N, λ∗ ∈ Z
+. From (50) we know that k = ±m±h±λ and l = ±n± s±β, where both λ and

β are odd, and where k2 + l2 = N, m2 + n2 = K, and h2 + s2 = S. So, if the expressions for K, N , S
are substituted into equation (55), we obtain

λ∗ = λ2 + β2 ± 2(mh+mλ+ hλ) ± 2(ns+ nβ + sβ)

and it is clear that λ∗ is always even. By substituting (55) into (52) and by squaring the so-obtained
equation it follows that

KS + λ∗(K + S) +
(λ∗)2 − p2

2
=
√

K2 + p2
√

K2 + p2. (56)

By squaring (56) and after rearranging terms we obtain

K2(2λ∗S+(λ∗)2−p2)+K(S+λ∗)(2λ∗S+(λ∗)2−p2)+
(

λ∗S+
(λ∗)2−p2

2

)2−p2S2−p4=0. (57)

It should be observed that the discriminant of this quadratic equation in K is negative for p2 > 2λ∗S +
(λ∗)2, and so K /∈ Z

+. If p2 = 2λ∗S + (λ∗)2 then (57) also does not have a solution K ∈ Z
+. For

p2 < 2λ∗S + (λ∗)2 the solution K = Kλ∗(S; p2) of (57) is given by K ∈ Z
+ and

Kλ∗(S; p2) = −S + λ∗

2
+

√

2λ∗S3 + (λ∗)2S2 + 2λ∗Sp2 + (λ∗)2p2 + 3p2S2 + 3p4

2
√

2λ∗S + (λ∗)2 − p2
. (58)

By implicitly differentiating (56) it can be shown for a fixed value of λ∗, and p2 < 2λ∗S + (λ∗)2 that
∂Kλ∗/∂p2 > 0 and ∂Kλ∗/∂S < 0.

Table 1. ”Secular modes” and corresponding value of p2 for 0 ≤ p2 ≤ 50

Values of p2 for which secular terms occur S, K, N
0 ≤ p2 < 12

(a) p2 = − 2
3 (K2 + 4K + 10) + 2

3

√

(K2 + 4K + 10)2 + 36(K + 1)(K + 3) 2, K, K+4
12 ≤ p2 < 24

(a) p2 = − 2
3 (K2 + 7K + 37) + 2

3

√

(K2 + 7K + 37)2 + 72(K + 1)(K + 6) 5, K, K+7

(b) p2 = − 2
3 (K2 + 6K + 20) + 2

3

√

(K2 + 6K + 20)2 + 96(K + 2)(K + 4), 2, K, K+6

K ∈ {2, 5}
(c) p2=22 2

3 8, 8, 18
24 ≤ p2 < 35.5

(a) p2 =− 2
3(K

2+6K+20)+ 2
3

√

(K2+6K+20)2+96(K+2)(K+4), 2, K, K+6
K ∈ {8, 10, 13, 17...}

(b) p2 =− 2
3(K

2+10K+82)+ 2
3

√

(K2+10K+82)2+108(K+1)(K+9) 8, K, K+10

(c) p2 =− 2
3(K

2+12K+122)+2
3

√

(K2+12K+122)2+132(K+1)(K+11), 10, K, K+12
K ∈ {8, 10, 13, 17, 18}

(d) p2=32 5, 5, 14

(e) p2=28 2, 2, 10
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Extension of Table 1.

Values of p2 for which secular terms occur S, K, N
35.5 ≤ p2 < 41

(a) p2 =− 2
3(K

2+12K+122)+2
3

√

(K2+12K+122)2+132(K+1)(K+11), 10, K, K+12
K ∈ {20, 25...}

(b) p2 =− 2
3(K

2+15K+197)+2
3

√

(K2+15K+197)2+168(K+1)(K+14) 13, K, K+15
K ∈ {13, 17}

(c) p2 = 38.54787 5, 8, 17

(d) p2=37.71114 2, 5, 13
41 ≤ p2 ≤ 50

(a) p2 =− 2
3(K

2+15K+197)+2
3

√

(K2+15K+197)2+168(K+1)(K+14) 13, K, K+15
K ∈ {18, 20, 25, 26...}

(b) p2 =− 2
3(K

2+9K+53)+ 2
3

√

(K2+9K+53)2+168(K+2)(K+7) 5, K, K+9
K ∈ {10, 13, 17, 18, 20}

(c) p2 =− 2
3(K

2+8K+34)+ 2
3

√

(K2+8K+34)2+180(K+5)(K+3), 2, K, K+8
K ∈ {8, 10}

(d) p2 =− 2
3(K

2+19K+325)+2
3

√

(K2+19K+325)2+216(K+1)(K+18), 17, K, K+19
K ∈ {17, 18}

(e) p2 =− 2
3(K

2+20K+362)+2
3

√

(K2+20K+362)2+228(K+1)(K+19), 18, K, K+20
K ∈ {13, 17, 18}

(f) p2=48 8, 8, 20

(g) p2=42 2
3 2, 2, 12

In Figure 2 K2(S; p2), K4(S; p2) and K6(S; p2) are given for some S ∈ Z
+ and 0 ≤ p2 ≤ 50. Further-

more, in Table 1 all values of p2 with 0 ≤ p2 ≤ 50 for which secular terms occur are given as well as the
corresponding ”secular modes” expressed in (S,K,N). For these values of p2 we will now determine the
functions Akl,0 and Bkl,0, k, l = 1, 2, 3, ... such that these secular terms do not occur.

It is known that for every curve in Figure 2 both λ∗ and S are constant. Hence to find for a given
value of p2 as listed in Table 1 all secular modes the complete set of all integer-valued solutions have to
be found for the equation

N = K + S + λ∗,

with N = k2 + l2, K = m2 + n2, and S = h2 + s2, and where k, l,m, n, h, s = 1, 2, 3,... For instance
for p2 = 22 2

3 we have to solve N = 18 = k2 + l2, K = 8 = m2 + n2, and S = 8 = h2 + s2, yielding
k = l = 3, m = n = h = s = 2. And for instance for p2 = 35.40 we have to solve N = 82 = k2 + l2,
K = 72 = m2 + n2, and S = 8 = h2 + s2, yielding k = 9, l = 1 or k = 1, l = 9 and m = n = 6, h = s = 2.
For p2 6= p2

cr the summations in (48) do not give any contributions and the only secular terms in the right-

hand side of (48) are 2dklp
dAkl,0

dt1
sin (dklp t0) and −2dklp

dBkl,0

dt1
cos (dklp t0). This means that the equations

for Akl,0, Bkl,0 are
dAkl,0

dt1
=
dBkl,0

dt1
≡ 0 for k, l = 1, 2, 3, ..., (59)

which means Akl,0(t1) ≡ Akl,0(0) and Bkl,0(t1) ≡ Bkl,0(0) for all k, l. So, if we start with zero initial
energy, there will be no energy present up to O(ε) on a timescale of order ε−1. For p2 6= p2

cr this allows
truncation to those modes that have nonzero initial energy.
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Figure 2: The functions K2(S; p2), K4(S; p2) and K6(S; p2) given by (58) for S ∈ Z
+ and 0 ≤ p2 ≤ 50,

where the curves 1, 2, 4, 5, 6, 8 and 9 represent the functions K2(2; p2), K2(5; p2),K2(8; p2), K2(10; p2),
K2(13; p2), K2(17; p2), and K2(18; p2) respectively, the curves 3, 7 and 11 represent the functions
K4(2; p2), K4(5; p2) and K4(8; p2)respectively, and the curve 10 represents the function K6(2; p2).

5 The construction of asymptotic approximations for some spe-

cific p2-values.

In the previous section it has been shown that for most p2-values (with 0 ≤ p2 ≤ 50) no mode-interactions
will occur, that is, if initially no energy is present in the k − lth mode (that is, the mode described by
sin (kx) sin (ly)) then no energy will be present in this mode up to O(ε) on a time-scale order of ε−1.
However, for some specific values of p2 as listed in Table 1 additional mode interactions can occur, and
an energy transfer of O(1) can occur to another mode (with initially zero energy) on a time-scale of
order ε−1. In this section three such p2 cases will be studied (including detuning). These three cases are
p2 ≈ 22 2

3 , p
2 ≈ 28, and p2 ≈ 35.40. In the first case there will be an interaction between two modes,

in the second case an interaction between three modes will occur, and in the third case four modes will
interact. It is expected that all other cases can be treated similarly.

5.1 The case p2 = p2
cr

+ εα with p2
cr

= 222
3
.

In this case p2 = 22 2
3 + εα (where α is an O(1) detuning parameter) we have interactions between the

modes 2-2 and 3-3, that is, interactions between the modes described by sin (2x) sin (2y) and sin (3x) sin (3y).
Extra terms in the equations (48) for Akl,0, Bkl,0 occur for k=l=2 and k=l=3. The equations for
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A22,0, B22,0, A33,0, B33,0 now become (as follows from (48)):

2d22
dA22,0

dt1
− αB22,0 +

610

441π2
(B33,0A22,0 −A33,0B22,0) = 0,

−2d22
dB22,0

dt1
+ αA22,0 +

610

441π2
(A33,0A22,0 +B33,0B22,0) = 0, (60)

2d33
dA33,0

dt1
− αB33,0 +

1296

441π2
A22,0B22,0 = 0,

−2d33
dB33,0

dt1
+ αA33,0 +

648

441π2
(A2

22,0 −B2
22,0) = 0.

For (k, l) 6= (2, 2) and (k, l) 6= (3, 3), Akl,0, Bkl,0 satisfy

dAkl,0

dt1
=

α

dkl
Bkl,0,

dBkl,0

dt1
= − α

dkl
Akl,0. (61)

From (61) it can be seen that if Akl,0(0) = Bkl,0(0) = 0, then for all t1 > 0 Akl,0(t1) = Bkl,0(t1) ≡ 0
for (k, l) 6= (2, 2) and (k, l) 6= (3, 3). So if we start with zero initial energy in the k − lth mode with
(k, l) 6= (2, 2) and (k, l) 6= (3, 3), then there will be no energy present up to O(ε) on a timescale of order
ε−1. We say that the coupling between the modes with (k, l) 6= (2, 2) and (k, l) 6= (3, 3) is of O(ε). This
means that modes with zero initial energy do not have to be taken into account (for (k, l) 6= (2, 2) and
(k, l) 6= (3, 3)). On the other hand there is an O(1) coupling in this case between the modes 2-2 and 3-3.
This means that if there is initially energy present in mode 2-2 an energy transfer occurs between the
modes 2-2 and 3-3. Truncation to one mode is not valid: both modes 2-2 and 3-3 have to be taken into
account, even if mode 3-3 has zero initial energy. Now let us consider equation (60), so we consider only
the equations for k = l = 2 and k = l = 3. We assume that all other modes have zero initial energy. Let

a =
−305

441d22π2
, and b =

−648

441d33π2

then (60) becomes

Ȧ22,0 =
α

2d22
B22,0 + a(A22B33 −A33B22),

Ḃ22,0 = − α

2d22
A22,0 − a(A22A33 −B22B33), (62)

Ȧ33,0 =
α

2d22
B33,0 + 2bA22B22,

Ḃ33,0 = − α

2d22
A33,0 − b(A2

22 −B2
22),

where the dot represents differentiation with respect to t1. To study (62) polar coordinates are introduced

Ann = rn cos (φn), Bnn = rn sin (φn). (63)

In the polar coordinates (63) for (k, l) = (2, 2), and (3, 3) equation (62) becomes

ṙ2 = ar2r3 sin (φ3 − 2φ2), (64)

φ̇2 = γ2 − ar3 cos (φ3 − 2φ2), (65)

ṙ3 = −br22 sin (φ3 − 2φ2), (66)

φ̇3 = γ3 − b
r22
r3

cos (φ3 − 2φ2), (67)
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Figure 3: The phase space for p2 = 22 2
3 + εα with γ = α

(

2√
64+p2

cr

− 1√
324+p2

cr

)

, with r3 (horizontal)

from 0 to 10, ψ (vertical) from 0 to 3π.

where γ2 = − α
2d22

, γ3 = − α
2d33

. Multiplying (64) with br2 and (66) with ar3 and adding both
equations we obtain br2ṙ2 + ar3ṙ3 = 0, which implies

br22 + ar23 = c1, (68)

where c1 is a constant of integration. Using (68) it follows that (64), and (67) can be analyzed in the
(r3, ψ) phase space with ψ = φ3 − 2φ2:

ṙ3 = (ar23 − c1) sin (ψ), (69)

ψ̇ = γ +
1

r3
(3ar23 − c1) cos (ψ), (70)

where γ = γ3−2γ2. First let us rescale (69), and (70) by introducing the new variables r3 =
√

c1

a r̄3, t =
√

1
c1a t̄. In the new variables (69) and (70) become:

r̄′3 = (r̄23 − 1) sin (ψ), (71)

ψ′ = γ̄ +
1

r̄3
(3r̄23 − 1) cos (ψ), (72)

where γ̄ = α√
c1a

(

1
d22

− 1
2d33

)

, and where the prime ′ denotes differentiation with respect to t̄. For r̄3 = 0

(71)-(72) do not hold. In this case the original differential equations (62) have to be analyzed. We will
determine the critical points of (69)-(70) analytically for different values of γ. Let us start with γ = 0.
System (69)-(70) is analyzed in the (r3, ψ) phase space. This system is 2π-periodic in ψ. Four critical
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points are found for 0 ≤ ψ ≤ 2π: (1, 0) and (
√

1
3 , π), both centers, and (1, π

2 ) and (1, 3π
2 ), both saddles.

The behavior of the solution of (71)-(72) with γ = 0 in the (r̄3, ψ) phase space is given in Figure 3(a).
In the exceptional case, when r̄3 becomes 0, the original differential equations (62) impose a phasejump
from ψ = 0, to ψ = π

2 . The periods of the orbits in Figure 3(a) also can be found. From system (71)-(72)
with γ = 0 it follows that

(3r̄23 − 1)

r̄3(r̄23 − 1)
dr̄3 = tanψdψ. (73)

After integration we get the trajectories of the closed orbits

r̄3(r̄
2
3 − 1) =

c2
cosψ

, (74)

where c2 is constant of integration. The period of a closed orbit in Figure 3(a) is given by.

T = 2 sin

(

1

3
arccos

(

3
√

3c2
2

))

, − 2

3
√

3
< c2 <

2

3
√

3
. (75)

A completely similar analysis can be given for γ 6= 0. Some results in the phase space are given in
Figure 3(b)-(f). For large values of the detuning parameter it can be seen in Figure 3 that the trajectories
in the phase space are almost straight lines implying that (almost) no mode interactions take place.

5.2 The case p2 = p2
cr

+ εα with p2
cr

= 28.

For the case when p2 = 28 + εα (where α is an O(1) detuning parameter) we have interactions between
three modes: the 1-1, the 1-3 and the 3-1 mode. In this case extra terms in the equations (48) for
Akt,0, Bkt,0 occur for k=l=1; k=1, l=3 and k=3,l=1. The equations for A11,0, B11,0, A13,0, B13,0, A31,0,
B31,0 now become (as follows from (48)):

2d11
dA11,0

dt1
− αB11,0 −

96

45π2
(A11,0(B13,0 +B31,0) −B11,0(A13,0 +A31,0)) = 0,

−2d11
dB11,0

dt1
+ αA11,0 −

96

45π2
(A11,0(A13,0 +A31,0) −B11,0(B13,0 +B31,0)) = 0,

2d13
dA13,0

dt1
− αB13,0 −

64

45π2
A11,0B11,0 = 0, (76)

−2d13
dB13,0

dt1
+ αA13,0 −

32

45π2
(A2

11,0 −B2
11,0) = 0,

2d31
dA31,0

dt1
− αB31,0 −

64

45π2
A11,0B11,0 = 0,

−2d31
dB31,0

dt1
+ αA31,0 −

32

45π2
(A2

11,0 −B2
11,0) = 0.

For (k, l) 6= (1, 1), (k, l) 6= (1, 3), and (k, l) 6= (3, 1), Akl,0, Bkl,0 satisfy (61). From (61) it can be seen that
if Akl,0(0) = Bkl,0(0) = 0, then for all t1 > 0 Akl,0(t1) = Bkl,0(t1) ≡ 0 for (k, l) 6= (1, 1), (k, l) 6= (1, 3),
and (k, l) 6= (3, 1). So if we start with zero initial energy in the k − lth mode ((k, l) 6= (1, 1), (k, l) 6=
(1, 3), (k, l) 6= (3, 1)), there will be no energy present up to O(ε) on a timescale of order ε−1. We say that
the coupling between the modes with (k, l) 6= (1, 1), (k, l) 6= (1, 3), and (k, l) 6= (3, 1) is of O(ε). This means
that modes with zero initial energy do not have to be taken into account (for (k, l) 6= (1, 1), (k, l) 6= (1, 3),
and (k, l) 6= (3, 1)). On the other hand there is an O(1) coupling in this case between the modes 1-1, 1-3
and 3-1. This means that an energy transfer occurs between these modes even if the modes 1-3 and 3-1
have zero initial energy. Truncation to one mode is not valid: all modes 1-1, 1-3 and 3-1 have to be taken
into account. Now let us consider the equations (76) and let

48

45d11π2
= a1,

16

45d13π2
= b1.
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Then, (76) becomes

Ȧ11,0 =
α

2d11
B11,0 + 2a1(A11,0(B13,0 +B31,0) −B11,0(A13,0 +A31,0)),

Ḃ11,0 = − α

2d11
A11,0 − 2a1(A11,0(A13,0 +A31,0) −B11,0(B13,0 +B31,0)),

Ȧ13,0 =
α

2d13
B13,0 + 2b1A11,0B11,0, (77)

Ḃ13,0 = − α

2d13
A13,0 − b(A2

11,0 −B2
11,0),

Ȧ31,0 =
α

2d31
B31,0 + 2b1A11,0B11,0,

Ḃ31,0 = − α

2d31
A31,0 − b1(A

2
11,0 −B2

11,0).

First let us rescale the equations (77) by introducing A11,0 = 1√
a1b1

x11, B11,0 = 1√
a1b1

y11, A13,0 =
1
a1
x13,B13,0 = 1

a1
y13, A31,0 = 1

a1
x31, and B31,0 = 1

a1
y31. Then system (77) becomes:

ẋ11 =
α

d11
y11 + x11(y13 + y31) − y11(x13 + x31), (78)

ẏ11 = − α

d11
x11 − x11(x13 + x31) − y11(y13 + y31), (79)

ẋ13 =
α

d13
y13 + 2x11y11, (80)

ẏ13 = − α

d13
x13 − (x2

11 − y2
11), (81)

ẋ31 =
α

d31
y31 + 2x11y11, (82)

ẏ31 = − α

d31
x31 − (x2

11 − y2
11). (83)

From the equations (80)-(83) the following two integrals can easily be obtained (observing that d13 = d31)
in the following way: if equation (80) is subtracted from equation (82), and equation (81) is subtracted
from equation (83), then the following sub-system is obtained

ẋ31 − ẋ13 =
α

2d13
(y31 − y13),

ẏ31 − ẏ13 =
−α
2d13

(x31 − x13).

The solution of this sub-system is given by

x13 = x31 + a sin (γt1 + b), y13 = y31 + a cos (γt1 + b), (84)

where a, b are constants of integration, and γ = α
2d13

. Substituting (84) into system (78)-(83) then yields

ẋ11 =
α

2d11
y11 + x11(2y31 + a cos (γt1 + b)) − y11(2x31 + a sin (γt1 + b)), (85)

ẏ11 = − α

2d11
x11 − x11(2x31 + a sin (γt1 + b)) − y11(2y31 + a cos (γt1 + b)), (86)

ẋ31 = γy31 + 2x11y11, (87)

ẏ31 = −γx31 − (x2
11 − y2

11). (88)

Now let’s introduce the following change of variables

x31(t1) = a31(t1) −
a

2
sin (γt1 + b), y31(t1) = b31(t1) −

a

2
cos (γt1 + b).
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Then,

ẋ31 = ȧ31 −
a

2
γ cos (γt1 + b) = γb31 −

a

2
γ cos (γt1 + b) + 2x11y11,

ẏ31 = ḃ31 +
a

2
γ sin (γt1 + b) = −γa31 +

a

2
γ sin (γt1 + b) + (x2

11 − y2
11)

and system (85)-(88) can be rewritten in the form

ẋ11 =
α

2d11
y11 + 2x11b13 − 2y11a13, (89)

ẏ11 = − α

2d11
x11 − 2y11b13 − 2x11a13, (90)

ȧ31 = γb31 + 2x11y11, (91)

ḃ31 = −γa31 − (x2
11 − y2

11). (92)

Now observe that 1
2 (x2

11 + y2
11 + 2a2

31 + 2b231)
· = 0, so

x2
11 + y2

11 + 2a2
31 + 2b231 = c, (93)

where c is a constant of integration. By introducing the polar coordinates

x11 = r1 cos (φ1), y11 = r1 sin (φ1), a31 = r3 cos (φ3), b31 = r3 sin (φ3)

system (89)-(92) becomes

ṙ1 = 2r1r3 sin (φ3 − 2φ1), (95)

φ̇1 = −γ1 − 2r3 cos (φ3 − 2φ1), (96)

ṙ3 =
r21
2

sin (φ3 − 2φ1), (97)

φ̇3 = −γ − r21
r3

cos (φ3 − 2φ1), (98)

where γ1 = α
2d11

. The first integral (93) can now be rewritten as r21 + r23 = c, and if we introduce the new
variable

ψ = φ13 − 2φ11

system (95)-(98) becomes (for r3 6= 0),

ṙ3 = (2r23 − c) sinψ, (100)

ψ̇ = γ − 2γ1 +
(6r23 − c)

r3
cosψ. (101)

By introducing the rescaling

r3 =
√
cr, t1 =

1√
c
t̄,

system (100)-(101) can be written as follows

ṙ = (2r2 − 1) sinψ, (103)

ψ̇ = γ̄ +
(6r2 − 1)

r
cosψ, (104)

where γ̄ = γ− 2γ1. For r = 0 (103)-(104) do not hold. In this case the original differential equations (77)
have to be analyzed. The critical points of (103)- (104) can be determined analytically. The system is

2π-periodic in ψ. Four critical points are found for 0 ≤ ψ ≤ 2π and γ̄ = 0:
(
√

1
6 , 0
)

,
(
√

1
6 , π
)

,
(
√

1
2 ,

π
2

)

,

21



and
(
√

1
2 ,

3π
2

)

. The behavior of the solutions of (103)-(104) in the (r3, ψ) phase space is given in Figure

4. In the exceptional case, when r becomes 0, the original differential equations (77) impose a phasejump
from ψ = 0 to ψ = π

2 , as can be seen in Figure 4. As in section 5.1 we also can determine the periods of
the orbits in Figure 4(a). For γ 6= 0 a completely similar analysis can be given. The results in the (r, ψ)
phase space are given in Figure 4. Again it can be seen in Figure 4 that for large values of the detuning
parameter α the function r is (almost) constant resembling the behavior for a ”noncritical” value for p2.
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Figure 4: The phase space for p2 = 28+ εα with γ = α

(

1

2
√

100+p2
cr

− 2√
4+p2

cr

)

, with r (horizontal) from

0 to 1, and ψ (vertical) from 0 to 3π.

5.3 The case p2 = p2
cr

+ εα with p2
cr
≈ 35.40.

Finally let us consider a more difficult case with interactions between the following four modes: 1-9, 9-1,
2-2 and 6-6. In this case p2

cr ≈ 35.40 and α an O(1) detuning parameter. The extra terms in the equations
(48) for Akl,0, Bkl,0 occur for k = l = 2; k = l = 6; k = 1, l = 9, and k = 9, l = 1. The equations for
A22, B22, A66, B66, A19, B19 and A91, B91 are given by (as follows from (48)):

2d91
dA91,0

dt1
− αB91 +

32

153π2
(A22,0B66,0 +A66,0B22,0) = 0,

−2d91
dB91,0

dt1
+ αA91 +

32

153π2
(A22,0A66,0 +B66,0B22,0) = 0,

2d19
dA19,0

dt1
− αB19 +

32

153π2
(A22,0B66,0 +A66,0B22,0) = 0,
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−2d19
dB19,0

dt1
+ αA19 +

32

153π2
(A22,0A66,0 +B66,0B22,0) = 0, (105)

2d66
dA66,0

dt1
− αB66 +

158

1071π2
(A22,0B91,0 −A91,0B22,0) +

158

1071π2
(A22,0B19,0 −A19,0B22,0) = 0,

−2d66
dB66,0

dt1
+ αA66 +

158

1071π2
(A22,0A91,0 +B91,0B22,0) +

158

1071π2
(A22,0A19,0 +B19,0B22,0) = 0,

2d22
dA22,0

dt1
− αB22 +

154

1275π2
(A91,0B66,0 −A66,0B91,0) +

154

1275π2
(A19,0B66,0 −A66,0B19,0) = 0,

−2d22
dB22,0

dt1
+ αA22 +

154

1275π2
(A66,0A91,0 +B66,0B22,0) +

154

1275π2
(A66,0A19,0 +B66,0B22,0) = 0.

For (k, l) 6= (2, 2), (k, l) 6= (1, 9), (k, l) 6= (9, 1), and (k, l) 6= (6, 6) Akl,0, Bkl,0 satisfy (61). Observing that
d91 = d19, and let

a1 =
−16

153d91π2
, a2 =

−79

1071d66π2
, a3 =

−77

1275d221π2

and then (105) becomes

Ȧ91,0 =
α

2d91
+ a1(A22,0B66,0 +A66,0B22,0),

Ḃ91,0 = − α

2d91
− a1(A22,0A66,0 +B66,0B22,0),

Ȧ19,0 =
α

2d19
+ a1(A22,0B66,0 +A66,0B22,0),

Ḃ19,0 = − α

2d19
− a1(A22,0A66,0 +B66,0B22,0), (106)

Ȧ66,0 =
α

2d66
+ a2(A22,0(B19,0 +B91,0) −B22,0(A19,0 +A91,0)),

Ḃ66,0 = − α

2d66
− a2(A22,0(A19,0 +A91,0) +B22,0(B19,0 +B91,0)),

Ȧ22,0 =
α

2d22
− a3(A66,0(B19,0 +B91,0) −B66,0(A19,0 +A91,0)),

Ḃ22,0 = − α

2d22
+ a3(A66,0(A19,0 +A91,0) +B66,0(B19,0 +B91,0)),

where the dot represents differentiation with respect to t1. Then we introduce the following rescalings in
(106)

A91,0 =
1√
a2a3

x91, B91,0 =
1√
a2a3

y91, A19,0 =
1√
a2a3

x19, B19,0 =
1√
a2a3

y19,

A66,0 =
1√
a1a3

x66, B66,0 =
1√
a1a3

y661, A22,0 =
1√
a1a2

x22, B22,0 =
1√
a1a2

y22,

to obtain

ẋ91 =
α

2d91
y91 + x22y66 + x66y22, (107)

ẏ91 = − α

2d91
x91 + y22y66 − x66x22, (108)

ẋ19 =
α

2d19
y19 + x22y66 + x66y22, (109)

ẏ19 = − α

2d19
x19 + y22y66 − x66x22, (110)
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ẋ66 =
α

2d66
y66 + x22(y19 + y91) − y22(x19 + x91), (111)

ẏ66 = − α

2d66
x66 − x22(x19 + x91) − y22(y19 + y91), (112)

ẋ22 =
α

2d22
y22 − x66(y19 + y91) + y66(x19 + x91), (113)

ẏ22 = − α

2d22
x22 + x66(x19 + x91) + y66(y19 + y91). (114)

Substracting equation (109) from (107) and equation (110) from (108), the following system is obtained

ẋ91 − ẋ19 =
α

2d19
(y91 − y19),

ẏ91 − ẏ19 = − α

2d19
(x91 − x19).

Solving this so-obtained system two integrals for system (107)-(114) can be obtained

x91 = x19 + a sin (γt1 + b), y91 = y19 + a cos (γt1 + b), (115)

where a, b are constants of integration. After substituting (115) into system (107)-(114) we obtain the
following system of ODEs:

ẋ19 = γ9y19 + x22y66 + x66y22,

ẏ19 = −γ9x19 + y22y66 + x66x22,

ẋ66 =
α

2d66
y66 + x22(2y19 + a cos (γ9t1 + b)) − y22(2x19 + a sin (γ9t1 + b)), (116)

ẏ66 = − α

2d66
x66 − x22(2x19 + a sin (γ9t1 + b)) − y22(2y19 + a cos (γ9t1 + b)),

ẋ22 =
α

2d22
y22 − x66(2y19 + a cos (γ9t1 + b)) + y66(2x19 + a sin (γ9t1 + b)),

ẏ22 = − α

2d22
x22 + x66(2x19 + a sin (γ9t1 + b)) + y66(2y19 + a cos (γ9t1 + b)),

where γ9 = α
2d19

. If the following transformation is used

x19 = a19 −
a

2
sin (γ9t1 + b), y19 = b19 −

a

2
cos (γ9t1 + b),

then

ẋ19 = ȧ19 −
a

2
γ9 cos (γ9t1 + b) = γ9b19 −

a

2
γ9 cos (γ9t1 + b) + x22y66 + x66y22,

ẏ19 = ḃ19 +
a

2
γ9 sin (γ9t1 + b) = −γ9a19 +

a

2
γ9 sin (γ9t1 + b) + y22y66 − x66x22.

Using this transformation system (116) can be rewritten in the following autonomous form:

ȧ19 = γ9b19 + x22y66 + x66y22,

ḃ19 = −γ9a19 + y22y66 − x66x22,

ẋ66 =
α

2d66
y66 + x22b19 − y22a19, (117)

ẏ66 = − α

2d66
x66 − x22a19 − y22b19,

ẋ22 =
α

2d22
y22 − x66b19 + y66a19,

ẏ22 = − α

2d22
x22 + x66a19 + y66b19.
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Introducing polar coordinates, that is, for i = 2 and 6

xii = ri cosφi, yii = ri sinφi, and a19 = r9 cos (φ9), b19 = r9 sin (φ9),

system (117) becomes:

ṙ9 = r2r6 sin (φ6 + φ2 − φ9), (119)

φ̇9 = −γ9 −
−r2r6
r9

cos (φ6 + φ2 − φ9), (120)

ṙ6 = −r2r9 sin (φ6 + φ2 − φ9), (121)

φ̇6 = − α

2d66
− r2r9

r6
cos (φ6 + φ2 − φ9), (122)

ṙ2 = r9r6 sin (φ6 + φ2 − φ9), (123)

φ̇2 = − α

2d22
+
r9r6
r2

cos (φ6 + φ2 − φ9). (124)

If we multiply equation (119) with r9, equation (121) with r6 and then add, we obtain the following first
integral

r26 + r29 = c1. (125)

Another first integral can be obtained when we multiply equation (121) with r6, equation (123) with r2
and then add, yielding

r26 + r22 = c2. (126)

Let us introduce
ψ = φ6 + φ2 − φ9. (127)

Using the two first integrals (125), (126), and (127) it follows that system (119)-(124) can be reduced to
a system of two differential equations:

ṙ2 =
√

c2 − r22

√

c1 − c2 + r22 sinψ, (128)

ψ̇ = γ1 +
−3r42 + 4c2r

2
2 − 2c1r

2
2 + c2c1 − c22

r2
√

c2 − r22
√

c1 − c2 + r22
cosψ, (129)

where γ1 = γ9 − α
2d66

− α
2d22

. Finally we introduce the following rescalings in (128)-(129)

r2 =
√
c2r, t =

√
c2τ,

c1
c2

= c3,

to obtain

ṙ =
√

1 − r2
√

c3 − 1 + r2 sinψ, (131)

ψ̇ = γ +
−3r4 + 4r2 − 2c3r

2 + c3 − 1

r
√

1 − r2
√
c3 − 1 + r2

cosψ, (132)

where γ = γ1√
c2

. For r = 0, r = 1 and r =
√

1 − c3 (131)-(132) do not hold. In those cases we have

to analyze the original differential equations (106). It should also be observed from (131)-(132) that
1 − c3 ≤ r2 ≤ 1. From the analysis of these original differential equations it follows for γ = 0 that the
points

(

1, π
2

)

,
(

1, 3π
2

)

,
(√

1 − c3,
π
2

)

, and
(√

1 − c3,
3π
2

)

are saddles in the phase space as can be seen
from Figure 5 (a). These saddles disappear by increasing the detuning parameter α. We will determine
the critical points of (131)-(132) analytically. For convenience we take c3 = 0.19, which implies that
0.9 ≤ r ≤ 1 . The figures in the phase space are essentially the same for c3 6= 0.19. The system is

2π-periodic in ψ. The following critical points are found:
(

1
3

√
6 − 3c3 + 3C, 0

)

,
(

1
3

√
6 − 3c3 + 3C, π

)

,
(

1
3

√
6 − 3c3 − 3C, 0

)

,
(

1
3

√
6 − 3c3 + 3C, π

)

, where C = sqrt1 − c3 + c23. The behavior of the solutions

of (131)-(132) in the (r, ψ) phase space is given in Figure 5.
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Figure 5: The phase space for p2 = 35.40 + εα with γ = α

(

1

2
√

6561+p2
cr

− 1

2
√

64+p2
cr

− 1√
5184+p2

cr

)

, and
√

1 − c3 ≤ r ≤ 1 and c3 = 0.19; r (horizontal) from 0.9 to 1, and ψ (vertical) from 0 to 3π.

6 Conclusions.

In this paper an initial-boundary value problem for a weakly nonlinear plate equation has been consid-
ered. Order ε asymptotic approximations of the solution have been constructed and interactions between
different oscillation modes have been considered. A theory has been presented which shows that the
constructed approximations are asymptotically valid on time-scales of order ε−1. For most p2-values it
has been shown that no mode interactions occur between different modes up to O(ε) on time-scales of
order ε−1, which means that there is no energy transfer between different modes up to O(ε) on time-scales
of order ε−1. The coupling between these modes is said to be of order ε, and truncation is allowed to
those modes that have nonzero initial energy.

However, for some p2-values interactions between different modes occur, which are caused by com-
plicated internal resonances. Physically this means than in some cases (depending on the value of p2,
which depends on the elasticity-characteristics of the foundation and on certain properties of the plate),
when the plate initially oscillates in a high vibration mode, lower vibration modes can be excited, and
an energy transfer occurs between the different modes. In Table 1 all these critical p2-values are given
for 0 ≤ p2 ≤ 50. For three different critical values of p2

cr, p
2
cr ≈ 68

3 , p2
cr ≈ 35.40, p2

cr ≈ 28, the equations
have been studied in detail.

For p2
cr ≈ 68

3 it has been shown that an energy transfer occurs between the modes 2-2 and 3-3, even if
mode 3-3 has zero initial energy. We call this a coupling between the modes of O(1). Truncation to one
mode will give loss of information, and approximations will not be valid on time-scales of order ε−1. Both
modes have to be taken into account. Examining the behavior of the oscillations in this case, it follows
that the system oscillates around an equilibrium state which is a combination of two modes (energy in
both modes). The detuning analysis shows that the system gradually changes from a combined oscillation
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of two modes with non-constant amplitudes to an oscillation of two modes with constant amplitudes, as
p2 moves away form the critical value 68

3 (as can be seen in Figure 3). All this holds up to O(ε) on a
timescale of order ε−1. For p2

cr ≈ 28 it has been shown that an energy transfer occurs between the modes
1-1, 1-3 and 3-1, even if modes 1-3 and 3-1 have zero initial energy. Truncation to one or two modes will
give loss of information in this case, and an approximation will not be valid on time-scales of order ε−1.
All three modes have to be taken into account. For p2

cr ≈ 35.40 it has been shown that an energy transfer
occurs between the modes 1-9, 9-1, 2-2 and 6-6.

In this paper an asymptotic theory for an initital-boundary value problem for a weakly nonlinear plate
equation has been presented. In section 4 and 5 of this paper formal approximations of the solutions have
been constructed. These approximations satisfy the original PDE and the original initial values up to
O(ε2). The asymptotic theory as presented in section 3 of this paper then implies that the approximations
are asymptotically valid up to O(ε) on time-scales of O(ε−1). The theory (as presented in section 2 and
3 of this paper) can also easily be extended to problem for rectangular plates with more complicated
nonlinearities in the PDE. It is also possible to extend the theory to problems with other (than simply
supported) boundary conditions.

Appendix A. Green’s function G and the integral equation.

In this appendix we construct the Green’s function G for the linear operator ∂4

∂x4 + ∂4

∂y4 + ∂4

∂x2∂y2 + ∂2

∂t2 +p2

and the simply supported boundary conditions. We will also derive the equivalent integral equation as
given by (17). The Green’s function G(ξ, η, τ ;x, y, t) is defined to be the solution of the following problem:

Gtt +Gxxxx + 2Gxxyy +Gyyyy + p2G = δ(x− ξ, y − η, t− τ), (133)

x, ξ, y, η ∈]0, π[, τ > 0,

G(ξ, η, τ ; 0, y, t) = G(ξ, η, τ ;π, y, t) = Gxx(ξ, η, τ ; 0, y, t) = Gxx(ξ, η, τ ;π, y, t) ≡ 0, (134)

t > 0, τ > 0,

G(ξ, η, τ ;x, 0, t) = G(ξ, η, τ ;x, π, t) = Gyy(ξ, η, τ ;x, 0, t) = Gyy(ξ, η, τ ;x, π, t) ≡ 0, (135)

t > 0, τ > 0,

G(ξ, η, τ ;x, y, t) ≡ 0, τ ≥ t. (136)

The boundary conditions imply that G can be written in a Fourier sine series in x and y:

G(ξ, η, τ ;x, y, t) =
∞
∑

n=1

∞
∑

m=1

gmn(ξ, η, τ ; t) sin (nx) sin (my).

Substituting this series into (133) and using the orthogonality properties of the sine functions, we
obtain the following set of equations for gmn (where a dot represents differentiation with respect to t):

g̈mn + ((m2 + n2)2 + p2)gmn =
4

π2

π
∫

0

π
∫

0

δ(x− ξ,y − η, t− τ) sin (nx) sin (my)dxdy,

0 < ξ < π, 0 < η < π, τ > 0, (137)

gmn(ξ, η, τ ; 0) = gmn(ξ, η, τ ; τ) ≡ 0, 0 < ξ < π, 0 < η < π, (138)

for m,n = 1, 2, 3.... The equations (137)-(138) can be solved by using the method of ”variation of
constants”, yielding

gmn(ξ, η, τ ; t)=
4

π2
√

(n2+m2)2+p2
sin
[
√

(n2+m2)2+p2(t−τ)
]

H(t− τ) sin (nξ) sin (mη),

for m,n = 1, 2, 3..., and therefore

G(ξ, η, τ ;x, y, t) =
4

π2

∞
∑

n=1

∞
∑

m=1

1
√

(n2 +m2)2 + p2
sin
[
√

(n2 +m2)2 + p2(t− τ)
]

(139)

×H(t− τ) sin (nξ) sin (mη) sin (nx) sin (my).
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We find the integral equation (17) by multiplying (133) with w(ξ, η, τ) and integrating over 0 ≤ ξ ≤
π, 0 ≤ η ≤ π, 0 ≤ τ ≤ t. By integrating by parts, and by using the boundary conditions (134)-(135)
for G and the boundary conditions for w we finally obtain the equivalent integral equation

w(x, y, t) = ε

t
∫

0

π
∫

0

π
∫

0

G(ξ, η, τ ;x, y, t)f(ξ, η, τ, w(ξ, η, τ); ε)dξdηdτ (140)

+

π
∫

0

π
∫

0

{

G(ξ, η, 0;x, y, t)w1(ξ, η; ε) −Gτ (ξ, η, 0;x, y, t)w0(ξ, η; ε)
}

dξdη = (Tw)(x, y, t).

Appendix B. Integral inequalities.

In this appendix two integral inequalities are derived. These inequalities play an important role in the
asymptotic theory presented in this paper. Let f1(x, y) and its partial derivatives up to order four be
continuous on [0, π] × [0, π] and let f2(x, y) and its partial derivatives up to second order be continuous
on [0, π] × [0, π]. The functions f1 and f2 also have to satisfy additional boundary conditions like:

f1(0, y) = f1(π, y) = f2(0, y) = f2(π, y) = ∂2f1(0,y)
∂x2 = ∂2f1(π0,y)

∂x2 = ∂2f2(0,y)
∂x2 = ∂2f2(π,y)

∂x2 = 0. We will show
that for all x, y, t ∈ ΩL (as defined in (20)) and for p ≥ 0 the following inequalities hold:

∣

∣

∣

π
∫

0

π
∫

0

Gτ (ξ, η, 0;x, y, t)f1(ξ, η)dξdη
∣

∣

∣
(141)

≤ π2 max
0≤x,y≤π

{

p2|f1(x, y)| +
∣

∣

∣

∂2f1(x, y)

∂x2

∣

∣

∣
+ 2
∣

∣

∣

∂2f1(x, y)

∂x∂y

∣

∣

∣
+
∣

∣

∣

∂2f1(x, y)

∂y2

∣

∣

∣

}

and
∣

∣

∣

π
∫

0

π
∫

0

G(ξ, η, 0;x, y, t)f2(ξ, η)dξdη
∣

∣

∣
≤ π2 max

0≤x,y≤π
|f2(x, y)|. (142)

To prove these inequalities we consider the following linear initial-boundary value problem for a three-
times differentiable function w(x, y, t) with wxxxx, wyyyy, wxxyy continuous:

wtt + wxxxx + 2wxxyy + wyyyy + p2w = 0, 0 < x < π, 0 < y < π, t > 0, (143)

w(0, y, t) = w(π, y, t) = wxx(0, y, t) = wxx(π, y, t) = 0, t ≥ 0, (144)

w(x, 0, t) = w(x, π, t) = wyy(x, 0, t) = wyy(x, π, t) = 0, t ≥ 0, (145)

w(x, y, 0) = f1(x, y), wt(x, y, 0) = f2(x, y), 0 < x < π, 0 < y < π. (146)

Using Green’s function G for the linear operator ∂4

∂x4 +2 ∂4

∂x2∂y2 + ∂4

∂y4 + ∂2

∂t2 +p2 and the simply supported
boundary conditions it follows elementarily that the unique and three-times continuously differentiable
solution of the initial-boundary value problem (143)-(146), which has continuous fourth order derivatives
with respect to x, y is given by

w(x, y, t) =

π
∫

0

π
∫

0

(G(ξ, η, 0;x, y, t)f2(ξ, η) −Gτ (ξ, η, 0;x, y, t)f1(ξ, η))dξdη. (147)

To be able to estimate |w(x, y, t)| and thus the integral given in (147) we will use the following energy
equation related to the initial boundary value problem (143)-(146):

π
∫

0

π
∫

0

{w2
tt(x, y, t0) + w2

xx(x, y, t0) + 2w2
xy(x, y, t0) + w2

yy + p2w2(x, y, t0)}dxdx =

π
∫

0

π
∫

0

{

f2
2 (x, y) +

(∂2f1(x, y)

∂x2

)2

+
(∂2f1(x, y)

∂y2

)2

+
(∂2f1(x, y)

∂x∂y

)2

+ p2f2
1 (x, y)

}

dxdy.
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We obtain this energy equation by multiplying (143) with wt and by integrating with respect to x, y
and t over 0 ≤ x ≤ π, 0 ≤ y ≤ π, 0 ≤ t ≤ t0, using the initial and boundary conditions (144)-(146).
On the other hand, we have

w(x, y, t) =

y
∫

0

x
∫

0

wξη(ξ, η, t)dξdη. (148)

Using (148) and Hölder’s inequality we now have

|w(x, y, t)| ≤
y
∫

0

x
∫

0

|wξη(ξ, η, t)|dξdη ≤
π
∫

0

π
∫

0

|wxy(x, y, t)|dxdy

≤
(

π
∫

0

π
∫

0

12dxdy
)

1
2
(

π
∫

0

π
∫

0

w2
xydxdy

)
1
2 ≤π

(1

2

π
∫

0

π
∫

0

{w2
t +w2

xx+2w2
xy+w2

yy+p2w2}dxdy
)

1
2

≤ π
(1

2

π
∫

0

π
∫

0

{

f2
2 (x, y) + p2f2

1 (x, y) +
(∂2f1(x, y)

∂x2

)2

+ 2
(∂2f1(x, y)

∂x∂y

)2

+

(∂2f1(x, y)

∂y2

)2}

dxdy
)

1
2

≤ π
(1

2

π
∫

0

π
∫

0

max
0≤x,y≤π

{

f2
2 (x, y) + p2f2

1 (x, y) +
(∂2f1(x, y)

∂x2

)2

+ 2
(∂2f1(x, y)

∂x∂y

)2

+

(∂2f1(x, y)

∂y2

)2}

dxdy
)

1
2

≤ π2

√
2
max

0≤x,y≤π

{

f2
2 (x,y)+p2f2

1 (x,y)+
(∂2f1(x,y)

∂x2

)

2+2
(∂2f1(x,y)

∂x∂y

)

2+
(∂2f1(x,y)

∂y2

)

2
}

1
2

. (149)

Hence it follows from (147) and (149) that if f2(x, y) ≡ 0, then

∣

∣

∣

π
∫

0

π
∫

0

Gτ (ξ, η, 0;x, y, t)f1(ξ, η)dξdη
∣

∣

∣

≤ π2

√
2
max

0≤x,y≤π

{

p2|f1(x, y)| +
∣

∣

∣

∂2f1(x, y)

∂x2

∣

∣

∣
+ 2
∣

∣

∣

∂2f1(x, y)

∂x∂y

∣

∣

∣
+
∣

∣

∣

∂2f1(x, y)

∂y2

∣

∣

∣

}

,

and similarly, if we take f1(x, y) ≡ 0, then

∣

∣

∣

π
∫

0

π
∫

0

G(ξ, η, 0;x, y, t)f2(ξ, η)dξdη
∣

∣

∣
≤ π2

√
2
max

0≤x,y≤π
|f2(x, y)|.

In this way it has been shown that the integral inequalities (141) and (142) hold.
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