
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 03-03

A Mass-Conserving Level-Set (MCLS) Method for Modeling
of Multi-Phase Flows

S.P. van der Pijl, A. Segal, C. Vuik

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2003

Copyright 2000 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in

any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior written permission from Department of Applied Mathematical Analysis,

Delft University of Technology, The Netherlands.

A Mass-Conserving Level-Set (MCLS) Method

for Modeling of Multi-Phase Flows

S.P. van der Pijl∗ A. Segal C. Vuik

February 25, 2003

Abstract

The Mass-Conserving Level-Set (MCLS) method is proposed to model
multi-phase flows. The aim is to model high density-ratio flows with com-
plex interface topologies, such as mixtures of bubbles and droplets. As-
pects which are taken into account are: a sharp front (density changes
rapidly), arbitrary shaped interfaces, surface tension, buoyancy and co-
alescence of drops/bubbles. Attention is paid to mass-conservation and
integrity of the interface.

A survey of available computational methods is performed in [1]. The
proposed computational method is a combination of Level-Set and Volume-
of-Fluid methods. The flow is computed with a pressure correction method
with a Marker-and-Cell layout. Interface conditions are satisfied by means
of the continuous surface force/stress (CSF/CSS) methodology and the
GhostFluid method for incompressible flows.

The Level-Set method is an elegant method. The major disadvan-
tage is that it is not rigorously mass-conserving. This means that ad-
ditional effort is necessary to conserve mass. The MCLS method intro-
duces a Volume-of-Fluid function, which is advected without the neces-
sity to reconstruct the interface. There is a strong relationship between
the Volume-of-Fluid function and the Level-Set function. In the spirit
of the Level-Set methodology, the advection of the VOF-function is, un-
like other VOF methods, purely implicit at every time. This makes the
method straightforward to apply to arbitrarily shaped interfaces, which
may collide and break up.

1 Introduction

Multi-phase flows occur commonly in engineering fluid mechanics. In this work
modeling of incompressible two-phase flows is considered. The present research
aims to model high density-ratio flows with complex interface topologies, typ-
ically air/water flows. A sharp front exists between the phases, where fluid

∗Research granted by NWO.

1

density and viscosity change rapidly. This front is modeled as an interface be-
tween the phases where fluid properties are discontinuous. The interface is a
moving (internal) boundary. Also, surface tension forces act on the interface. A
numerical method has to take this into account as well as to be able to handle
arbitrarily shaped interfaces which may collide and break up.

Various methods have been put forward to treat multi-phase flows. A clas-
sification is given in [1]. Most generally speaking, the interface representation
can be explicit (‘moving, boundary conforming mesh’) or implicit (‘fixed mesh’)
or a combination of both. Purely moving, boundary-conforming meshes will be
cumbersome, since the objective is to simulate arbitrarily shaped interfaces. It
is therefore not very suited to apply to this work.

A combination of fixed and moving mesh methods include the hybrid front-
tracking/front-capturing method ([2–6]) and the closely related immersed bound-
ary method ([7–10]). Although the interface is tracked by an interface grid, the
flow is solved on a stationary grid. The interface conditions are satisfied by
regularizing (smoothing) the interface discontinuities and interpolating inter-
face forces from the interface grid to the stationary grid. For this purpose, the
interface forces are transformed into volume forces and distributed over certain
mesh widths. This is sometimes referred to as the continuous surface force
(CSF) or continuous surface stress (CSS) approach ([11]). As far as solving the
flow field is concerned, the interface position is not prescribed explicitly. The
interface grid on the other hand is advected by interpolating the velocity field
from the stationary grid to the interface grid. A drawback of the method might
be that the interface grid can get hard to evaluate, especially when interfaces
collide or break up. Furthermore, interpolating from the interface grid to the
stationary grid is carried out by smearing of interface forces and discontinu-
ities over certain mesh widths. This can introduce so-called parasitic currents
([6]) which are unphysical regions of recirculated fluid near the interface. In
the cut-cell approach ([12–17]) on the other hand, the interface conditions are
satisfied without smoothing of the interface. The control volumes of the sta-
tionary grid are readjusted near the interface, so that it is locally boundary
conforming. It has been successfully applied to fluid-solid interfaces, where a
velocity is prescribed on the interface. However, in case of two-phase flows, the
interface separates two fluids and the interface conditions express continuity of
mass and momentum over the interface. The cut-cell approach is extended to
handle fluid-fluid interfaces in [18] by iteratively modifying the interface shape,
such that the interface conditions are satisfied. Since control volumes have to
be readjusted, the cut-cell method requires a large amount of logic decisions. At
first sight the method seems to be cumbersome to apply in three-dimensional
space. Also, the iterative procedure is not trivial.

The combined implicit/explicit methods are sometimes referred to as ‘front’-
or ‘surface tracking’ methods. The interface grid which is needed to track the
moving boundary will be difficult to evaluate when the interface has arbitrary
shape and topology. Instead, for the current research the implicit methods have
been selected to represent the interface. These methods are also called ‘volume
tracking’ methods. The interface is implicitly defined by marking it by particles

2

or by a function.
With the Marker-and-Cell (MAC) method ([19]), one of the two phases

is indicated by marker particles. With the Surface Marker and Micro Cell
(SMMC) method ([20]) the interface itself is marked by particles. The particles
are advected by the flow field. For both methods it is hard to compute interface
quantities like the normal vector and curvature in order to model surface tension
forces, since the connectivity of particles is unknown (otherwise these would be
front-tracking methods).

The two volume-tracking methods that are most suitable for the current
research are the Volume-of-Fluid (VOF) method and the Level-Set method. For
both methods a marker function is used to define the interface. In case of
the Volume-of-Fluid method, a marker function, say Ψ, indicates the fractional
volume of a certain fluid, say fluid ‘1’, in a computational cell. It can be seen as
the concentration of the marker particles of the MAC-method, when the number
of particles goes to infinity. Hence Ψ is defined in a grid cell Ω by

Ψ =
1

vol(Ω)

∫

Ω

χ dΩ, (1)

where χ is the characteristic function

χ =

{
1 in fluid ‘1’,
0 outside fluid ‘1’.

(2)

The value of Ψ will be 0 or 1 in cells without the interface and 0 ≤ Ψ ≤ 1 in cells
containing the interface. In other words, the value of Ψ changes rapidly across
the interface. This causes difficulties in advecting Ψ. The step-like behavior
of Ψ will be lost by the straightforward application of a numerical scheme.
Hence the interface will get ill defined. Volume-of-fluid methods can suffer from
‘flotsam and jetsam’, which are the small remnants of mixed-fluid zones ([21]).
Besides that, the step-like behavior of the marker function makes computing
interface derivatives (normals, curvature) elaborate. The major advantage of
VOF methods is that mass is rigorously conserved, provided the discretization
is conservative.

Advecting Ψ is not a straightforward task. This can either be performed
algebraically or geometrically. Algebraic methods try to discretize the advection
equation for the marker function Ψ by incorporating the step-like behavior of
Ψ. Examples of such approaches are: Constrained Interpolation Profile ([22–
24]) and Flux-Corrected Transport (FCT) (([25, 26]). Geometric methods on
the other hand first reconstruct the interface from Ψ, after which it is advected.
Geometric VOF methods differ in the accuracy of the interface reconstruction.
With Simple Line Calculation (SLIC) the interface is assumed to be piecewise
tangential to a coordinate direction ([21]). In case of the donor-acceptor (SOLA-
VOF) method the interface is stair-stepped ([27, 28]). And with the Piecewise
Linear Interface Calculation (PLIC) method the interface is piecewise linear
([26, 29–33]). Reconstruction of the interface will be increasingly difficult if the

3

discrete interface representation is more accurate. This is a drawback especially
of the PLIC method, which on the other hand is the most accurate method.

An alternative to the Volume-of-Fluid methods is the Level-Set method ([34–
37]). The interface is now defined by the zero level-set of the marker function,
say Φ:

Φ

< 0 outside fluid ‘1’,
= 0 at the interface,
> 0 inside fluid ‘1’.

(3)

The function Φ is chosen such that it is smooth near the interface. This eases
the computation of interface derivatives. Also, methods available from hyper-
bolic conservation laws can be used to advect the interface. The interface is
(implicitly) advected by advecting Φ as if it were a material constant:

∂Φ

∂t
+ u · ∇Φ = 0. (4)

Although this makes the Level-Set method an elegant method, the major disad-
vantage is that it is not rigorously mass-conserving. This means that additional
effort is necessary to conserve mass, or at least to improve mass conservation.
One approach would be to approximate Eqn. (4) more accurately by higher or-
der schemes or by grid refinement. In [38–40] higher order ENO discretization
of Eqn. (4) is adopted and in [41–43] the grid is refined adaptively near the
interfaces.

The interface forces and discontinuities are often smeared out over certain
mesh widths in a CSS/CSF way. To keep the smeared-out interface thickness
constant in the course of time, it is necessary that the Level-Set function is a so-
called distance function at all time instants. This is achieved by re-initialization
in [44]. However, when the interface is advected through the flow field, the
violation of mass-conservation is increased due to re-initialization. Therefore,
improved re-initialization is carried out in [38–40].

Mass-conservation is improved due to all aforementioned efforts, but never
exactly satisfied. In [45] the mass-conservation properery of the Level-Set
method is improved by adding passively advected marker particles. These par-
ticles are used near the interface. It can be seen as a coupling of the Level-Set
and Marker-and-Cell methods. It is required to keep track of the particles and
to redistribute the particles, which increases the amount of bookkeeping. The
velocity field has to be interpolated at the particle positions. Furthermore,
the interface has to be reconstructed from the particles. This might not be a
straightforward task.

The Coupled Level-Set Volume-of-Fluid (CLSVOF) method ([46]) is a cou-
pling of the Level-Set method with the Volume-of-Fluid PLIC method. Besides
the advection of the Level-Set function Φ also the Volume-of-Fluid function
Ψ is advected. However, there is no straightforward relationship between the
Level-Set function and the Volume-of-Fluid function; both advections are inde-
pendent. After each update of Φ and Ψ, coupling of both functions takes place.
This coupling is not easily achieved. Since the PLIC approach is employed, a

4

drawback of this method might be that besides mass-conservation, also the elab-
orateness of the VOF methods is imported. The mass-conservation properties
are shown to be comparable to VOF methods.

This work also combines the Level-Set method with the Volume-of-Fluid
method. A VOF-function Ψ is introduced, which is advected without the ne-
cessity to reconstruct the interface. There exists a strong relationship between
the Volume-of-Fluid function and the Level-Set function Φ. In the spirit of
the Level-Set methodology, the advection of the VOF-function is, unlike PLIC
and consequently CLSVOF, purely implicit at all time. This makes the method
straightforward to apply to arbitrarily shaped interfaces, which may collide and
break up.

2 Governing Equations

Consider two fluids ‘0’, and ‘1’ in domain Ω ∈ IR2 which are separated by an
interface S. Both fluids are assumed to be incompressible, i.e.:

∇ · u = 0, (5)

where u = (u, v)t is the velocity vector and u and v are the velocities in x- and y-
direction respectively. The flow is governed by the incompressible Navier-Stokes
equations:

∂ρu

∂t
+ ∇ · (ρuu) = −∇p + ∇ · µ

(
∇u + ∇ut

)
+ ρg, (6)

where ρ, p, µ and g are the density, pressure, viscosity and gravity vector
respectively. With Eqn. (5), this is rewritten as

∂u

∂t
+ u · ∇u = −

1

ρ
∇p +

1

ρ
∇ · µ

(
∇u + ∇ut

)
+ g, (7)

The density and viscosity are constant within each fluid. Using the Level-Set
function Φ as defined in Eqn. (3), these can be expressed as

ρ = ρ0 + (ρ1 − ρ0)H(Φ) (8)

and
µ = µ0 + (µ1 − µ0)H(Φ), (9)

where the subscript indicates the corresponding fluid and H is the Heaviside
step function.

2.1 Interface conditions

The interface conditions express continuity of mass and momentum at the in-
terface:

[u] = 0
[pn− n · µ (∇u + ∇ut)] = σκn,

(10)

5

where the brackets denote jumps across the interface, n is a normal vector at
the interface, σ is the surface tension coefficient and κ is the curvature of the
interface. Clearly, the velocity u is continuous at the interface. Concerning
the derivatives of the velocity, if s is parallel to the interface, un = n · u and
us = s · u, in [47, 48] it is shown that in general

[
∂un

∂n

]
= 0,

[
∂un

∂s

]
= 0

[
∂us

∂n

]
= −[µ]

∂un

∂s
,

[
∂us

∂s

]
= 0.

(11)

Note that if the viscosity µ is continuous at the interface, Eqn. (11) shows that
the derivatives of the velocity components are continuous too. The viscosity is
forced to be continuous by smoothing Expression 9:

µ = µ0 + (µ1 − µ0)Hα(Φ), (12)

where Hα is the smoothed (or regularized) Heaviside step function

Hα(x) =

0 x < −α
1
2

(
1 + sin(x

α
1
2π)
)

|x| ≤ α
1 x > α

(13)

and α is a parameter proportional to the mesh width. Here α is chosen as (fol-
lowing [44]) α = 3

2h, where h is the mesh width. According to [38], the viscosity
is then smoothed over three mesh widths, provided |∇Φ| = 1. Furthermore, if
the Level-Set function Φ is a distance function, i.e. |∇Φ| = 1, then

µ = µ0 + (µ1 − µ0)Hα(Φ). (14)

Note that only the viscosity is smoothed, not the density ρ. Instead of taking
into account the pressure-jump at the interface due to the surface tension forces,
the continuous surface force/stress (CSF,CSS, [11]) methodology is adopted.

3 Computational Approach

The Navier-Stokes equations are solved by the pressure-correction method ([49]).
The unknowns are stored in a Marker-and-Cell layout ([19]). For the interface
representation a combination of the Level-Set and Volume-of-Fluid methodolo-
gies are adopted. The interface conditions are satisfied by means of the contin-
uous surface force/stress (CSF/CSS) methodology and the GhostFluid method
for incompressible flow ([47, 50]).

3.1 Pressure Correction

The Navier-Stokes equations (Eqn. (7)) are discretized in a finite difference
fashion by employing the pressure correction methodology. The unknowns u, v

6

i=1 Nx+12

j=1

2

∆ x

 y∆

Ny

Ny+1

Nx

...
...

Figure 1: Locations of u (right-arrow), v (uparrow) and p (dot)

and p are located as indicated in Fig. 1. If superscript n denotes time-level n,
first a tentative velocities u∗ is computed by

u∗−un

∆t
= −un

(
∂u
∂x

)∗
− vn

(
∂u
∂y

)∗
+

1
ρ

((
∂µ ∂u

∂x

∂x
+

∂µ ∂u
∂y

∂y

)∗

+
(

∂µ ∂u
∂x

∂x
+

∂µ ∂v
∂x

∂y

)n
)

.
(15)

Note that there are no pressure gradient terms at the previous time level in-
cluded in Eqn. (15). These are absent, because the density ρn+1 is not equal to
the density ρn due to the moving interface, so that it is impossible to write

1

ρ
∇pn+1 −

1

ρ
∇pn =

1

ρ
∇δp, (16)

which is the usual formulation for single-phase flows if δp = pn+1−pn. Further-
more, gravity terms are only included if the pressure gradient is present. Since
the pressure gradient is absent in Eqn. (15) no gravity is included there. The
equation for v is treated similarly:

v∗−vn

∆t
= −un

(
∂v
∂x

)∗
− vn

(
∂v
∂y

)∗
+

1
ρ

((
∂µ ∂v

∂x

∂x
+

∂µ ∂v
∂y

∂y

)∗

+

(
∂µ ∂u

∂y

∂x
+

∂µ ∂v
∂y

∂y

)n)
.

(17)

Due to the regularization of µ, the velocities u and v and their derivatives are
continuous. The gradients can therefore be approximated by central differences.
Velocities which have to be evaluated at different locations then where they are
stored are approximated by averaging ([19]). Note that the stress tensor is split
in a part on time level ∗ (implicit) and n (explicit). The reason is that in regions
where µ is constant (away from the interface) the explicit part will cancel since
the continuity equation (Eqn. (5)) yields:

∂ ∂u
∂x

∂x
+

∂ ∂v
∂x

∂y
=

∂

∂x

(
∂u

∂x
+

∂v

∂y

)
= 0 (18)

7

and
∂ ∂u

∂y

∂x
+

∂ ∂v
∂y

∂y
=

∂

∂y

(
∂u

∂x
+

∂v

∂y

)
= 0. (19)

The velocities at the new time instant n+1 are computed by:

un+1 − u∗

∆t
= −

1

ρ
∇p + g, (20)

under the constraint of Eqn. (5)

∇ · un+1 = 0. (21)

These are symbolically discretized as

{
un+1 = u∗ + ∆t

(
− 1

ρ
Gp + g

)

Dun+1 = 0,
(22)

where D represents the discretization of the divergence and G is the discrete
gradient operator which remains to be specified. Since the pressure p is dis-
continuous at the interface (Eqn. (10)), special care has to be taken with the
gradients Gp. These are computed by the GhostFluid method for incompress-
ible flows ([47, 50, 51]) which is discussed in the next section. From the last
expressions follows for p:

D
1

ρ
Gp = D

(
1

∆t
u∗ + g

)
. (23)

Due to our approach, no boundary conditions are needed for the pressure when
velocity boundary conditions are applied.

3.1.1 GhostFluid method

The interface conditions have to be satisfied by prescribing the interface discon-
tinuities at the interface. Due to the regularization of µ, only pressure jumps
have to be taken into account. This jump is according to Eqn. (10):

[p] = σκ|Φ=0 , (24)

where σ is the surface tension coefficient and κ is the curvature of the interface,
which can be expressed as (e.g. [39])

κ = ∇ ·
∇Φ

|∇Φ|
. (25)

The curvature is approximated by central differences. So for a given interface
position, the jump [p] can be computed. The GhostFluid method for incom-
pressible flows serves as a straightforward extension of a finite difference for-
mulation. It is based on an interface representation by means of the Level-Set

8

function Φ. The discontinuities are computed at Φ locations and interpolated at
the interface. Note that the Immersed Interface Method ([48, 52–55]) method is
a similar method, but specific to front tracking, where interface discontinuities
are known on the interface (grid) itself.

In [51], the pressure derivatives 1
ρ

∂p
∂x

at u locations (i + 1, j + 1
2) are approx-

imated by

(
β

∂p

∂x

)

i+1,j+ 1
2

= β̂i+1,j+ 1
2

pi+1 1
2
,j+ 1

2
− pi+ 1

2
,j+ 1

2
− [p]i+1,j+ 1

2

∆x
(26)

and similar for β ∂p
∂y

, where β = 1
ρ
. Here it is used that the jump of the pressure-

gradients [1
ρ
∇p] = 0 ([47, 50]). The quantity β̂ is the harmonic weighted average

of β.
In this paper the GhostFluid method is applied with the discontinuous den-

sity. However, the Continuous Surface Force/Stress (CSF/CSS) methodology
is adopted to take into account the surface tension forces. Hence the pressure
jump at the interface reduces to

[p] = 0. (27)

3.1.2 Continuous Surface Force/Stress (CSF/CSS)

From the GhostFluid methodology follows that there exist surface tension forces
of the form (Eqn. (26))

−β̂σκn, (28)

where n is the normal vector at the interface, β = 1
ρ

and β̂ is the harmonic
average, so that

β̂ =
1

1
2

1
β0

+ 1
2

1
β1

=
1

1
2 (ρ0 + ρ1)

=
1

ρ̄
. (29)

By ρ̄ is meant the average density, which is constant in the whole domain Ω.
Adopting the CSS/CSF methodology, the interface forces acting on S are trans-
formed into volume forces acting in Ω by writing (e.g. [39])

∫

S

σκn dS =

∫

Ω

σκδ(Φ)∇Φ dΩ, (30)

where δ is the delta function. This results in additional terms in Eqn. (7) of
the form

−
1

ρ̄
σκδ(Φ)∇Φ. (31)

9

Note that the force σκn is conserved, since for the force in x-direction for
example (assume a monotone function Φ(x), x ∈ IR)

∞∫
−∞

ρ(Φ)σκ(Φ)δ(Φ)∇Φ
ρ̄

· ex dx =
∞∫

−∞

ρ(Φ)σκ(Φ)δ(Φ)
ρ̄

∂Φ
∂x

dx

=
0∫

−∞

ρ0

ρ̄
σκ(Φ)δ(Φ) dΦ

+
∞∫
0

ρ1

ρ̄
σκ(Φ)δ(Φ) dΦ

=
1
2
ρ0+ 1

2
ρ1

ρ̄
σκ(0) = σκ(0).

(32)

By regularizing the delta function in the same manner is the Heaviside step
function (Eqn. (13))

δα(Φ) =

{
1
2α

(
1 + cos(Φ

α
π)
)

|Φ| ≤ α
0 |Φ| > α

(33)

the pressure jump is reduced to [p] = 0. Consequently, Eqn. (7) becomes

∂u

∂t
+ u · ∇u = −

1

ρ
∇p +

1

ρ
∇ · µ

(
∇u + ∇ut

)
+ g−

1

ρ̄
σκδα(Φ)∇Φ. (34)

Here α has the same value as in Eqn. (13), i.e. α = 3
2h. The additional

term σκδα(Φ)∇Φ
ρ̄

is a force just like the gravity vector g and appears, like g, in

Eqns. (20) and (22) in a straightforward discrete sense:

D
1

ρ
Gp = D

(
1

∆t
u∗ + g−

1

ρ̄
σκδα(Φ)∇Φ

)
(35)

and

un+1 = u∗ + ∆t

(
−

1

ρ
Gp + g−

1

ρ̄
σκδα(Φ)∇Φ

)
. (36)

If the interface forces were not regularized, but included as a pressure jump in
Eqn. (26), the pressure-jump terms would enter the pressure-correction step in
a similar manner. Note also that σκ

ρ
is regularized and not σκ. This keeps the

density ρ (piecewise) constant, which guarantees a straightforward application
of the pressure-correction methodology. The GhostFluid method, described
previously is used to deal with the discontinuous density.

3.2 Interface advection

The strategy of modeling two-phase flows is to compute the flow with a given
interface position and subsequently evolve the interface in the given flow field.
In the foregoing has been described how the flow is computed with a given
interface position. The evolution of the interface is considered in the following.

10

3.2.1 Level-Set

The interface is implicitly defined by a Level-Set function Φ. More precisely,
the interface, say S, is the zero level-set of Φ:

S(t) =
{
x ∈ IR2|Φ(x, t) = 0

}
. (37)

The interface is evolved by advecting the Level-Set function in the flow field as
if it were a material constant (Eqn. (4)):

∂Φ

∂t
+ u · ∇Φ = 0. (38)

A symmetry condition for Φ is imposed at the boundaries. It will be clear
that accuracy of the approximation of Eqn. (38) determines the accuracy of
the interface representation. But, since mass is not rigorously conserved, the
accuracy will also determine the mass errors. For this purpose, the discretization
of the gradient of Φ can be either first order upwind, or second or third order
ENO ([38, 39, 44]). In case of the first-order spatial discretization, a forward
Euler temporal discretization is sufficient. In case of the higher order spatial
discretization, a Runge-Kutta scheme is implemented (e.g. [40]).

Re-initialization If an initial signed distance function is advected through a
non-uniform flow, it does not necessarily correspond to a distance function any
longer. For a distance function holds

|∇Φ| = 1. (39)

If the interface is smoothed over certain mesh widths, keeping Φ a distance
function ensures that the front has finite thickness at all time ([38, 44]). This
is especially important when the surface tension forces are distributed over a
number of grid cells (CSS/CSF approach). Also, in the regularization of µ (Eqn.
(14)) it is used that |∇Φ| = 1.

Function Φ is reinitialized each time step by ([38, 44]):

∂Φ
∂t′

= sign(Φ|t′=0)
(
1−

√
∂Φ
∂xj

∂Φ
∂xj

)

Φ(x, 0) = Φ|t′=0 (x),
(40)

where t′ is an artificial time and the initial condition Φ|t′=0 is the updated Level-
Set function by advection. For the limit t′ → ∞, the reinitialized Φ satisfies
|∇Φ| = 1, so it is a distance function. Note that due to numerical diffusion the
re-initialization procedure can increase the smoothness of Φ. Consequently, the
zero level-set might shift and mass errors occur. Therefore in [39, 40, 43] the
re-initialization is improved, such that mass errors due to re-initialization are
negligible.

Mass-errors due to the finite-accurate approximation of the Level-Set ad-
vection can never be circumvented by improving re-initialization. Therefore a
different approach is chosen, which is described in the next section.

11

3.2.2 MCLS

In order to conserve mass, the Level-Set method as described above is com-
bined with a Volume-of-Fluid method. In that sense, first the usual Level-Set
advection is performed: first-order advection and unmodified re-initialization.
Low order advection and re-initialization will ensure numerical smoothness of
Φ. The obtained Level-Set function Φn+1,∗ will certainly not conserve mass.
Therefore, corrections to Φn+1,∗ are made such that mass is conserved. This
requires three steps:

1. the relative volume of a certain fluid in a computational cell (called ‘volume-
of-fluid’ function Ψ) is to be computed from the Level-Set function Φn;

2. the volume-of-fluid function has to be advected during a time step towards
Ψn+1;

3. with this new volume-of-fluid function Ψn+1, corrections to Φn+1,∗ are
sought such that Ψ(Φn+1) = Ψn+1 holds.

These three steps will be explained subsequently.

Step 1: Volume-of-Fluid function A relationship between the Level-Set
function Φ and the so-called volume-of-fluid function Ψ is found by considering
the fractional volume of a certain fluid in a computational cell Ωk. In this paper,
a Cartesian mesh is employed consisting of computational cells Ωk, k = 1, 2,
By xk = (xk, yk)t the center node of Ωk is meant and ∆x and ∆y are the mesh
sizes in x and y direction respectively. In computational cell Ωk, the volume-of-
fluid function Ψk is by definition (Eqn. (1))

Ψk =
1

vol(Ωk)

∫

Ωk

χ dΩ. (41)

Employing the Level-Set function Φ of Eqn. (3), the characteristic function χ
(Eqn. (2)) becomes:

χ = H(Φ), (42)

where H is the Heaviside step function. The connection between Φ and Ψ is
therefore:

Ψk =
1

vol(Ωk)

∫

Ωk

H(Φ) dΩ. (43)

In case of the PLIC method, the interface is assumed to be linear within each
computational cell. This piecewise linear interface is reconstructed from the
values of Ψ in neighboring cells. However, in terms of the Level-Set function,
a piecewise linear interface means that Φ is linearized around Φk, which is the
value of Φ in xk:

Φ = Φk + ∇Φk · (x − xk). (44)

12

Substituting this in Eqn. (43) and taking ξ = x−xk

∆x
and η = y−yk

∆y
yields

Ψk =

1
2∫

ξ=− 1
2

1
2∫

η=− 1
2

H(Φk + ∆x
∂Φ

∂x

∣∣∣∣
k

ξ + ∆y
∂Φ

∂y

∣∣∣∣
k

η) dη dξ. (45)

Note that in contrast with other approaches, the Heaviside step function is not
regularized. For the ease of integration the Heaviside step function is expressed
as

H(Φ) =
1

2
+ lim

α→0

1

π
arctan

(
Φ

α2

)
. (46)

After some mathematical manipulations, the volume-of-fluid function Ψk is eval-
uated as

Ψk =

0 Φk ≤−Φmaxk

1
2

(Φmaxk + Φk)2

Φ2
maxk − Φ2

midk

−Φmaxk < Φk <−Φmidk

1
2 +

Φk

Φmaxk + Φmidk

−Φmidk ≤ Φk ≤ Φmidk

1 − 1
2

(Φmaxk − Φk)2

Φ2
maxk − Φ2

midk

Φmaxk < Φk < Φmaxk

1 Φk ≥ Φmaxk,

(47)

where

Φmaxk =
1

2
(|Dxk| + |Dyk

|) (48)

and

Φmidk =
1

2

∣∣∣ |Dyk
| − |Dxk|

∣∣∣ (49)

with
Dxk = ∆x ∂Φ

∂x

∣∣
k

Dyk
= ∆y ∂Φ

∂y

∣∣∣
k
,

(50)

which are approximated by central differencing. In Fig. 2 Ψ is plotted as function
of Φ.

Step 2: Volume-of-Fluid advection At a certain time instant the volume-
of-fluid function can be computed by means of Eqn. (47). The volume-of-fluid
function after a time step is found by considering the amount of fluid that flows
through the boundaries of a computational cell (see Fig. 3):

Ψn+1
i+ 1

2
,j+ 1

2

= Ψn
i+ 1

2
,j+ 1

2

−
1

∆x∆y

(
Fxi+1,j+ 1

2
− Fxi,j+ 1

2
+

Fyi+ 1
2
,j+1 − Fyi+ 1

2
,j

)
,

(51)

where, in a Volume-of-Fluid manner, Fxi+1,j+ 1
2

and Fyi+ 1
2
,j

are the amount of

the (Φ > 0)-fluid that flows from the so-called donating regions ΩDi+1,j+ 1
2

and

13

max−Φ mid−Φ midΦ0 Φ

Ψ

1

1/2

maxΦ

Figure 2: Fractional volume Ψ as function of Level-Set value Φ

ΩDi+ 1
2

,j through the faces (i + 1, j + 1
2) and (i + 1

2 , j) respectively during the
time step ∆t:

Fxi+1,j+ 1
2

=
∫

ΩDi+1,j+ 1
2

H(Φ) dΩ

Fyi+ 1
2

,j
=

∫
ΩDi+ 1

2
,j

H(Φ) dΩ
(52)

and similar for the other fluxes. Consider a face of a computational cell through
which fluid flows during a time step. The donating region of this boundary is
defined as the region from which this fluid originates at the beginning of the
time-step. In other words, depending on the sign of the velocity at the face,
the donating region can either be on the left or at the right neighboring cell.
Formally, the flux can therefore be split in a contribution from both neighbors,
called F+ and F− respectively (see Fig. 3). Of course if F +

... 6= 0 then F−
... = 0

and vice versa. In this fashion, both fluxes are:

Fxi+1,j+ 1
2

= F+
x i+1,j+ 1

2
+ F−

x i+1,j+ 1
2

Fyi+ 1
2

,j
= F+

y i+ 1
2

,j
+ F−

y i+ 1
2
,j
.

(53)

Note that u is the component of velocity in x-direction and v the component in
y direction. The other fluxes are similar.

The fluxes are again computed by linearizing Φ (just like Eqn. (45)):

F+
x i,j+ 1

2
= ∆x∆y

1
2∫

ξ= 1
2
−ν+

1
2∫

η=− 1
2

H(ΦL + DxL
ξ + DyL

η) dη dξ (54)

and

F−
x i,j+ 1

2
= −∆x∆y

− 1
2
−ν−∫

ξ=− 1
2

1
2∫

η=− 1
2

H(ΦR + DxR
ξ + DyR

η) dη dξ (55)

14

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

���
���
���
���
���
���
���
���

�������
�������
�������
�������
�������
�������
�������
�������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

Fxi+1, j+1/2
+

Fyi+1/2, j+1
+

−Fyi+1/2, j
−

−Fxi, j+1/2
−

Figure 3: Donating regions for fluxes Fx and Fy

and similar for the other fluxes, where

ν+ =
max(u

i,j+ 1
2

,0)∆t

∆x
≥ 0

ν− =
min(u

i,j+ 1
2

,0)∆t

∆x
≤ 0

(56)

and
ΦL = Φi− 1

2
,j+ 1

2

ΦR = Φi+ 1
2
,j+ 1

2

DxL
= ∆x ∂Φ

∂x

∣∣
i− 1

2
,j+ 1

2

DyL
= ∆y ∂Φ

∂y

∣∣∣
i− 1

2
,j+ 1

2

DxR
= ∆x ∂Φ

∂x

∣∣
i+ 1

2
,j+ 1

2

DyR
= ∆y ∂Φ

∂y

∣∣∣
i+ 1

2
,j+ 1

2

.

(57)

With some scaling, these fluxes become

F+
x i,j+ 1

2
= ν+∆x∆y

1
2∫

ξ=− 1
2

1
2∫

η=− 1
2

H(Φ̂L + D̂xL
ξ + DyL

η) dη dξ (58)

and

F−
x i,j+ 1

2
= ν−∆x∆y

1
2∫

ξ=− 1
2

1
2∫

η=− 1
2

H(Φ̂R + D̂xR
ξ + DyR

η) dη dξ, (59)

15

where
Φ̂L = ΦL + 1

2 (1 − ν+)DxL

Φ̂R = ΦR − 1
2 (1 + ν−)DxR

D̂xL
= ν+DxL

D̂xR
= −ν−DxR

.

(60)

The integrals of Eqns. (58) and (59) are just Eqn. (45) with Φk replaced by Φ̂L

and Φ̂R and Dx replaced by D̂xL
and D̂xR

respectively. Therefore, Eqns. (47),
(48) and (49) are used to evaluate F +

x i,j+ 1
2

and F−
x i,j+ 1

2
:

F+
x i,j+ 1

2
= ν+∆x∆y Ψ|Φ̂L,D̂xL

,DyL

F−
x i,j+ 1

2
= ν−∆x∆y Ψ|Φ̂R,D̂xR

,DyR

.
(61)

The fluxes in y-direction are obtained in the same way.
In Fig. 3 it is shown that overlapping donating regions can exist in the

corners of the cell. Fluid in those overlapping regions is fluxed more than once
through different faces. As reported in for example [1], this can be solved by
employing either a multidimensional scheme or flux-splitting. Here the second
approach has been chosen, for reasons of simplicity. The order of fluxing is:
first in x-direction, then in y-direction. Currently the flux-splitting of [46] is
adopted:

Ψ∗
i+ 1

2
,j+ 1

2

=
Ψn

i+ 1
2

,j+ 1
2

− 1
∆x∆y

(
Fx

n

i+1,j+ 1
2

−Fx
n

i,j+ 1
2

)

1− ∆t
∆x

(u
i+1,j+ 1

2
−u

i,j+ 1
2
)

Ψ∗∗
i+ 1

2
,j+ 1

2

=
Ψ∗

i+ 1
2

,j+ 1
2

− 1
∆x∆y

(
Fy

∗

i+1
2

,j+1
−Fy

∗

i+1
2

,j

)

1− ∆t
∆y

(v
i+ 1

2
,j+1

−v
i+1

2
,j

)

Ψn+1
i+ 1

2
,j+ 1

2

= Ψ∗∗ − ∆t

(
Ψ∗

u
i+1,j+ 1

2
−u

i,j+ 1
2

∆x
+ Ψ∗∗

v
i+ 1

2
,j+1

−v
i+ 1

2
,j

∆y

)
.

(62)

Flux redistributing As reported in [46], undershoots and/or overshoots can
still occur. These errors give rise to total mass errors of order 10−4. This is
also experienced in the current research. Mass errors are completely avoided
by redistributing Ψ. The idea is to flux mass out of cells with Ψ > 1 and flux
mass into cells with Ψ < 0. Since the trouble is in the doubly-fluxed regions,
the fluxes are firstly taken from the diagonal (i + 1

2 − sign(u), j + 1
2 − sign(v))

neighboring cells.
Assume that cell k has a value Ψn+1

k < 0. Then define a flux F towards
neighboring cell l, so that Ψk = Ψn+1

k − F = 0:

F = Ψn+1
k . (63)

In order not to cause unphysical values of Ψl, limit F by

F = min(max(Ψn+1
k ,−Ψn+1

l), 1 − Ψn+1
l), (64)

16

v

u
2

7 5 6

4

831

Figure 4: Order of flux redistributing for u > 0 and v > 0

so that 0 ≤ Ψl = Ψn+1
l + F ≤ 1. Then make corrections to Φk and Φl by

Ψk = Ψn+1
k − F

Ψl = Ψn+1
k + F.

(65)

In case of Ψn+1
k > 1, the flux F is

F = min(max(Ψn+1
k − 1,−Ψn+1

l), 1 − Ψn+1
l). (66)

In two dimensions, there exist 8 neighboring cells l which can contribute
to cell k. The order in which the neighboring cells l are subsequently chosen
is depicted in Fig. 4. Note that the first step (in −(sign(u), sign(v))-direction)
takes out most of the unphysical Ψ-values, since this is the direction the doubly-
fluxed region was fluxed from. It is therefore important to take that neighbor
first. The order of the other neighbors are arbitrary. The values u and v at Ψ
locations are interpolated by averaging.

Step 3: Inverse function Having found a new fractional volume Ψn+1,
the initial guess of the Level-Set function Φn+1,∗ (after Level-Set advection) is
modified, such that mass is conserved within each computational cell. In other
words, find (Φ1, Φ2, . . .), such that

Ψk(Φ1, Φ2, . . .) − Ψn+1
k = 0 ∀k = 1, 2, (67)

It will be clear that due to the behavior of Ψ no unique solution Φ exists.
However, a (small) correction to Φ∗ is searched, where Φ∗ comes from Level-
Set advection. A solution Φ is found by the repeating (i.e. iteratively) until
convergence: leave Φ unmodified in a grid point when the Volume-of-Fluid
constraint is satisfied and make corrections locally when this constraint is not
satisfied. This is achieved by using the inverse function of Ψk as given in Eqn.
(47) with respect to argument Φk and employing Picard-iterations. Starting
with (Φn+1,∗

1 , Φn+1,∗
2 , . . .), if at time step n + 1 (Ψ1, Ψ2, . . .) has to be equal to

17

(Ψn+1
1 , Ψn+1

2 , . . .), then the mth iteration is:

Dx = ∆x ∂Φ
∂x

∣∣n+1,m

k

Dy = ∆y ∂Φ
∂y

∣∣∣
n+1,m

k

Φmax = 1
2 (|Dx| + |Dy|)

Φmid = 1
2

∣∣∣ |Dy| − |Dx|
∣∣∣

(68)

and if Ψn+1,m
k 6= Ψn+1

k (else Φn+1,m+1
k = Φn+1,m

k)

Φn+1,m+1
k =

−Φmax Ψn+1
k ≤0

B 0< Ψn+1
k <1 − Ψmid

C 1 − Ψmid ≤ Ψn+1
k ≤Ψmid

D Ψmid < Ψn+1
k <1

Φmax Ψn+1
k ≥1,

(69)

where

B =
√

2Ψn+1
k (Φ2

max − Φ2
mid) − Φmax

C = (Ψn+1
k − 1

2)(Φmax + Φmid)

D = −
√

2(1− Ψn+1
k)(Φ2

max − Φ2
mid) + Φmax

(70)

and

Ψmid =
1

2

Φmax + 3Φmid

Φmax + Φmid

. (71)

These iterations are repeated until

max
k

|Ψn+1,m+1
k − Ψn+1

k | ≤ ε, (72)

where ε is a tolerance, typically

ε = 1 × 10−8. (73)

A graphical overview of the method is depicted in Fig. 5.

3.3 Time-step restrictions

Following [39, 47, 50], an adaptive time stepping procedure is chosen by consid-
ering the time-step restrictions due to convection, diffusion and surface tension
effects. Since the Level-Set function Φ and the Volume-of-Fluid function Ψ are
advected explicitly, the restriction due to advection is:

∆tc =
1

|u|max

∆x
+ |v|max

∆y

. (74)

The restriction due to surface tension in [47, 50] is

∆ts =
1√

σ|κ|max

min(ρ0,ρ1) min(∆x,∆y)2

. (75)

18

Φ n+1

Ψ n

Ψ n+1Φ n+1,*

Φn

−1 f Φ = (Ψ)

−1 f Φ = (Ψ)

flux redistribution

flux y−direction

flux x−direction

n+1,x

level−Set advection

re−initialization

Ψ = (Φ)

Ψ

Φ n+1,x

 f

VOF advection

Figure 5: MCLS method: interface advection; Φ: Level-Set function;
Ψ: Volume-of-Fluid function

Since the surface tension forces are regularized i.e. σκ is replaced by σκδ(Φ)h
and h = min(∆x, ∆y), the restriction becomes

∆ts =
1√

|σκδ(Φ)|max

min(ρ0,ρ1)min(∆x,∆y)

. (76)

Diffusion is accounted for implicitly, hence no time-step restriction is encoun-
tered. For the time step ∆t finally holds (see e.g. [39])

∆t ≤ CFLmin(∆tc, ∆ts), (77)

where, again following [39, 47, 50], CFL = 1
2 is used.

4 Applications

The method is applied to show the behavior of the MCLS approach. First of
all, the advection algorithm is tested by advecting an interface by a prescribed
velocity field. Subsequently, the method is illustrated by considering a falling
drop and a rising bubble respectively.

4.1 Advection tests

4.1.1 Linear advection

The first advection test is presented in Fig. 6. The velocity field is prescribed

19

R0

2R0

Lx

Ly u

Figure 6: Linear advection test

by
u = 0
v = −1.

(78)

The dimensions of the computational domain are

Lx = 10
Ly = 100,

(79)

which is discretized by a 10x100-mesh. Initially a circle of radius R0 is placed
at x = Lx/2 and y = Ly − 2R0. For the case of R0 = 4 (a circle with a
diameter of 8 mesh sizes), the relative mass is plotted in Fig. 7 as function of
the traversed distance of the circle. First-order, second-order and third-order
simulations are included. Also re-initialization and VOF advection are included.
The truncation error of re-initialization is the same the order as the truncation
error of advection. The tolerance in the VOF advection is taken to be:

ε = 1 10−8. (80)

Globally speaking:

• mass is always lost without the VOF advection;

• mass losses are smaller for higher accuracy;

• re-initialization causes much higher mass losses;

• the MCLS method conserves mass up to a specified tolerance.

4.1.2 Zalesak’s rotating disc

The advection test of Zalesak ([25]) is used often in literature to demonstrate
the interface-advection algorithm (see e.g. [26, 31, 33, 56] for VOF methods and
[39, 40, 45, 46] for Level-Set methods). A slotted disc (Fig. 8) is rotated through

20

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of traversed mesh sizes

re
la

tiv
e

m
as

s

1st order
1st order; re−init.
2nd order
2nd order; re−init.
3rd order
3rd order; re−init.
MCLS

101 102
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

number of traversed mesh sizes

|re
la

tiv
e

m
as

s−
1|

1st order
1st order; re−init.
2nd order
2nd order; re−init.
3rd order
3rd order; re−init.
MCLS

Figure 7: Relative mass for the linear advection test; ε = 1 10−8 (every 10th

iteration marked)

21

R0

W

W

Figure 8: Zalesak’s slotted disc advection test (on scale)

one revolution around the center of the computational domain. The velocity-
field is prescribed by

u = −(y − 1
2Ly)

v = x − 1
2Lx.

(81)

The center of the slotted disc (x0, y0)
t is located at

x0 = 1
2Lx

y0 = 3
4Ly.

(82)

The sizes are
Lx = Ly

R0 = 3
20Lx

W = 1
3R0.

(83)

In Figs. 9 and 10 results are shown for 50×50, 100×100, 150×150 and 200×200
mesh sizes. As might be expected from the linear advection discussed in the
foregoing, mass is still lost in case of the high-order Level-Set method. For the
MCLS method, mass is conserved up to the specified tolerance ε although mass
is redistributed due to numerical diffusion. Results of the MCLS method are
comparable with VOF/PLIC methods (see aforementioned references). Note
that the Level-Set advection is first-order in case of the MCLS method.

If S represents the interface after one revolution, the length l(S) of S is then

l(S) =

∫

S

dS, (84)

22

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

50x50

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

100x100

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

150x150

0.3 0.4 0.5 0.6 0.7

0.6

0.7

0.8

0.9

200x200

Figure 9: Results for Zalesak’s advection test; shaded: initial contour; dashed
lines: 3rd order; solid lines: MCLS

10−1 100
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

number of revolutions

|re
la

tiv
e

m
as

s−
1|

3rd order; 50x50
3rd order; 200x200
MCLS; 50x50
MCLS; 200x200

Figure 10: Relative masses for Zalesak’s advection test; ε = 1 × 10−8 (every
50th iteration marked)

23

l(S)
l(S0) 50× 50 100× 100 150× 150 200× 200

initial 0.86094 0.98187 0.98804 0.99102
3rd order 0.49236 0.80940 0.91253 0.93318

MCLS 0.84106 0.95977 0.97020 0.97570

Table 1: Computed interface lengths after one revolution

which can be expressed as (see e.g. [38])

l(S) =

∫

Ω

δ(Φ)|∇Φ| dΩ. (85)

This is approximated by using central differences and regularization of the Dirac
delta function (see Eqn. (12)):

l(S) =

∫

Ω

δα(Φ)|∇Φ| dΩ, (86)

where

δα(x) =

{
0, |x| > α
1+cos(πx

α
)

2α
, |x| ≤ α.

(87)

Note that due to Eqn. (12), the exact value of Φ has no meaning in the Level-
Set formulation; only the sign is relevant. The α in Eqn. (86) equals therefore
the α of Eqn. (12). The exact length of the interface is

l(S0) =

(
4 + 2π − 2 arctan(

1

2

W

R0
) −

W

R0

)
R0. (88)

In Table (1) the computed interface lengths are compared with the exact length.
‘Initial’ means at t = 0, when errors are made due to the regularization of the
delta function. Furthermore, ‘3rd order’ and ‘MCLS’ correspond to the interface
lengths after one revolution.

Since Φ0 is a distance function, |Φ − Φ0| is a measure for the shift of the
interface after one revolution. A norm of the error e can now be defined as

||e||p =

(∫
S
|Φ−Φ0

Lx
|p dS∫

S
dS

) 1
p

=

(∫
Ω
|Φ−Φ0

Lx
|p δα(Φ)|∇Φ| dΩ∫

Ω
δα(Φ)|∇Φ| dΩ

) 1
p

, (89)

where Lx is used to non-dimensionalize Φ and Φ0 is the initial Level-Set function.
The results are presented in Fig. 11.

24

10−3 10−2 10−1
10−4

10−3

10−2

10−1

∆x / L
||

e
|| 1

10−3 10−2 10−1
10−4

10−3

10−2

10−1

∆x / L

||
e

|| 2

10−3 10−2 10−1
10−2

10−1

100

∆x / L

| l
(S

)/l
(S

0)−
1

|

3rd order
MCLS

Figure 11: Errors for Zalesak’s advection test

4.2 Air/water flow

In [47, 50] a two-dimensional rising air bubble in water is considered. The di-
mensions and sizes are

Lx = 0.02 m
Ly = 1 1

2Lx

R0 = 1
6Lx

x0 = 1
2Lx

y0 = 1
2Lx.

(90)

The gravity and material constants are

g = 9.8 m
s2 σ = 0.0728 kg

s2

ρw = 103 kg
m3 ρa = 1.226 kg

m3

µw = 1.137 10−3 kg
ms

µa = 1.78 10−5 kg
ms

,

(91)

where subscripts w and a indicate water and air respectively. Results are shown
in Fig. 12 for three different mesh sizes. These are 30× 45, 40× 60 and 60× 90.
We take ε = 1 × 10−8. Relative mass losses are of the same order and in
agreement with the advection tests. Note that mesh sizes are much smaller than
in [47, 50]. The results are the same for t ≤ 0.025 for all mesh sizes. Thereafter
small differences occur. The results compare well with [47, 50]. The MCLS
method seems to result in a more coherent structure at the highly curved part
of the interface at t = 0.05. This is thought to be caused by the low resolution
of the grids used here.

25

t=0 t=0.01 t=0.025

t=0.05 t=0.075 t=0.1

Figure 12: Rising bubble; − · − : 30× 45; −− : 40 × 60; −− : 60 × 90 mesh

In Fig. 13 results are shown for a falling droplet. The conditions are the
same as for the rising bubble, except for the sign of Φ at t = 0 and

y0 = Lx. (92)

Mass conservation properties are the same as before. The result are the same
until the droplet hits the bottom. Thereafter differences occur. This is thought
to be due to limited number of grid cells available to capture the flow-phenomena
near the wall. The results compare well with [47, 50]. Note that the results in
[47, 50] span t ≤ 0.05; no results after collision are presented.

5 Conclusion

A Mass Conserving Level-Set (MCLS) has presented. The method is based on
a coupling of the Level-Set with the Volume-of-Fluid methodology. Advection
tests were used to compare the method with the Level-Set method. Mass is
conserved up to a specified (vanishing) tolerance. In this way the MCLS method
is superior to the Level-Set method. On the other hand the implementation is
much easier than for a Volume-of-Fluid method. The applicability of the MCLS
method was illustrated by the application to air-water flows. It is possible
to capture bubbles or droplets within a limited number of grid cells without
mass losses up to the prescribed tolerance. This is an important feature, since
future work will concern three-dimensional space, where the amount of grid

26

t=0 t=0.02 t=0.04

t=0.05 t=0.06 t=0.065

Figure 13: Falling droplet; − · − : 30× 45; −− : 40 × 60; −− : 60 × 90 mesh

cells available to an individual entity will decrease considerably. Computing on
a larger scale is intended in the near future.

References

[1] S.P. van der Pijl. Free-boundary methods for multi-phase flows. AMA re-
port 02-13, Delft University of Technology, 2002. http://ta.twi.tudelft.nl.

[2] S.O.Unverdi and G. Tryggvason. A front-tracking method for viscous, in-
compressible, multi-fluid flows. Journal of Computational Physics, 100:25–
37, 1992.

[3] A. Esmaeeli and G. Tryggvason. Direct numerical simulations of bubbly
flows, part 1, low reynolds number arrays. Journal of FLuid Mechanics,
377:313–345, 1998.

[4] G. Agresar, J.J. Linderman, G. Tryggvason, and K.G. Powell. An adaptive,
Cartesian, front-tracking method for the motion, deformation and adhesion
of circulation cells. Journal of Computational Physics, 143:346–380, 1998.

[5] B. Bunner and G. Tryggvason. Direct numerical simulations of three-
dimensional bubbly flows. Physics of Fluids, 11:1967–1969, 1999.

[6] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi,
W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front-tracking method for

27

the computation of multiphase flow. Journal of Computational Physics,
169:708–759, 2001.

[7] C.S. Peskin and B.F. Printz. Improved volume conservation in the compu-
tation of flows with immersed elastic boundaries. Journal of Computational
Physics, 105:33–46, 1993.

[8] A.M. Roma, C.S. Peskin, and M.J. Berger. An adaptive version of the
immersed boundary method. Journal of Computational Physics, 153:509–
534, 1999.

[9] M.-C. Lai and C.S. Peskin. An immersed boundary method with formal
second-order accuracy and reduced numerical viscosity. Journal of Com-
putational Physics, 160:705–719, 2000.

[10] E. Jung and C.S. Peskin. Two-dimensional simulations of valveless pumping
using the immersed boundary method. SIAM Journal on Applied Mathe-
matics, 23(1):19–45, 2001.

[11] J.U. Brackbill, D.B. Kothe, and C. Zemach. A continuum method for
modeling surface tension. Journal of Computational Physics, 100:335–354,
1992.

[12] W.Shyy, H.S.Udaykumar, M.M. Rao, and R.W. Smith. Computational
Fluid Dynamics with Moving Boundaries. Series in computational and
physical processes in mechanics and thermal sciences. Taylor and Francis,
Washington DC, 1996.

[13] H.S. Udaykumar, H.-C. Kan, and W. Shyy R. Tran-Son-Tay. Multiphase
dynamics in arbitrary geometries on fixed cartesian grids. Journal of Com-
putational Physics, 137:366–405, 1997.

[14] T. Ye, R. Mittal, H.S. Udaykumar, and W. Shyy. An accurate carte-
sian grid method for viscous incompressible flows with complex immersed
boundaries. Journal of Computational Physics, 156:209–240, 1999.

[15] G. Yang, D.M. Causon, and D.M. Ingram. Calculation of compressible
flows about complex moving geometries using a three-dimensional Carte-
sian cut cell method. International Journal for Numerical Methods in Flu-
ids, 33:1121–1151, 2000.

[16] H.S. Udaykumar, R. Mittal, P. Rampunggoon, and A. Khanna. A sharp
interface cartesian grid method for simulating flows with complex moving
boundaries. Journal of Computational Physics, 174:345–380, 2001.

[17] H.S. Udaykumar, R. Mittal, and P. Rampunggoon. Interface tracking fi-
nite volume method for complex solid-fluid interactions on fixed meshes.
Communications in Numerical Methods in Engineering, 18:89–97, 2002.

28

[18] T. Ye, W. Shyy, , and J.N. Chung. A fixed-grid, sharp-interface method
for bubble dynamics and phase change. Journal of Computational Physics,
174:781–815, 2001.

[19] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surfaces. Physics of Fluids,
8:2182–2189, 1965.

[20] S. Chen, B. Johnson, P.E. Raad, and D. Fadda. The surface marker and
micro cell method. International Journal for Numerical Methods in Fluids,
25:749–778, 1997.

[21] W.F. Noh and P. Woodward. SLIC (Simple Line Interface Calculations). In
A.I. van de Vooren and P.J. Zandbergen, editors, Lecture Notes in Physics,
Vol. 59, pages 330–340, New York, 1976. Proceedings of the Fifth Interna-
tional Conference on Numerical Methods in Fluid Dynamics, Springer.

[22] T. Yabe, F. Xiao, and T. Utsumi. The constrained interpolation pro-
file method for multiphase analysis. Journal of Computational Physics,
169:556–593, 2001.

[23] T. Nakamura, R. Tanaka, T. Yabe, and K. Takizawa. A numerical method
for two-phase flow consisting of seperate compressible and incompressible
regions. Journal of Computational Physics, 174:171–207, 2001.

[24] T. Yabe and F. Xiao. Description of complex and sharp interface with fixed
grids in incopmressible and compressible fluid. Computers and Mathematics
with Applications, 29:1:15–25, 1995.

[25] S.T. Zalesak. Fully multidimensional flux-corrected transport algorithm for
fluids. Journal of Computational Physics, 31:335–362, 1979.

[26] M. Rudman. Volume-tracking methods for interfacial flow calculations.
International Journal for Numerical Methods in Fluids, 24:671–691, 1997.

[27] C.W. Hirt and B.D. Nichols. Volume of fluid (vof) method for the dynamics
of free boundaries. Journal of Computational Physics, 39:201–225, 1981.

[28] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Mod-
elling merging and fragmentation in multiphase flows with SURFER. Jour-
nal of Computational Physics, 113:134–147, 1994.

[29] M. Rudman. A volume-tracking methods for incompressible multifluid flow
with large density variations. International Journal for Numerical Methods
in Fluids, 28:357–378, 1998.

[30] D. Geuyffier, J. Li, A. Nadim, R. Scardovelli, and S. Zaleski. Volume-
of-fluid interface tracking with smoothed surface stress methods for three-
dimensional flows. Journal of Computational Physics, 152:423–456, 1999.

29

[31] W.J. Rider and D.B. Kothe. Reconstructing volume tracking. Journal of
Computational Physics, 141:112–152, 1998.

[32] M. Renardy, Y. Renardy, and J. Li. Numerical simulation of moving contact
line problems using a volume-of-fluid method. Journal of Computational
Physics, 171:243–263, 2001.

[33] D.J.E. Harvie and D.F. Fletcher. A new volume of fluid advection al-
gorithm: the defined donating region scheme. International Journal for
Numerical Methods in Fluids, 35:151–172, 2001.

[34] W. Mulder, S. Osher, and J.A. Sethian. Computing interface motion in
compressible gas dynamics. Journal of Computational Physics, 100:209–
228, 1992.

[35] J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge
monographs on applied and computational mathematics. Cambridge Uni-
versity Press, Cambridge, 1999.

[36] J.A. Sethian. Evolution, implementation, and application of level set and
fast marching methods for advancing fronts. Journal of Computational
Physics, 169:503–555, 2001.

[37] S. Osher and R.P. Fedkiw. Level set methods: An overview and some recent
results. Journal of Computational Physics, 169:463–502, 2001.

[38] Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher. A level set formula-
tion of eulerian interface capturing methods for incompressible fluid flows.
Journal of Computational Physics, 124:449–464, 1996.

[39] M. Sussman, E. Fatemi, P. Smereka, and S. Osher. An improved level set
method for incompressible two-phase flows. Computers and Fluids, 27:663–
680, 1998.

[40] M. Sussman and E. Fatemi. An efficient, interface-preserving level set
redistancing algorithm and its application to interfacial incompressible fluid
flow. SIAM Journal on Scientific Computing, 20(4):1165–1191, 1999.

[41] H. Haj-Hariri and Q. Shi. Thermocapillary motion of deformable drops
at finite Reynolds and Marangoni numbers. Physics of Fluids, 9:845–855,
1997.

[42] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, and M.L.
Welcome. An adaptive level set approach for incompressible two-phase
flows. Journal of Computational Physics, 148:81–124, 1999.

[43] L.L. Zheng and H. Zhang. An adaptive level set method for moving-
boundary problems: Application to droplet spreading and solidification.
Numerical Heat Transfer, Part B, 37:437–454, 2000.

30

[44] M. Sussman, P. Smereka, and S. Osher. A level set approach for comput-
ing solutions to incompressible two-phase flow. Journal of Computational
Physics, 114:146–159, 1994.

[45] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level
set method for improved interface capturing. UCLA CAM Report 02-04,
University of California, Los Angeles, 2002.

[46] M. Sussman and E.G. Puckett. A coupled level set and volume-of-fluid
method for computing 3D and axisymmetric incompressible two-phase
flows. Journal of Computational Physics, 162:301–337, 2000.

[47] M. Kang, R.P. Fedkiw, and D.Q. Nguyen. A boundary condition capturing
method for multiphase incompressible flow. UCLA CAM Report 99-27,
University of California, Los Angeles, 1999.

[48] Z. Li and M.-C. Lai. The immersed interface method for the navier-stokes
equations with singular forces. Journal of Computational Physics, 171:822–
842, 2001.

[49] J.J.I.M. van Kan. A second-order accurate pressure correction method for
viscous incompressible flow. SIAM J. Sci. Stat. Comp., 7:870–891, 1986.

[50] M. Kang, R.P. Fedkiw, and X.-D. Liu. A boundary condition capturing
method for multiphase incompressible flow. Journal of Scientific Comput-
ing, pages 323–360, 2000.

[51] X.-D. Liu, R.P. Fedkiw, and M. Kang. A boundary condition capturing
method for Poisson’s equation on irregular domains. Journal of Computa-
tional Physics, 160:151–178, 2000.

[52] R.J. Leveque and Z. Li. Immersed interface methods for Stokes flow with
elastic boundaries or surface tension. SIAM Journal on Scientific Comput-
ing, 18(3):709–735, 1997.

[53] A. Wiegmann and K.P. Bube. The explixit-jump immersed interface
method: finite difference methods for PDEs with piecewise smooth so-
lutions. SIAM Journal on Numerical Analysis, 37(3):827–862, 2000.

[54] T.Y. Hou, Z. Li, S. Osher, and H. Zhao. A hybrid method for moving in-
terface problems with application to the Hele-Shaw flow. Journal of Com-
putational Physics, 134:236–252, 1997.

[55] Z. Li and S.R. Lubkin. Numerical analysis of interfacial two-dimensional
Stokes flow with discontinuous viscosity and variable surface tension. In-
ternational Journal for Numerical Methods in Fluids, 37:525–540, 2001.

[56] D.J.E. Harvie and D.F. Fletcher. A new volume of fluid advection algo-
rithm: the stream scheme. Journal of Computational Physics, 162:1–32,
2000.

31

