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Abstract

In this paper a strongly nonlinear forced oscillator will be studied. It will be
shown that the recently developed perturbation method based on integrating factors
can be used to approximate first integrals. Not only approximations of first integrals
will be given, but it will also be shown how, in a rather efficient way, the existence
and stability of time-periodic solutions can be obtained from these approximations.
In addition phase portraits, Poincaré-return maps, and bifurcation diagrams for a
set of values of the parameters will be presented. In particular the strongly nonlinear

forced oscillator equation Ẍ+X+λX3 = ε
(

δẊ − βẊ3 + γẊ cos(2t)
)

will be studied

in this paper. It will be shown that the presented perturbation method not only can
be applied to a weakly nonlinear oscillator problem (that is, when the parameter
λ = O(ε)) but also to a strongly nonlinear problem (that is, when λ = O(1)). The
model equation as considered in this paper is related to the phenomenon of galloping
of overhead power transmission lines on which ice has accreted.

Keywords: Integrating factor, integrating vector, first integral, perturbation method,
asymptotic approximation of first integral, periodic solution, strongly nonlinear forced
oscillator.
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1 Introduction

In this paper it will be shown how the perturbation method based on integrating vectors
can be applied to the following non-autonomous equation

Ẍ +
dU(X)

dX
= εf(X, Ẋ, t), (1.1)

where U(X) is the potential energy of the unperturbed (that is, ε = 0), nonlinear oscillator,
where X = X(t), Ẋ = dX

dt
, where ε is a small parameter satisfying 0 < ε � 1, and where

f is a sufficiently smooth function. Many classical perturbation methods have been used
to approximate analytically the solution of the weakly nonlinear problem (1.1), that is,

when dU(X)
dX

in (1.1) is linear in X. However, when dU(X)
dX

is non-linear in X most of the
perturbation methods can not be applied to construct approximations of the solutions.
In this paper it will be shown that the perturbation method based on integrating factors
can be applied to a class of non-autonomous nonlinear equations as described by (1.1). In

particular equation (1.1) with dU(X)
dX

= X +λX3 and f(X, Ẋ, t) = δẊ − βẊ3 + γẊ cos(ωt)
will be studied in detail in this paper. The existence and stability of time-periodic solutions
will be investigated. Bifurcation diagrams will be presented, and the dynamics of the
oscillator as described by

Ẍ +X + λX3 = ε
(

δẊ − βẊ3 + γẊ cos(ωt)
)

(1.2)

will be studied in this paper. In (1.2) it is assumed that the parameter λ is positive, that
is, it is assumed that the oscillator is attached to hard, nonlinear springs. The parameters
δ > 0, β > 0, γ 6= 0, and ω are assumed to be constants independent of ε. The oscillator
equation (1.2) originates from the following system of ODEs















Ÿ + ω2
1Y = ε

[

−a1,0Ẏ + a2,0Ẏ
2 + a0,2Ẋ

2
]

,

Ẍ + ω2
2X + λX3 = ε

[

b0,1Ẋ − b1,1Ẏ Ẋ − b0,3Ẋ
3
]

,

(1.3)

which is a simple model for the flow-induced vibrations of a cable in a windfield. System
(1.3) with λ = 0 or λ = O(ε) has been derived by Van der Beek in [2, 3]. The coefficients
a1,0, a2,0, a0,2, b0,1, b1,1, and b0,3 depend on the quasi-static drag and lift forces acting on a
conductor line in a uniform windfield. System (1.3) can be considered to be an oscillator
with two degrees of freedom which describes flow-induced vibration of cables in a windfield.
The displacement of the cable in vertical direction (that is, perpendicular to the windflow)
is described by X(t), and the displacement of the cable in horizontal direction (that is, in
the direction of the windflow) is given by Y (t). For more (and complete) details the reader
is referred to [2, 3, 18]. It is well-known that galloping of conductor lines is an almost
purely vertical oscillation of these lines. Based upon the results as obtained in [2, 3, 13]
which confirm this vertical oscillation it is now assumed that the oscillator will oscillate in
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an almost vertical direction and that Y (t) = A cos(ω1t). In this way system (1.3) can be
reduced to

Ẍ + ω2
2X + λX3 = ε

(

b0,1Ẋ − b1,1A cos(ω1t)Ẋ − b0,3Ẋ
3
)

. (1.4)

For small values of λ (that is, for λ = O(ε)) an interesting internal resonance for system
(1.3) is ω1 : ω2 = 2 : 1. This case for instance has been studied in [2, 3]. In this paper
it is also assumed that ω1 : ω2 = 2 : 1 when λ = O(1). After some elementary rescalings
in (1.4) equation (1.2) is finally obtained with ω = 2. In particular we will be interested
in the existence and stability of (order 1) periodic solutions of equation (1.2). Many
researchers investigated extensively the behavior of the solutions of equations of the type
(1.1). For instance, Nayfeh and Mook [1], Belhaq and Houssni [8] and others investigated

the steady-state (periodic) solutions of the weakly nonlinear equation (1.1) with dU(X)
dX

=

ω2
0(1 + h cos(νt))X and f(X, Ẋ, t) = −αẊ − βX2 − ξX3 + γ cos(ωt) using a generalized

averaging method or a multiple time-scales perturbation method. For β = 0, h = 0 Lima
and Pettini [10] studied the control of chaos in a periodically forced oscillator. They showed
analytically that a small nonlinear parametric perturbation can suppress chaos. Again by
using a multiple time-scales perturbation method Burton and Rahman [17] studied the

response of a weakly nonlinear oscillator as described by equation (1.1) with dU(X)
dX

= mX

and f(X, Ẋ, t) = −2ηẊ − g(X) + 2P cos(ωt), where g(X) is an odd nonlinear function,
and where m is an integer which may be either -1, 0, or 1. Roy [11] used an elliptic

averaging method to investigate (1.1) with dU(X)
dX

= αX + γX3 and f(X, Ẋ, t) = −βẊ +

F cos(ωt). Brothers and Haberman [5] also studied (1.1) with f(X, Ẋ, t) = −h(X, Ẋ) +
γ cos(2πωt), where h is a purely dissipative perturbation (h is odd in Ẋ) by using averaging
and matching techniques. Higher-order averaging techniques based on Lie transforms have
been used by Yagasaki and Ichikawa [6] to study weakly nonlinear equations like (1.1) with
f(X, Ẋ, t) = −δẊ−βX2−αX3+γ cos(ωt). Van Horssen [20, 21] studied a weakly nonlinear
Duffing equation (1.1) with f(X, Ẋ, t) = −aẊ − bX3 + c cos(t) using the perturbation
method based on integrating factors and multiple time-scales. In this paper it will be
shown that for the weakly non-autonomous and weakly nonlinear equation (1.2) exactly
the same results can be obtained as by applying the classical perturbation techniques
(such as averaging, multiple time-scales, Poincaré-Lindstedt or others). However, for the
strongly nonlinear equation (1.2) with λ = O(1) most of the classical perturbation methods
can not be applied. In this paper the recently developed perturbation method based on
integrating factors (see [20, 21]) will be used to construct asymptotic approximations of
first integrals for (1.2) on long time-scales. In the literature not many analytical results can
be found for strongly nonlinear and non-autonomous oscillator equation like (1.2). Only
recently Yagasaki [7] studied (1.2) with λ = 1 and with the perturbation in the right-
hand side of (1.2) replaced by (−δ + X cos(ωt))Ẋ + γ cos(ωt) using an adapted version
of Melnikov’s method. This paper is organized as follows. In section 2 of this paper the
construction of approximations of first integrals by using the perturbation method based
on integrating factors will be discussed briefly for the general oscillator equation (1.1). In
section 3 approximations of first integrals will be constructed explicitly for the weakly and
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the strongly nonlinear, forced oscillator equation (1.2). Using the approximations of the
first integrals it will be shown in section 4 how the existence and stability of time-periodic
solutions for the oscillator equation (1.2) can be obtained. The bifurcation(s) of periodic
solutions will be studied in detail, and a complete set of topological different phase portraits
will be presented. Finally in section 5 of this paper some conclusions will be drawn and
some remarks will be made.

2 Approximations of First Integrals

In this section we briefly outline how the perturbation method based on integrating vectors
can be applied to approximate first integrals (see also [12, 13, 14, 20, 21]). We consider
the class of non-linear oscillators described by the equation

Ẍ +
dU(X)

dX
= εf(X, Ẋ, t), (2.1)

where U(X) is a potential, X = X(t), Ẋ = dX
dt

, ε is a small parameter satisfying 0 < ε� 1,
and where f is assumed to be sufficiently smooth. We assume that the unperturbed (that
is, ε = 0) solutions of (2.1) form a family of periodic orbits in the phase-plane (X, Ẋ). This
family may cover the entire ”phase plane” (X, Ẋ), or a bounded region D of the phase
plane. Each periodic orbit corresponds to a constant energy level E = 1

2
Ẋ2 +U(X). With

each constant energy level E corresponds a phase angle ψ, which is defined to be

ψ =

∫ X

0

dr
√

2E − 2U(r)
. (2.2)

From (2.1)-(2.2) a transformation (X, Ẋ) 7−→ (E, ψ) can then be defined with














Ė = εẊf = g1(E, ψ, t),

ψ̇ = 1 + ε

[

−
∫ X

0
dr

(2E−2U(r))
3
2

Ẋf

]

= g2(E, ψ, t).
(2.3)

Multiplying the first and the second equation in (2.3) with µ1(E, ψ, t) and µ2(E, ψ, t)
respectively, it follows that the integrating factors µ1(E, ψ, t) and µ2(E, ψ, t) have to satisfy
(see also [20, 21])



























∂µ1

∂ψ
= ∂µ2

∂E
,

∂µ1

∂t
= − ∂

∂E
(µ1g1 + µ2g2) ,

∂µ2

∂t
= − ∂

∂ψ
(µ1g1 + µ2g2) .

(2.4)

Let g1 = εg1,1 + ε2g1,2, g2 − 1 = εg2,1 + ε2g2,2. Expanding µ1 and µ2 in formal power series
in ε, that is,

µi(E, ψ, t; ε) = µi,0(E, ψ, t) + εµi,1(E, ψ, t) + . . .
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for i = 1 and 2, substituting g1, g2, and the expansions for µ1 and µ2 into (2.4), and by
taking together terms of equal powers in ε, we finally obtain the following O(εn)-problems:
for n = 0



























∂µ1,0

∂ψ
=

∂µ2,0

∂E
,

∂µ1,0

∂t
= −∂µ2,0

∂E
,

∂µ2,0

∂t
= −∂µ2,0

∂ψ
,

(2.5)

for n=1


























∂µ1,1

∂ψ
=

∂µ2,1

∂E
,

∂µ1,1

∂t
= − ∂

∂E
(µ1,0g1,1 + µ2,0g2,1 + µ2,1) ,

∂µ2,1

∂t
= − ∂

∂ψ
(µ1,0g1,1 + µ2,0g2,1 + µ2,1) ,

(2.6)

and for n ≥ 2


























∂µ1,n

∂ψ
=

∂µ2,n

∂E
,

∂µ1,n

∂t
= − ∂

∂E
(µ1,n−2g1,2 + µ1,n−1g1,1 + µ2,n−2g2,2 + µ2,n−1g2,1 + µ2,n) ,

∂µ2,n

∂t
= − ∂

∂ψ
(µ1,n−2g1,2 + µ1,n−1g1,1 + µ2,n−2g2,2 + µ2,n−1g2,1 + µ2,n) .

(2.7)

The O(ε0)-problem (2.5) can readily be solved, yielding µ1,0 = h1,0(E, ψ − t) and µ2,0 =

h2,0(E, ψ− t) with
∂h1,0

∂ψ
=

∂h2,0

∂E
. The functions h1,0 and h2,0 are still arbitrary and will now

be chosen as simple as possible. We choose h1,0 ≡ 1 and h2,0 ≡ 0, and so (see also [12, 20])

µ1,0 = 1, µ2,0 = 0. (2.8)

It follows from the order ε-problem (2.6) that µ1,1 and µ2,1 have to satisfy










∂µ1,1

∂t
+

∂µ1,1

∂ψ
= − ∂

∂E
(g1,1) ,

∂µ2,1

∂t
+ ∂µ2,1

∂ψ
= − ∂

∂ψ
(g1,1) .

(2.9)

By using the method of characteristics for first order PDEs we then obtain










µ1,1 = h1,1(E, ψ − t) −
∫ t ( ∂

∂E
(g1,1)

)

dt̄,

µ2,1 = h2,1(E, ψ − t) −
∫ t

(

∂
∂ψ

(g1,1)
)

dt̄,

(2.10)

where h1,1, h2,1 are arbitrary functions which have to satisfy

∂h1,1

∂ψ
− ∂

∂ψ

∫ t
(

∂

∂E
(g1,1)

)

dt̄ =
∂h2,1

∂E
− ∂

∂E

∫ t
(

∂

∂ψ
(g1,1)

)

dt̄. (2.11)



APPROXIMATIONS OF FIRST INTEGRALS FOR NONLINEAR OSCILLATOR 6

We choose h1,1 and h2,1 as simple as possible, that is, we take h1,1 = 0, h2,1 = 0. We then
obtain for µ1,1 and µ2,1















µ1,1 = − ∂
∂E

(

∫ t
g1,1dt̄

)

,

µ2,1 = − ∂
∂ψ

(

∫ t
g1,1dt̄

)

.

(2.12)

The O(ε2)-problem (2.7) can be solved , yielding















µ1,2 = − ∂
∂E

(

∫ t
(g1,2 + µ1,1g1,1 + µ2,1g2,1) dt̄

)

,

µ2,2 = − ∂
∂ψ

(

∫ t
(g1,2 + µ1,1g1,1 + µ2,1g2,1) dt̄

)

.

(2.13)

The O(εn)-problems (2.7) with n > 2 can be solved in a similar way. An approximation
F1 of a first integral F = constant of system (2.3) can now be obtained from (2.8), (2.12)
and (2.13) yielding (see also [20, 21])

F1(E, ψ, t) = E − ε

[
∫ t

g1,1dt̄

]

− ε2
[
∫ t

(g1,2 + µ1,1g1,1 + µ2,1g2,1) dt̄

]

. (2.14)

How well F1 approximates a first integral F = constant can be deduced from (see also
[20, 21])

dF1

dt
=

[

g1 + εµ1,1g1 + ε2µ1,2g1 + εµ2,1g2 + ε2µ2,2g2

]

∗∗

= ε3R1(E, ψ, t), (2.15)

where g1, g2, µ1,1, µ2,1, µ1,2, µ2,2 are given by (2.3), (2.12) and (2.13), and where the ** indi-
cates that only terms of O(εm) withm ≥ 3 are included. From the existence and uniqueness
theorems for ODEs we know that initial value problems for (2.1) (with sufficiently smooth
potential U(X) and nonlinearity f(X, Ẋ, t)) are well-posed on a time-scale of order 1

ε
. This

implies that also an initial-value problem for system (2.3) is well-posed on this time-scale.
From (2.3) it then follows on this time-scale that if E(0) is bounded then E(t) is bounded
and ψ(t) is bounded by a constant plus t. Since |R1| ≤ c0 + c1t on a time scale of order 1

ε
,

where c0, c1 are constants, it follows from (2.15) that

F1(E(t), ψ(t), t; ε) = constant + ε3
∫ t

0

R1(E(s), ψ(s), s; ε)ds,

and so,

F1(E(t), ψ(t), t; ε) = constant + O(ε3), 0 ≤ t ≤ T0 <∞,

F1(E(t), ψ(t), t; ε) = constant + O(ε), 0 ≤ t ≤ L

ε
, (2.16)
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where T0 and L are ε-independent constants. Another (functionally independent) approx-
imation of a first integral can be obtained by putting in (2.5)

µ2,0 = 1, µ1,0 = 0, (2.17)

instead of (2.8). The O(ε)-problem (2.6) can now be solved, yielding











µ1,1 = k1,1(E, ψ − t) −
∫ t ( ∂

∂E
(g2,1)

)

dt̄,

µ2,1 = k2,1(E, ψ − t) −
∫ t

(

∂
∂ψ

(g2,1)
)

dt̄,

(2.18)

where the functions k1,1 and k2,1 are arbitrary functions which have to satisfy

∂k1,1

∂ψ
− ∂

∂ψ

∫ t
(

∂

∂E
(g2,1)

)

dt̄ =
∂k2,1

∂E
− ∂

∂E

∫ t
(

∂

∂ψ
(g2,1)

)

dt̄. (2.19)

We choose these functions as simple as possible, that is, k1,1 = 0 and k2,1 = 0. Then we
obtain















µ1,1 = − ∂
∂E

(

∫ t
g2,1dt̄

)

,

µ2,1 = − ∂
∂ψ

(

∫ t
g2,1dt̄

)

.

(2.20)

The O(ε2)-problem (2.7) can be solved , yielding















µ1,2 = − ∂
∂E

(

∫ t
(g2,2 + µ1,1g1,1 + µ2,1g2,1) dt̄

)

,

µ2,2 = − ∂
∂ψ

(

∫ t
(g2,2 + µ1,1g1,1 + µ2,1g2,1) dt̄

)

.

(2.21)

An approximation F2 of a first integral F = constant of system (2.3) can now be obtained
from (2.17), (2.20) and (2.21) yielding (see also [20, 21])

F2(E, ψ, t) = (ψ − t) − ε

[∫ t

g2,1dt̄

]

− ε2
[∫ t

(g2,2 + µ1,1g1,1 + µ2,1g2,1) dt̄

]

. (2.22)

How well F2 approximates a first integral F = constant can be deduced from (see also
[20, 21])

dF2

dt
=

[

g1 + εµ1,1g1 + ε2µ1,2g1 + εµ2,1g2 + ε2µ2,2g2

]

∗∗

= ε3R1(E, ψ, t), (2.23)

where g1, g2, µ1,1, µ2,1, µ1,2, µ2,2 are given by (2.3), (2.20) and (2.21), and where the **
indicates that only terms of O(εm) with m ≥ 3 are included. In the following section we
will apply this perturbation method to the oscillator equation (1.2).
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3 Approximations of First Integrals for a Nonlinear,

Forced Oscillator

In this section we will consider the following nonlinear, forced oscillator equation

Ẍ +
dU(X)

dX
= εf(X, Ẋ, t), (3.1)

where dU(X)
dX

= X + λX3 in which λ > 0 is a parameter, and where f(X, Ẋ, t) = δẊ −
βẊ3 + γẊ cos(2t) in which δ > 0, β > 0, and γ 6= 0 are parameters, and where ε is a
small parameter with 0 < ε � 1. As explained in the introduction the oscillator equation
(3.1) can be considered to be a simple model describing the vertical displacement of an
overhead power transmission line (on which ice has accreted) in a windfield. The function
X(t) describes the vertical displacement. In this section asymptotic approximations of
first integrals for (3.1) will be constructed explicitly. To give a rather complete analysis
of (3.1) and to understand the bifurcation(s) of the periodic solutions in section 4 we will
now consider three cases: (i) λ = O(ε), (ii) λ = O(

√
ε) and (iii) λ = O(1).

3.1 The case λ = O(ε)

Let λ = λ̃ε with λ̃ > 0. To study (3.1) with λ = λ̃ε in detail we will use straightforward
calculations as presented in section 2 to obtain approximations of the first integrals. By

introducing the rescalings εδ = ε̃, X =
√

δ

λ̃
X̃, β̃λ̃ = β, and γ̃δ = γ it follows that (3.1)

becomes
¨̃
X + X̃ = ε̃( ˙̃

X − β̃
˙̃
X

3

− X̃3 + γ̃
˙̃
X cos(2t)). (3.2)

In the further analysis the tildes will be dropped for convenience. By introducing the
transformation (X, Ẋ) 7−→ (E, ψ) as defined by











E = 1
2
Ẋ2 + 1

2
X2,

ψ =
∫ X

0
dr√

2E−r2
= sin−1

(

X√
2E

)

,

(3.3)

(where E and ψ are the energy and the phase angle of the unperturbed (that is, ε = 0)
oscillator respectively) it follows from (3.2) that















Ė = εẊg = ξ1(E, ψ, t) = εξ1,1(E, ψ, t),

ψ̇ = 1 + ε

[

−
∫ X

0
dr

(2E−r2)
3
2

Ẋg

]

= ξ2(E, ψ, t) = 1 + εξ2,1(E, ψ, t),
(3.4)

where g = Ẋ − βẊ3 −X3 + γẊ cos(2t). From the calculations as presented in section 2 of
this paper it follows that two functionally independent approximations of the first integrals
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for (3.2) are given by

F1(E, ψ, t) = E − ε

∫ t

ξ1,1dt̄

= E − ε

∫ t
(

2E cos(ψ)2 − 4βE2 cos(ψ)4 − 4E2 sin(ψ)3 cos(ψ)

+2Eγ cos(ψ)2 cos(2t)
)

dψ

= E − ε

((

E − 3

2
E2β

)

ψ +

(

1

2
E − E2β

)

sin(2ψ) − 1

8
E2β sin(4ψ)

+
1

2
Eγ sin(2t) +

1

2
E2 +

1

8
Eγ sin(2ψ + 2t) +

1

2
Eγψ cos(2ψ − 2t)

)

,(3.5)

and

F2(E, ψ, t) = (ψ − t) − ε

∫ t

ξ2,1dt̄

= (ψ − t) +
ε

2E

∫ t
(

2E sin(ψ) cos(ψ) − 2E2β sin(ψ) cos(ψ)3

−4E2 sin(ψ)4 + 2Eγ sin(ψ) cos(ψ) cos(2t)
)

dψ

= (ψ − t) + ε

((

−1

4
+

1

4
Eβ

)

cos(2ψ) +
1

16
Eβ cos(4ψ) +

1

2
E sin(2ψ)

− 1

16
E sin(4ψ) − 3

4
Eψ +

1

4
γψ sin(2ψ − 2t) − 1

16
γ cos(2ψ + 2t)

)

. (3.6)

How well F1 and F2 approximate a first integral F = constant can be deduced from

dFj

dt
= εµ1,1ξ1 + εµ2,1(ξ2 − 1) = ε2Rj(E, ψ, t), (3.7)

where ξ1 and ξ2 are given by (3.4). It follows from (3.7) that for j = 1, 2 (see also (2.15)-
(2.16))

Fj(E(t), ψ(t), t; ε) = constant + ε2
∫ t

0

Rj(E(s), ψ(s), s; ε)ds, (3.8)

and so,

Fj(E(t), ψ(t), t; ε) = constant + O(ε2), 0 ≤ t ≤ T0 <∞,

Fj(E(t), ψ(t), t; ε) = constant + O(ε), 0 ≤ t ≤ L√
ε
, (3.9)

where T0 and L are ε-independent constants.
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3.2 The case λ = O(
√
ε)

Let λ =
√
ελ̄ with λ̄ > 0. By introducing the rescalings εδ = ε̄, X =

√√
δ
λ̄
X̄, β̄λ̄

√
δ = β,

and γ̄δ = γ it follows that (3.1) becomes

¨̄X + X̄ +
√
ε̄X̄3 = ε̄( ˙̄X − β̄ ˙̄X

3
+ γ̄ ˙̄X cos(2t)). (3.10)

In the further analysis the bars will be dropped for convenience. By introducing the
transformation (X, Ẋ) 7−→ (E, ψ) as defined by











E = 1
2
Ẋ2 + 1

2
X2,

ψ =
∫ X

0
dr√

2E−r2
= sin−1

(

X√
2E

)

,

(3.11)

(where E and ψ are the energy and the phase angle of the unperturbed (that is, ε = 0)
oscillator respectively) it follows from (3.10) that















Ė =
√
εẊg = ξ3(E, ψ, t) =

√
εξ3,1(E, ψ, t) + εξ3,2(E, ψ, t),

ψ̇ = 1 +
√
ε

[

−
∫ X

0
dr

(2E−r2)
3
2

Ẋg

]

= ξ4(E, ψ, t) = 1 +
√
εξ4,1(E, ψ, t) + εξ4,2(E, ψ, t),

(3.12)

where g = −X3 +
√
ε
(

Ẋ − βẊ3 + γẊ cos(2t)
)

. From the calculations as presented in

section 2 of this paper it follows that two functionally independent approximations of the
first integrals for system (3.10) are given by

F3(E, ψ, t) = E +
√
ε

∫ t

−ξ3,1dt̄+ ε

∫ t

− (ξ3,2 + µ3,1ξ3,1 + µ4,1ξ4,1) dt̄

= E +
√
ε

∫ t
(

E2 sin(2ψ) − 1

2
E2 sin(4ψ)

)

dψ

+ε

∫ t
(

−E cos(2ψ) − E +
1

2
E2β cos(4ψ) + 2E2β cos(2ψ) +

3

2
E2β

−1

2
Eγ cos(2ψ − 2t) − 1

2
Eγ cos(2ψ + 2t) − Eγ cos(2t)

+
3

8
E3 sin(4ψ) − 3

4
E3 sin(2ψ)

)

dψ

= E +
√
ε

(

−1

2
E2 cos(2ψ) +

1

8
E2 cos(4ψ)

)

+ε

((

E2β − 1

2
E

)

sin(2ψ) +

(

3

2
E2 − E

)

ψ +
1

8
E2β sin(4ψ)

−1

2
γψ cos(2ψ − 2t) − 1

8
Eγ sin(2ψ + 2t) − 1

2
Eγ sin(2t)

− 3

32
E3 cos(4ψ) +

3

8
E3 cos(2ψ)

)

, (3.13)



APPROXIMATIONS OF FIRST INTEGRALS FOR NONLINEAR OSCILLATOR 11

and

F4(E, ψ, t) = (ψ − t) +
√
ε

∫ t

−ξ4,1dt̄+ ε

∫ t

− (ξ4,2 + µ3,1ξ3,1 + µ4,1ξ4,1) dt̄

= (ψ − t) +
√
ε

∫ t
(

−3

4
E + E cos(2ψ) − 1

4
E cos(4ψ)

)

dψ

+ε

∫ t
(

1

2
sin(2ψ) − 1

4
βE sin(4ψ) − 1

2
βE sin(2ψ) +

1

4
γ sin(2ψ + 2t)

−1

4
γ sin(2ψ − 2t) − 3

4
E2ψ sin(2ψ) +

3

8
E2ψ sin(4ψ) +

5

8
E2 cos(4ψ)

+
87

64
E2 − 61

32
E2 cos(2ψ) − 3

32
E2 cos(6ψ) +

1

64
E2 cos(8ψ)

)

dψ

= (ψ − t) +
√
ε

(

−3

4
Eψ +

1

2
E sin(2ψ) − 1

16
E sin(4ψ)

)

+ε

((

−1

4
+

1

4
β +

3

8
E2ψ

)

cos(2ψ) −
(

3

16
E2 +

61

64
E2

)

sin(2ψ)

+

(

1

16
Eβ − 3

32
E2ψ

)

cos(4ψ) +

(

3

128
E2 +

5

32
E2

)

sin(4ψ)

− 1

16
γ cos(2ψ + 2t) +

1

4
γψ sin(2ψ − 2t) − 1

64
E2 sin(6ψ)

+
1

512
E2 sin(8ψ)

)

. (3.14)

How well F3 and F4 approximate a first integral F = constant can deduced from

dFj

dt
=

[

ξ3 +
√
εµ3,1ξ3 + εµ3,2ξ3 +

√
εµ4,1ξ4 + εµ4,2ξ4

]

∗∗

= ε
√
εRj(E, ψ, t), (3.15)

where ξ3 and ξ4 are given by (3.12). It follows from (3.15) that for j = 3, 4 (see also
(2.15)-(2.16))

Fj(E(t), ψ(t), t; ε) = constant + ε
√
ε

∫ t

0

Rj(E(s), ψ(s), s; ε)ds, (3.16)

and so,

Fj(E(t), ψ(t), t; ε) = constant + O(ε
√
ε), 0 ≤ t ≤ T0 <∞,

Fj(E(t), ψ(t), t; ε) = constant + O(
√
ε), 0 ≤ t ≤ L

ε
, (3.17)

where T0 and L are ε-independent constants.
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3.3 The case λ = O(1)

In this case the rescalings εδ = ε̂, X = 1√
λ
X̂, β̂δλ = β, and γ̂δ = γ are introduced, and

(3.1) then becomes
¨̂
X + X̂ + X̂3 = ε̂(

˙̂
X − β̂

˙̂
X

3

+ γ̂
˙̂
X cos(2t)). (3.18)

In the further analysis the heads will be dropped for convenience. By introducing the
transformation (X, Ẋ) 7−→ (E, ψ) as defined by











E = 1
2
Ẋ2 + 1

2
X2 + 1

4
X4,

ψ =
∫ X

0
dr√

2E−r2− 1

2
r4
,

(3.19)

(where E and ψ are the energy and the phase angle of the unperturbed (that is, ε = 0)
oscillator) the following system of ODEs is obtained from (3.18)















Ė = εẊg = ξ5(E, ψ, t) = εξ5,1(E, ψ, t),

ψ̇ = 1 + ε

[

−
∫ X

0
dr

(2E−r2− 1

2
r4)

3
2

Ẋg

]

= ξ6(E, ψ, t) = 1 + εξ6,1(E, ψ, t),
(3.20)

where g = Ẋ − βẊ3 + γẊ cos(2t). The solution of the unperturbed (that is, ε = 0) equa-
tion (3.18) is X = A0cn(ϑ, k) with ϑ = ω0ψ, where ψ = t + constant, k is a modulus

given by k2 =
A2

0

2ω2

0

, and ω2
0 = 1 + A2

0 (see also [4, 9, 11, 15, 16, 19]). The relationship

between the energy E and the ”amplitude” A0 is given by E = 1
2
A2

0 + 1
4
A4

0. The function
cn(ϑ, k) is a Jacobian elliptic function with argument ϑ and modulus k. From the calcu-
lations as presented in section 2 of this paper it follows that two functionally independent
approximations of the first integrals for system (3.18) are given by

F5(E, ψ, t) = E − ε

∫ t

ξ5,1dt̄

= E − ε

[
∫ t

(ω2
0A

2
0sn(ϑ, k)2dn(ϑ, k)2 − βω4

0A
4
0sn(ϑ, k)4dn(ϑ, k)4)

+γω2
0A

2
0sn(ϑ, k)2dn(ϑ, k)2 cos(

ϑ

ω0

ω)
dϑ

ω0

]

, (3.21)

and

F6(E, ψ, t) = (ψ − t) − ε

∫ t

ξ6,1dt̄

= (ψ − t) + ε

[
∫ t

P1(ϑ, k) (ω0A0sn(ϑ, k)dn(ϑ, k)

−βω3
0A

3
0sn(ϑ, k)3dn(ϑ, k)3

)

+ γω0A0sn(ϑ, k)dn(ϑ, k) cos(
ϑ

ω0

ω)
dϑ

ω0

]

,(3.22)
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where P1(ϑ, k) = dA0

dE
cn(ϑ, k)−A0ψsn(ϑ, k)dn(ϑ, k)dω0

dE
+A0

∂
∂k
cn(ϑ, k) dk

dE
, in which sn(ϑ, k),

and dn(ϑ, k) are elliptic functions , and where dA0

dE
, dω0

dE
, and dk

dE
are given by

dA0

dE
=

1

A0 + A3
0

,
dω0

dE
=

A0

ω0 (A0 + A3
0)
,
dk

dE
=

A0 (1 − 2k2)

2kω2
0 (A0 + A3

0)
.

How well F5 and F6 approximate a first integral F = constant can be deduced from

dFj

dt
= εµ5,1ξ5 + εµ6,1(ξ6 − 1) = ε2Rj(E, ψ, t), (3.23)

where ξ5 and ξ6 are given by (3.20). It follows from (3.23) that for j = 5, 6 (see also
(2.15)-(2.16))

Fj(E(t), ψ(t), t; ε) = constant + ε2
∫ t

0

Rj(E(s), ψ(s), s; ε)ds, (3.24)

and so,

Fj(E(t), ψ(t), t; ε) = constant + O(ε2), 0 ≤ t ≤ T0 <∞,

Fj(E(t), ψ(t), t; ε) = constant + O(ε), 0 ≤ t ≤ L√
ε
, (3.25)

where T0 and L are ε-independent constants.

4 Time-periodic solutions and a bifurcation analysis

In the previous section it has been shown explicitly how asymptotic approximations of
first integrals can be obtained. In this section we will show how the existence of non-
trivial, time-periodic solutions can be determined from the asymptotic approximations of
the first integrals. Bifurcation diagrams will be presented, and the analytical obtained
approximations for the periodic solutions will be compared with numerical results such as
obtained by Poincaré map techniques and obtained by numerical integration of the ODEs
(phase portraits).

4.1 The case λ = O(ε)

The two functionally independent, asymptotic approximations (3.5) and (3.6) for the first
integrals of equation (3.2) can be used to determine the existence and stability of the time-
periodic solutions. Moreover, from (3.5) and (3.6) an approximation of a periodic solution
can easily be constructed. Let T < ∞ be the period of a periodic solution (obviously T

should be a multiple of π for γ 6= 0). Let G1(E, ψ, t; ε) = constant and G2(E, ψ, t; ε) =
constant be two independent first integrals, where G1 and G2 are approximated by F1 and
F2, respectively, and where F1 and F2 are given by (3.5) and (3.6), respectively. Let c1 and
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c2 be constants in the two independent first integrals G1 and G2 respectively for which a
periodic solution exists. Now consider G1 = c1 and G2 = c2 for t = nT and t = (n − 1)T
with n ∈ N

+ :






































G1 (E(nT ), ψ(nT ), nT ; ε) = c1,

G1 (E ((n− 1)T ) , ψ((n− 1)T ), (n− 1)T ; ε) = c1,

G2 (E(nT ), ψ(nT ), nT ; ε) = c2,

G2 (E ((n− 1)T ) , ψ((n− 1)T ), (n− 1)T ; ε) = c2.

(4.1)

Approximating G1 by F1 and G2 by F2, eliminating c1 and c2 from (4.1) by subtractions,
we then obtain

E(nT ) = E ((n− 1)T ) + εT

(

E ((n− 1)T ) − 3

2
E ((n− 1)T )2 β

+
1

2
γE((n− 1)T ) cos(2ψ ((n− 1)T ))

)

+ O(ε2t),

ψ(nT ) = ψ ((n− 1)T ) − T + εT

(

3

4
E((n− 1)T ) − 1

4
γ sin(2ψ ((n− 1)T ))

)

+ O(ε2t),

(4.2)

on a time scale of order 1
ε
. In fact (4.2) defines a map Q : E → Q(E) ⇔ En = Q(En−1)

which we will use to determine the nontrivial periodic solution(s) of (3.2). By neglecting
the O(ε2t) terms in (4.2) we can define a new map P : Ẽ → P (Ẽ) ⇔ Ẽn = P (Ẽn−1).
It should be remarked that the second equation in the map Q (and in the map P ) will
always be considered modulo T . From the well-known theorem of Hartman-Grobman it
follows that when the map P has a hyperbolic fixed point then the map Q also has a fixed
point which is ε-close to the one of the map P . Moreover, the fixed point of the map Q

has the same stability properties as the corresponding fixed point of the map P . It is also
well-known that a fixed point corresponds to a periodic solution of the original ODE, that
is, (3.2). In this case it follows from (4.2) with γ 6= 0 that the map P has as nontrivial
fixed points (E0, ψ0), where

E0 =
2β ±

√

γ2(β2 + 1) − 4

3(β2 + 1)
, (4.3)

and where ψ0 is given by






γ cos(2ψ0) = 3E0β − 2 and

γ sin(2ψ0) = 3E0.

(4.4)

Since we are interested in nontrivial periodic solutions of (3.2) (that is, E 0 > 0) it follows
from (4.3) that we have to consider the following three cases
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(a) for γ2(β2 + 1) > 4 and −2 < γ < 2 there are two nontrivial solutions for E0,

(b) for γ2(β2 + 1) = 4 or γ ≥ 2 or γ ≤ −2 there is one nontrivial solution for E0, and

(c) for γ2(β2 + 1) < 4 and γ 6= 0 there is no nontrivial solution for E0.

The linearized map of map P around a fixed point of map P , is given by

DP =

(

1 0
0 1

)

+ εT

(

1 − 3E0β + 1
2
γ cos(2ψ0) −E0γ sin(2ψ0)

3
4

−1
2
γ cos(2ψ0)

)

. (4.5)

By using (4.4) it follows from (4.5) that the eigenvalues of DP are

λ̄1,2 = 1 + εT

(

1

2
− 3

2
βE0 ±

1

2

√

1 − 9E2
0

)

. (4.6)

If the eigenvalues as given by (4.6) are not equal to one in modulus, then the fixed point
(E0, ψ0) is hyperbolic. The results as given by (4.3) and (4.4) are exactly the same results
as the ones which can be obtained by using the averaging method or the two time-scales
perturbation method. The bifurcation diagram in the (β, γ)-plane is given in Figure 1. For

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−3

−2

−1

0

1

2

3

I 

II 

III 

IV 

IV 

V 

VI 

V 

I 

II 

III 

γ =  
4

β +1

γ =  
β

4
+12

2

γ

β

Figure 1: The bifurcation diagram in the (β, γ)-plane for the weakly nonlinear forced
oscillator equation (3.2).

E0 > 0 and 0 ≤ ψ0 < π the following conclusions can be drawn from (4.3)-(4.6) and from
Figure 1. In region I in Figure 1 we will have one stable fixed point (E 0, ψ0). Crossing the
line II a second unstable fixed point is bifurcated. In region III we will have one stable
and one unstable fixed point. These two critical points will coincide on the line IV, and
a saddle node occurs on this line, and in region V no fixed points occur. Finally on the
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line VI, that is, for γ = 0 we have infinitely many fixed points (E0, ψ0) with E0 = 2
3β

and

ψ0 arbitrary. It should be remarked that for γ = 0 equation (3.2) reduces to well-known
autonomous Rayleigh equation. The existence of stable and unstable nontrivial periodic
solutions for β = 2 is given in Figure 2 in the (γ, E0)-plane. In Figure 3 phase portraits

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

γ

Stable periodic solution
Unstable periodic solution

E 0

Figure 2: The bifurcation diagram in the (γ, E0)-plane for the weakly nonlinear forced
oscillator equation (3.2) with β = 2.

in the (r, ψ)-plane (with E = 1
2
r2) are given for the first order averaged weakly nonlinear

forced oscillator equation (3.2) with β = 2 and for several values of γ. From Figure 2
and from Figure 3 it can readily be seen that we have only one stable periodic solution
of (3.2) for γ2 > 4 and 0 ≤ ψ0 < π. For γ2 = 4 a second, unstable periodic solution is
bifurcated, and for 4

5
< γ2 < 4 we have two periodic solutions. A saddle node bifurcation

occurs for γ2 = 4
5
, and for 0 < γ2 < 4

5
we have no periodic solutions. In Figure 4 the

Poincaré map technique is used, and X(t) and Ẋ(t) are depicted in the (X, Ẋ)-plane at
times t equal to 2π, 4π, 6π, 8π, . . .. To compare the analytical results (as given in Figure
1 and Figure 2) with the numerical results (as given in Figure 3 and Figure 4) it should
be noted that X = r sin(ψ), E = 1

2
r2 = 1

2
(X2 + Ẋ2). Then, it can readily be seen that

the analytical results and the numerical results are in good agreement. Finally it should
be remarked that an order ε approximation of an order 1, 2π-periodic solution is given by
X(t) =

√
2E sin(ψ(t)), where E(t) = E0 + O(ε) and ψ(t) = t + ψ0 + O(ε), and where E0

and ψ0 are solutions of (4.3) and (4.4).

4.2 The case λ = O(
√
ε)

The two functionally independent, asymptotic approximations (3.13) and (3.14) for the
first integrals of equation (3.10) can be used to approximate the solutions. Moreover,
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Figure 3: Phase Portraits in the (r, ψ)-plane for the weakly nonlinear forced oscillator
equation (3.2) with β = 2 and for several values of γ.
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Figure 4: Poincaré-map results for the weakly nonlinear forced oscillator equation (3.2) in
the (X, Ẋ)-plane for several values of γ with β = 2 and ε = 2

100
, and with sample-times t

equal to 2π, 4π, 6π, 8π, . . ..
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from (3.13) and (3.14) an approximation of a periodic solution (if it exists) can easily be
constructed. Let T < ∞ be the period of a periodic solution (obviously T should be a
multiple of π for γ 6= 0). Let G3(E, ψ, t; ε) = constant and G4(E, ψ, t; ε) = constant be two
independent first integrals, where G3 and G4 are approximated by F3 and F4, respectively,
and where F3 and F4 are given by (3.13) and (3.14), respectively. Let c3 and c4 be constants
in the two independent first integrals G3 and G4 respectively for which a periodic solution
exists. Now consider G3 = c3 and G4 = c4 for t = nT and t = (n− 1)T with n ∈ N

+ :






































G3 (E(nT ), ψ(nT ), nT ; ε) = c3,

G3 (E ((n− 1)T ) , ψ((n− 1)T ), (n− 1)T ; ε) = c3,

G4 (E(nT ), ψ(nT ), nT ; ε) = c4,

G4 (E ((n− 1)T ) , ψ((n− 1)T ), (n− 1)T ; ε) = c4.

(4.7)

Approximating G3 by F3 and G4 by F4 respectively, eliminating c3 and c4 from (4.7) by
subtractions, and using the transformation ψ(t) = θ(t) +

√
ε3

4
tE(t), we then obtain

E(nT ) = E ((n− 1)T ) + εT

(

E ((n− 1)T ) − 3

2
E ((n− 1)T )2 β

+
1

2
γE((n− 1)T ) cos(2θ ((n− 1)T ))

)

+ O(ε
√
εt),

θ(nT ) = θ ((n− 1)T ) − T + εT

(

−105

64
E((n− 1)T )2 − 1

4
γ sin(2θ ((n− 1)T ))

)

+O(ε
√
εt), (4.8)

on a time scale of order 1√
ε
. In fact (4.8) defines a map R : E → R(E) ⇔ En = R(En−1)

which we will use to determine the nontrivial periodic solution(s) of equation (3.10). By
neglecting terms of O(ε

√
εt) in (4.8) we can define a new map S : Ẽ → S(Ẽ) ⇔ Ẽn =

S(Ẽn−1). It should be remarked that the second equation in the map S (and in the map R)
will always be considered modulo T . From the well-known theorem of Hartman-Grobman
it follows that when the map S has a hyperbolic fixed point then the map R also has a
fixed point which is ε-close to the one of the map S. Moreover, the fixed point of the map
R has the same stability properties as the corresponding fixed point of the map S. In this
case it follows from (4.8) with γ 6= 0 that the map S has as nontrivial fixed points (E 0, θ0),
where E0 is given by

(3βE0 − 2)2 +

(

−105

16
E2

0

)2

= γ2, (4.9)

and where θ0 is given by






γ cos(2θ0) = 3E0β − 2 and

γ sin(2θ0) =
(

−105
16
E2

0

)

.

(4.10)
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The linearized map of map S around a fixed point of map S, is given by

DP =





1 0

0 1



 + εT





1 − 3E0β + 1
2
γ cos(2θ0) −E0γ sin(2θ0)

−105
32
E0 −1

2
γ cos(2θ0)



 . (4.11)

By using (4.9) it follows from (4.11) that the eigenvalues of DP are

λ̄1,2 = 1 + εT

(

1

2
− 3

2
βE0 ±

1

32

√

256 − 22050E4
0

)

.

(4.12)

Again if the eigenvalues (4.12) are not equal to one in modules, then the fixed point (E 0, θ0)
is hyperbolic. The results as given by (4.9) and (4.10) are exactly the same results as the
ones which can be obtained by using the second order averaging method or the multiple
time-scales method or other perturbation techniques. Using the formulas of Cardano the
bifurcation diagram in the (β, γ)-plane can be derived from (4.9) and is given in Figure
5. The regions I-V in Figure 5 are as defined in section 4.1. The existence of stable and

β

V

V

VI

IV

IV

III

III

II

II

I

I

γ

Figure 5: The bifurcation diagram in the (β, γ)-plane for the nonlinear map (4.8).

unstable nontrivial equilibrium solutions for the nonlinear map (4.8) with β = 2 can be
determined from Figure 6 in the (γ, E0)-plane. In Figure 7 the phase portraits in the (r, θ)-
plane (with E = 1

2
r2) are given for the second order averaged nonlinear forced oscillator

equation (3.10) with β = 2 and for several values of γ. It should be remarked that the fixed
points as given by (4.9) and (4.10) are not corresponding with the 2π-periodic solutions
of the equation (3.10) due to the transformation θ(t) = ψ(t) − √

ε 3
4
E(t)t. So, the periodic

solutions as given in Figure 5 and 6 for γ 6= 0 are not the 2π-periodic solutions for the



APPROXIMATIONS OF FIRST INTEGRALS FOR NONLINEAR OSCILLATOR 21

E0

γ

: Unstable equilibrium solution
: Stable equilibrium solution

Figure 6: The bifurcation diagram in the (γ, E0)-plane for the nonlinear map (4.8) with
β = 2.

original equation (3.10). Finally it should be remarked that an approximation of a solution
for the nonlinear forced oscillator equation (3.10) (in a neighborhood of the equilibrium
points of the nonlinear map (4.8)) is given by X(t) =

√
2E0 sin

(

ψ(0) + t +
√
ε3

4
E0t

)

+
O(

√
ε) on a time scale of order 1√

ε
, where E0 and ψ(0) = θ(0) = θ0 are the solutions of

(4.9) and (4.10). We can see from these approximations that the ”periods” of the solutions
of (3.10) (which are O(1), and not o(1)) are less than 2π. This implies that there are
no 2π-periodic solutions which are strict O(1) (that is, are O(1) but not o(1)). These
results are confirmed in Figure 8, in which Poincaré-return map results are given for the
nonlinear forced oscillator equation (3.10) in the (X, Ẋ)-plane for several values of γ. It
is still possible that equation (3.10) has small amplitude, 2π-periodic solutions. From the
applicational point of view these small amplitude oscillations in vertical direction are not
so interesting, but from a mathematical point of view these solutions might be of interest to
understand the bifurcations that are occurring. To study these small amplitude solutions
the following rescaling is usually introduced in (3.10): X(t) = εαZ(t) with α > 0, yielding

Z̈ + Z + ε
1

2
+2αZ3 = ε

(

Ż − βε2αŻ3 + γŻ cos(2t)
)

. (4.13)

The most interesting cases occur for α = 1
4

and α > 1
4
. For α = 1

4
equation (4.13) becomes

equation (3.2) with β near zero, and this equation has 2π-periodic solutions for special
values of the parameters (see section 4.1). For α > 1

4
equation (4.13) becomes (up to

O(ε
1

2
+2α))

Z̈ + Z = ε
(

Ż + γŻ cos(2t)
)

. (4.14)
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Figure 7: Phase Portraits in the (r, θ)-plane for the nonlinear forced oscillator equation
(3.10) with β = 2 and for several values of γ.
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Figure 8: Poincaré-map results for the nonlinear forced oscillator equation (3.10) in the
(X, Ẋ)-plane for β = 2 and for several values of γ, and

√
ε = 5

100
, and with sample-times

t = 2π + 4πn, where n ∈ N .
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In the Appendix 1 (4.14) is studied briefly. From the Poincaré expansion theorem it follows
that all solutions of (3.10) can be expand in X0(t)+

√
εX1(t)+εX2(t)+. . . on a time-scale of

order 1. Obviously Ẍ0 +X0 = 0. So, from the Poincaré expansion theorem and the results
obtained in this section it follows that equation (3.10) can only have small amplitude,
2π-periodic solutions as periodic solutions.

4.3 The case λ = O(1)

The two functionally independent, asymptotic approximation (3.21) and (3.22) for the first
integrals of equation (3.18) can be used to determine the existence of the time-periodic
solutions. Moreover, from (3.21) and (3.22) an approximation of a periodic solution can
easily be constructed. Let T <∞ be the period of a periodic solution (obviously T should
be πl, with l ∈ N

+ for γ 6= 0). Let G5(E, ψ, t; ε) = constant and G6(E, ψ, t; ε) = constant

be two independent first integrals, where G5 and G6 are approximated by F5 and F6,
respectively, and where F5 and F6 are given by (3.21) and (3.22), respectively. Let c5 and
c6 be constants in the two independent first integrals for which a periodic solution exists.
Now consider G5 = c5 and G6 = c6 for t = 0 and t = T . Approximating G5 by F5 and
G6 by F6 (as given by (3.21) and (3.22)), eliminating c5 and c6 by subtractions, we then
obtain (using the fact that E(0) = E(T ) for a periodic solution)















ε
∫ T

0

(

Ẋ2 − βẊ4 + γẊ2 cos(2s)
)

ds = O(ε2),

ε
∫ T

0
P1(ϑ, k)

(

Ẋ − βẊ3 + γẊ cos(2s)
)

ds = O(ε2),

(4.15)

where Ẋ = −ω0A0sn(ϑ, k)dn(ϑ, k). We can rewrite equation (4.15) as






εI(E, ψ, β, γ) = O(ε2),

εJ(E, ψ, β, γ) = O(ε2).
(4.16)

To have a periodic solution for (3.18) we have to find an energy E and a phase angle ψ
such that I(E, ψ, β, γ) and J(E, ψ, β, γ) are equal to zero (see also [12, 14]). To find this
energy and phase angle we rewrite I(E, ψ, β, γ) and J(E, ψ, β, γ) in







I ≡ I1 − βI2 + γI3 = 0,

J ≡ J1 − βJ2 + γJ3 = 0,
(4.17)

where














I1 =
∫ T

0
Ẋ2ds, I2 =

∫ T

0
Ẋ4ds, I3 =

∫ T

0

(

Ẋ2 cos(2s)
)

ds,

J1 =
∫ T

0
P1(ϑ, k)Ẋds, J2 =

∫ T

0
P1(ϑ, k)Ẋ

3ds, J3 =
∫ T

0
P1(ϑ, k)

(

Ẋ cos(2s)
)

ds.

(4.18)
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Let D = I3J2 − I2J3. It follows from (4.17) that for a periodic solution to exist β and γ,
can be considered to be functions of the energy E and the phase angle ψ, that is,







β = 1
D

(I3J1 − I1J3) ,

γ = 1
D

(I2J1 − I1J2) ,
(4.19)

for D 6= 0. By using an adaptive recursive Simpson rule the values of the parameters β and
γ can be calculated from (4.17)-(4.19) for which a periodic solution exists. From (3.18) it
is obvious that the period T should be a multiple of π. The expansion theorem of Poincaré
implies that the solution(s) of (3.18) can be expanded in X0(t)+εX1(t)+ε2X2(t)+ . . . on a
time-scale of order 1, where X0 satisfies Ẍ0+X0+X3

0 = 0. Now X0(t) is a periodic function

with period T0(E0) = 4
∫ A0

0
1√

2E0−X
2

0
− 1

2
X4

0

dX0, where A0 > 0 satisfies 2E0 −A2
0 − 1

2
A4

0 = 0.

In Figure 9 T0(E0) is plotted. From Figure 9 and from the fact that T should be a multiple
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Figure 9: The period T0 of the unperturbed equation (3.18) (that is, (3.18) with ε = 0) as
function of the energy E0 = 1

2
Ẋ2

0 + 1
2
X2

0 + 1
4
X4

0 .

of π it immediately follows that T should be equal to π or 2π. For 2π-periodic solutions
it follows from Figure 9 that E0 should be zero, and so a 2π-periodic solution (if it exists)
should have a small amplitude. To study these small amplitude solutions the following
rescaling is introduced in (3.18): X(t) = εαZ(t) with α > 0, yielding

Z̈ + Z = −ε2αZ3 + εŻ − ε1+2αβŻ3 + εγŻ cos(2t). (4.20)

For 2π-periodic solutions Z(t) only the case α = 1
2

and the case α > 1
2

have to be considered.
For α = 1

2
equation (4.20) becomes equation (3.2) with β near zero, and this equation has
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2π-periodic solutions for special values of the parameters (see section 4.1). For α > 1
2

equation (4.14) up to O(ε2α) is again obtained, and this equation has been studied briefly
in Appendix 1. For π-periodic solutions it follows from Figure 9 that E 0 should be near
6.33552259..., and so a π-periodic solution (if it exists) should have an amplitude of (strict)
O(1). To determine the values of β and γ for which a π-periodic solution exists it should
be observed that β = β(E0, ψ0) and γ = γ(E0, ψ0), where E0 = 6.33552259... and 0 ≤ ψ0 ≤
4K(k) (in which K(k) is the complete elliptic integral of the first kind). For different values
of ψ0 (with E0 = 6.33552259...) the integrals in (4.18) and (4.19) have been calculated by
using an adaptive recursive Simpson rule. It should be observed that in (4.18)X(t) (that is,
the solution of the unperturbed equation (3.18) with ε = 0) depends on the initial energy E 0

and on the initial phase angle ψ0. For E0 = 6.33552259... β = β(E0, ψ0) and γ = γ(E0, ψ0)
will give a curve in the (β, γ)-plane. This curve has been determined numerically, and is
given in Figure 10. From a practical point of view it is obvious that the chance that the

–0.4

–0.2

0

0.2

0.4

0.084 0.088 0.092 0.096

γ

β

Figure 10: The curve in the (β, γ)-plane for which the strongly nonlinear forced equation
(3.18) has π-periodic solutions of order 1.

parameters β and γ are on this curve is of course zero. For that reason also Poincaré-map
results are given in Figure 11 for different values of β and γ.

5 Conclusions and remarks

In this paper it has been shown that the perturbation method based on integrating factors
can be used efficiently to approximate first integrals for strongly nonlinear forced oscillators.
In section 2 (and 3) of this paper a justification of the presented perturbation method has
been given. It has also been shown how the existence and stability of time-periodic solutions
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Figure 11: Poincaré-map results for the nonlinear forced oscillator equation (3.18) in the
(X, Ẋ)-plane for several values of γ with β = 2 and ε = 2

100
, and with sample-times t = πn

with n ∈ Z
+ for the figures (a), (c), (e), (f), and (h), and t = −2πn with n ∈ Z

+ for the
figures (b), (d), (g), and (i).
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can be deduced from the approximations of the first integrals for the strongly nonlinear
forced oscillators.
In this paper the following three oscillator equations have been studied in detail:

Ẍ +X = ε
(

Ẋ − βẊ3 −X3 + γẊ cos(2t)
)

, (5.1)

Ẍ +X +
√
εX3 = ε

(

Ẋ − βẊ3 + γẊ cos(2t)
)

, and (5.2)

Ẍ +X +X3 = ε
(

Ẋ − βẊ3 + γẊ cos(2t)
)

, (5.3)

where ε is a small parameter with 0 < ε � 1, and where β > 0 and γ 6= 0 are constants
(of order 1). In particular the O(1) behavior of the solutions has been studied. From
the applicational point of view this O(1)-behavior is the most interesting behavior when
galloping is studied. For equation (5.1) it has been shown for what values of the parameters
the solutions will tend to a 2π-periodic solution of order 1, and for what values of the
parameters the solutions will tend to a (non-periodic) bounded attractor. The results
obtained for (5.1) are in agreement with the results as obtained in [2, 3]. For equation
(5.2) it has been shown that there are no periodic solutions of order 1. Small amplitude,
2π-periodic solutions, however, exist for certain values of the parameters. In general the
solutions will tend to a bounded, non-periodic attractor of order 1. For equation (5.3) it has
been shown that there are π-periodic solutions of order 1 for special values of parameters.
These π-periodic solutions are, however, structurally unstable. Also small amplitude, 2π-
periodic solutions exist for certain values of parameters. In general the solutions will tend
to a bounded, non-periodic attractor of order 1.

A Appendix 1

In section 4.2 and in section 4.3 the following ODEs have been derived to describe the
small amplitude solutions of the oscillator equations

Z̈ + Z = ε
(

Ż + γŻ cos(2t)
)

− ε
1

2
+2αZ3 − ε1+2αβŻ3, and (1.4)

Z̈ + Z = ε
(

Ż + γŻ cos(2t)
)

− ε2αZ3 − ε1+2αβŻ3, (1.5)

with α > 1
4

and with α > 1
2

respectively. In this appendix (1.4) and (1.5) will be studied
briefly. By introducing the transformation







Y (t) = Y1(t) cos(t) + Y2(t) sin(t),

Ẏ (t) = −Y1(t) sin(t) + Y2(t) cos(t),
(1.6)

the first order averaged system of equation (1.4) or of equation (1.5) becomes






Ẏ1 = ε
(

1
2
Y1 − 1

4
γY1

)

,

Ẏ2 = ε
(

1
4
γY2 + 1

2
Y2

)

.

(1.7)
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For γ2 not in an o(1) neighborhood of 4 system (1.7) has only as fixed point(s) the trivial
fixed point (0, 0). This fixed point turns out to be unstable. So, for γ 2 not in an o(1) neigh-
borhood of 4 it can be conclude that (1.4) and (1.5) do not have nontrivial, 2π-periodic
solutions. For γ2 in an o(1) neighborhood of 4 second order or higher order averaging
has to be applied to (1.4) or (1.5). Again it can be shown that (1.4) and (1.5) do not
have nontrivial, 2π-periodic solutions. The elementary calculations to prove this will be
omitted.
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