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On the free vibrations of a rectangular plate with two opposite sides
simply supported and the other sides attached to linear springs.

M.A. Zarubinskaya and W.T. van Horssen

Abstract

In this paper an initial-boundary value problem for a plate equation will be studied. This initial-
boundary value problem can be regarded as a rather simple model describing free oscillations of a
suspension bridge. The suspension bridge is modeled as a rectangular plate with two opposite sides
simply supported and the other sides attached to linear springs. An adapted version of the method
of separation of variables is used to find the eigenfrequencies for this plate configuration.

1 Introduction

Plates of various geometries, i.e. circular, annular, rectangular, polygonal, etc, and of orthotropic material
are extensively used in engineering applications. These plates are widely used in modern aerospace
technology, naval structural engineering, aircraft structures, and so on. A lot of literature exists for
the free vibrations of rectangular plates. In most of these papers the classical theory for isotropic,
homogeneous, thin plates with uniform thickness is used and the differential equation to describe the
vibrations of the plate is given by

0%u
D(Upzaz + 2Uzzyy + Uyyyy) + P = 0, (1)

where D = Eh3/12(1 — v?) is the flexural rigidity, F is Young’s modulus, v is Poisson’s ratio with
0 < v < 1, p is the mass density per unit area of the plate surface, h is the thickness of the plate, t is
time, and w(z,y,t) is the displacement of the plate in the z-direction. The majority of literature deals
with classical boundary conditions representing clamped, simply supported, or free edges, and only a
small number deals with edges which are restrained against translation or/and rotation, or with other
nonclassical boundary conditions. It has been observed for rectangular plates by Leissa in [1]-[3] that
there exist 21 distinct cases which involve all possible combinations of classical boundary conditions. For
six cases having two opposite sides simply-support it is well-known that exact solutions exist which are in
fact the extensions of Voight’s work. In [2] Leissa gives a survey of research on rectangular plate problems
up to 1970. For a further overview up to beginning of this century the reader is referred to [4]-[9].

One of the most commonly used methods in free vibration analysis of plates is the Rayleigh-Ritz
energy technique, where appropriate functions associated with various boundary conditions are chosen
to describe the lateral deflection of the deformed plates. The chosen functions almost always do not
satisfy the governing differential equation. Also, the functions may or may not satisfy all of the boundary
conditions. Thus, the results obtained by the Rayleigh-Ritz method are approximate. Gorman in [4]
and [5] succeeded in solving approximately free vibration problems of plates for various geometries and
boundary conditions. Compared to the Rayleigh-Ritz method, the superposition technique in [4] and [5]
allows one to obtain an analytical form of the solution which satisfies the governing differential equation
and the boundary conditions. Sakata and Hosokawa [6] studied the forced and free vibration of clamped
orthotropic plates by using a double trigonometric series. During the last forty years the free vibrations
of rectangular plates were studied intensively (see for instance [4]-[9], and the references in those papers).
In this paper the free vibrations of a rectangular plate with two opposite edges simply supported, and



linear springs densely attached to the two other edges will be studied. This boundary support will lead
to boundary conditions which seem to be not studied in the existing literature.

Flexible structures, like tall buildings and suspension bridges are subjected to oscillations due to
windforces or other various causes. Simple models which describe these oscillations are given in the form
of weakly nonlinear second- and fourth-order partial differential equations, as can be seen in [10]- [16].
Usually asymptotic methods can be used to construct approximations for the solutions of these wave
or beam equations. In [16] a survey of the literature on oscillations in suspension bridges is given. A
simple way to model the behaviour of a suspension bridge is to describe it as a vibrating one-dimensional
beam with simply supported ends. In [16] the other two dimensions are not taken into account because
the dimensions of the bridge in these directions are assumed to be small compared to the length of the
bridge.When the width of the bridge is taken into account a plate equation like (1) is obtained. To
study for instance wind-induced oscillations of suspension bridges one can of course use plate equations
to describe the displacements of the deck of the bridge. However, to investigate these weakly nonlinear
wind-induced vibrations we first have to know the related linear vibrations of the rectangular plate with
the boundary conditions as described before and as indicated in Figure 1. For that reason we will study in
this paper these linear vibrations. Using the results as obtained in this paper one can start to investigate
the weakly nonlinear vibrations of a plate in a windfield as model for the wind-induced oscillations of a
suspension bridge.
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Figure 1. A model of a suspension bridge.




2 The mathematical analysis of the problem.

In this section the following initial-boundary value problem for the displacement function u(z,y,t) will
be considered

Ut + D1 (Uzzzs + 2Uzayy + Uyyyy) =0, 0<2<,0<y <d,t>0, (2)

u(z,y,0) =wo(z,y), u(z,y,0)=ui(z,y), 0<z<l,0<y<d, (3)
w(0,y,t) = u(l,y, 1) = uza (0,4, 1) = uaa(l,y,t) =0, 0 <y <d, (4)
D(tyyy + (2 = V)Ugyy) = —p*u, for y=00<z<I (5)

D(uyyy + (2 — V)Ugsy) = p*u, for y=d,0<x<l (6)

Uyy +VUze =0, for y=0,y=d,0<z <], (7)

where D = %, and where p? represents the linear restoring force of the springs (see also Figure 1).

The initial displacement and the initial velocity of the plate in z-direction are given by wuo(z,y) and
u1(x,y) respectively. The method of separation of variables will be used to find nontrivial solutions of
the boundary value problem (2), (4)-(7), that is, nontrivial solutions in the form

T(t)v(z,y) (®)

will be constructed for the boundary value problem (2), (4)-(7). By substituting (8) into (2) and by
dividing the so-obtained equation by T'(¢)v(z,y), it is follows that

T_// + D, VUgzrz + 2Urryy + Vyyyy —0.
T v
From this equation the following two ODEs are obtained
TI/
— = —aD;x, 9
T aD; (9)
Vezaz + 2Vpayy + Vyyyy = OO, (10)

where o € C is a separation parameter. From the boundary conditions (4)-(7) it follows that v has to
satisfy

v(0,y) = v(l,y) = v2a(0,9) = vau(l,y) =0, 0<y<d, (11)
D(vyyy + (2 = V)vgey) = —p?v, for y=0,0<z<I, (12)
D(vyyy + (2 = V)vgay) = p*v, for y=d,0 <<, (13)
Vyy +VVze =0 for y=0,and y=d,0 <z <L (14)

First it will be shown that the nontrivial solutions of the boundary value problem (10)-(14), that

is, the eigenfunctions of (10)-(14) are mutually orthogonal on 0 < x <l and 0 < y < d. Let vi(x,y)

and ve(x,y) be two different eigenfunctions belonging to the different eigenvalues a;; and aq respectively.
Thus

Viggasr T 2U1mxyy + Viyyyy — X1V1, (15)

Vozgar 1 2v2rxyy + V2yyyy — X202,

where both functions v1 and vy satisfy the boundary conditions (11)-(14). It wil be shown that

d 1
(g — oq)//vlvgdxdy =0. (16)
00
Let the differential operator A be given by
84 54 54
A= — +2——— + — 1
Ox? + 0x20y2 + oy’ (17)



and consider

d 1
// (v1 Avy — va Avy) dzdy. (18)
0 0
By using (15) it follows that
d 1 d 1
//(UlAUQ — v Avy) dady = (a2 — al)//vlvgdxdy. (19)
0 0 0 0

On the other hand by integrating by parts two times it follows that

d 1 l
// (v1Avg — v Avy) dxdy = / (VizaV2ze + 2V1zyVazy + ViyyUayy) dzdy
0 0 0

/d
0
l
d
+ /(2vlvgmy + V1V2yyy — ViyU2yy) Od;v
y=
0
d 1
- // ('Ulzz'U2zz + 2U1ryv2ry + UlyyUZyy) dl‘dy (20)
0 0
l
d
— /(21}21}11174 + VaV1yyy — V2yViyy) ‘ Oda:.
‘y:
0
Using the boundary conditions (14) it follows that the integral
l !
d d
/(vgyvlyy — ViyU2yy) } de =— / v (V2yVize — Viy¥2za) dx.
y= -
0 0

Integrating the integral two times by parts, and by using the boundary conditions (11)-(14) it follows
that

!
d d
Od;v = [ v (v2Vigzy — V1V232y) dx.
y=
0

!

/(U2y”1yy — U1y U2yy)
y=0

0

After substituting the last expression and the boundary conditions (12), and (13) into (20), it finally

follows that

d 1
//(levz—vavl)dxdyzo. (21)
00

From (19) and (21) it follows that (16) is true, and therefore v; and ve are orthogonal for o # aa.

Now it will be shown that the eigenvalue « is real. Let v(x,y) be an eigenfunction belonging to the
eigenvalue o, so Av = av. Consider Av = @wv. Then, replacing in (19) and (21) the functions v; and
vz by v and ¥ respectively, and using the fact that Av = av and Ao = av in (19) and (21) it similarly
follows that

(o — @) /d/lvvdxdy =0. (22)
0 0



Since v and v are eigenfunctions it follows that fod fé vodrdy > 0, and so it follows from (22) that

a —a = 0. It also can be shown elementarily that a > 0 by considering fod fol vAvdzdy, where v(z,y) is
an eigenfunction belonging to the eigenvalue «, that is, Av = aw. Firstly it should be observed that

d 1 l

d
//vAvdzdy = a/ V2 (z,y)dzdy, (23)
0

0 0 0

and secondly it follows (by integrating by parts, and by using the boundary conditions (11)-(14)) that

d 1
//vAvdxdyz
00

l
/U(Uzzzz + 2Urryy + 'Uyyyy)dﬂfdy
0

l l

/(vfm + 2’Uiy + vzy)dajdy +p? / (v2 (d) + v* (O)) dz, (24)
0 0

O\& o\&

where p? = %. From (23) and (24) it can readily be deduced that o > 0.

To investigate the boundary-value problem (10)-(14) for v(z,y) further the method of separation of
variables will be used again, that is, it is assumed that a nontrivial solution of the boundary-value problem
(10)-(14) can be found in the form

X(@)Y (). (25)

By substituting (25) into (10) it follows that

X X Yy yn
X T xv 'y

o, (26)
% and "= 8&;'). Generally it is assumed that the variables in (26) can not be separated
because of the mixed term 2%% However, using an adapted version of the method of separation of
variables (see [17], and [18]), this equation can easily be separated by simply differentiating (26) with
respect to x or y. For instance, if (26) is differentiated with respect to x it follows that

d (X Y"d (X
#(x) v i (E) -

Y//

v - -
where v € C is a separation parameter. From (27) it follows that V""" = —~vY” = 42Y, and then it can
be deduced from (26) that X (x) and Y (y) have to satisfy

where ' =

and so,

(27)

X -2 X+(?-a)X=0, 0<z<l, (28)
Y'=-—Y, 0<y<d. (29)

By substituting (25) into the boundary conditions (11)-(14) the usual boundary-value problem for X (z)
and for Y(y) are obtained. It turns out, however, that these boundary value problems only admit the
trivial solution. The elementary calculations to obtain this result will be omitted.

So, differentiation with respect to x leads only to the trivial solution. However, if (26) is differentiated
with respect to y it will turn out that nontrivial solutions can be found. When (26) is differentiated with

respect to y it follows that
X d Vel d !
2—— | — |+ — =0,
Xdy \'Y dy \' 'Y




which can be easily separated, yielding )
X
= =5 (30)
where 3 € C is a separation parameter. From (30) it follows that X = —BX = 32X, and then it can be
deduced from (26) and the boundary conditions (12)-(14) that Y (y) has to satisfy

Y" —28Y" + (3% —a)Y =0 (31)
subject to the boundary conditions
DY" —(2—-v)BY') = —p?Y for y=0, (32)
DY" —(2-v)BY") =p*Y for y=d, (33)
Y'—pBrYy =0 for y=0,d. (34)

It follows from (11) that X (x) also has to satisfy

X(0)=X()=X(0)=X()=0. (35)

The non-trivial solutions of the differential equation (30) subject to the boundary conditions (35) are
given by
nw

X(z) =m sin( 6nx), B = (7)2 (36)

with n € ZT, and where v, is an arbitary constant. The characteristic equation for the ODE (31) now
becomes:
E* =28,k 4+ 32 —a=0 < (K*-8.)*=a. (37)

In this section it already has been shown that o > 0. So, only the following three cases have to be
considered in (37)

a>p3, 0<a<fB? and a=p>

2.1 The case a > (2.

The solutions of the characteristic equation (37) in this case will be

WVatBe —Vathe ifVa—p. ad —iyva-s,

and the solution of the differential equation (31) can be written in the form

Y(y) =(C1 cosh ( \/ \/a"‘ﬂny) +Cq sinh ( \/ \/a"‘ﬂny) +C3 cos ( \V \/a—ﬁny)+04 sin ( \V \/a_ﬁny)v (38)

where C1, C5, Cs, and Cy are constants of integration.

By substituting (38) into the four boundary conditions (32)-(34) a system of four equations for C,
Cs, Cs, and Cy is obtained. To find nontrivial solutions for Y (y) the determinant of the corresponding
coeffitient matrix should be set equal to zero, that is,

a? — vfBn 0 —(r2 + v0Bn) 0
(a? — vBy) cosh (ad) (a? — vBy,) sinh (ad) —(r2 4 vBy) cos (rd) —(r?2 +vBn)sin(rd) | _ 0 (39)
D a1 P> —r1 o

aj sinh (ad) —p2 cosh (ad) a1 cosh (ad) —p? sinh (ad) 1 sin (rd) —p2 cos (rd) —r1 cos (rd) —p? sin (rd)

where a = \/\/a+ By, 7 = V/Va— Bn, a1 = a(a®? — (2 —v)B,) and r; = r(r?2 + (2 — v)B,). From (39)
the eigenvalues o can be calculated. The eigenvalues o depend on the parameters n, p2, v, the length I,
and the width d of the rectangular plate. When the parameter p? tends to zero, the boundary conditions
correspond to the case for the plate with two opposite edges simply supported and the other two free.
When the parameter p? tends to infinity the boundary conditions correspond to the case for a plate with
all edges simply supported.

We calculate numerically form (39) some eigenvalues « for some values of the parameters. Some of
the numerical approximations for a up to 50000 are given in Table 1 and Table 2.



Table 1. Approximations of the eigenvalues a.

n v=03,1=10,d=1,p>=1
1] 1.9861 7.6513 516.1518 | 3829.3326 | 14657.3213 | 40001.3080
2 | 2.1484 12.7612 | 538.9518 | 3882.7911 | 14752.4921 | 40149.9413
3| 2.7739 21.6547 | 577.3297 | 3972.2310 | 14911.4787 | 40398.0399
4 | 4.4052 34.8982 | 631.8441 | 4098.1669 | 15134.8325 | 40746.1682
5| 7.8156 53.2853 | 703.2675 | 4261.3209 | 15423.3239 | 41195.1144
6 | 14.0147 | 77.8385 | 792.5844 | 4462.6248 | 15777.9403 | 41745.8900
7 | 24.2497 | 109.8092 | 900.9942 | 4703.2228 | 16199.8847 | 42399.7278
8 | 40.0047 | 150.6790 | 1029.9158 | 4984.4739 | 16690.5743 | 43158.0810
9 202.1601 | 1180.9932 | 5307.9560 | 17251.6399 | 44022.6214
10 266.1959 | 1356.1002 | 5675.4693 | 17884.9256 | 44995.2379
v=043,1=10,d=1,p> =1
1] 1.9893 7.3471 515.1976 | 3827.7181 | 14655.0633 | 39998.4052
2 | 2.1504 11.5408 | 535.1470 | 3876.7395 | 14743.4633 | 40138.3321
3| 2.7397 18.8953 | 568.8103 | 3957.7389 | 14891.1757 | 40371.9266
4 | 4.2548 29.9595 | 616.7939 | 4072.4616 | 15098.7686 | 40699.7629
5| 7.4164 45.4983 | 679.9250 | 4221.2733 | 15367.0360 | 41122.6440
6 | 13.1786 | 66.5027 | 759.2433 | 4405.1593 | 15696.9969 | 41641.6012
7 94.1809 | 855.9993 | 4625.3260 | 16089.8944 | 42257.8931
8 129.9639 | 971.6561 | 4883.2029 | 16547.1949 | 42973.0051
9 175.5054 | 1067.8944 | 5180.4432 | 17070.5871 | 43788.6480
10 232.6826 | 1266.6159 | 5518.9257 | 17661.9817 | 44706.7578
v=05,1=10,d=1,p> =1
1 | 1.9909 7.1830 514.6837 | 3826.8486 | 14653.8474 | 39999.8422
2 | 2.1494 10.8793 | 533.0951 | 3872.8643 | 14738.6010 | 40132.0807
3 | 2.7106 17.3876 | 564.2076 | 3949.9290 | 14880.2403 | 40357.8637
4 | 4.1396 27.2307 | 608.6426 | 4058.6003 | 15079.3394 | 40674.7693
5| 7.1170 41.1420 | 667.2432 | 4199.6589 | 15336.7011 | 41083.6059
6 60.0667 | 741.0620 | 4374.1082 | 15653.3555 | 41585.4120
7 85.1638 | 831.3573 | 4583.1744 | 16030.5590 | 42181.4549
8 117.8072 | 939.5938 | 4828.3068 | 16649.7934 | 42873.2305
9 159.5872 | 1067.4469 | 5111.1785 | 16972.7648 | 43662.4623
10 212.3121 | 1216.8074 | 5433.6866 | 17541.4029 | 44551.3210
v=04,1=10,d=1,p> = 10
1] 17.2169 | 60.0325 | 589.4929 | 3901.0656 | 14728.0124 | 40071.2956
2 | 17.7689 | 64.4837 | 609.6992 | 3950.7358 | 14817.9624 | 40213.2310
3| 18.9723 | 72.2716 | 643.8309 | 4033.8802 | 14968.2555 | 40450.1715
4 | 21.2800 | 83.9501 | 692.5434 | 4151.0405 | 15179.4562 | 40782.6888
5| 25.3670 | 100.2956 | 756.7155 | 4302.9762 | 15452.3532 | 41211.5827
6 | 32.1501 | 122.3071 | 837.4325 | 4490.6657 | 15787.9589 | 41737.8801
7 | 42.7963 | 151.2070 | 935.9796 | 4715.3078 | 16187.5082 | 42362.8341
8 | 58.7241 | 188.4419 | 1053.8436 | 4978.3231 | 16652.4577 | 43087.9233
9 | 81.5997 | 235.6833 | 1192.7194 | 5281.3557 | 17184.4577 | 43914.8507
10 | 113.3323 | 294.8280 | 1354.5169 | 5626.2753 | 17785.4892 | 44845.5433
v =046, =10,d = 1,p> = 100
1] 69.6196 | 475.0370 | 1368.5399 | 4705.0375 | 15489.0254 | 40811.9114
2 | 73.0771 | 480.9335 | 1385.0898 | 4750.7959 | 15575.3462 | 40949.6487
3| 79.0445 | 491.0580 | 1413.1931 | 4827.4891 | 15719.6021 | 41179.5956
4 | 87.8447 | 505.8623 | 1453.6163 | 4935.7557 | 15922.3743 | 41502.3286
51 99.9592 | 525.9896 | 1507.4054 | 5076.4798 | 16184.4744 | 41918.6541
6 | 116.0529 | 552.2844 | 1575.8641 | 5250.7839 | 16506.9433 | 42429.6078




Extension of Table 1.

v =046,l=10,d=1,p° = 100

137.0004
163.9098
198.1431
241.3291

O © 00 3

585.8012
627.8138
679.8229
743.5613

1660.5304
1763.1549
1885.6846
2030.2517

5460.0203
5705.7649
5989.8110
6314.1662

16891.0493
17338.2866
17850.3741
18429.2540

43036.4538
43740.6841
44544.0172
45448.3979

Table 2. Approximations of the eigenvalues « for v = 0.3,1 = 10.

n d=0.1,p2=1 d=0.1,p% = 10
1 [ 20.0095 | 225.8181 | 199.9985 | 765.8022
2 | 20.1454 | 723.3859 | 200.1480 | 1263.3647
3| 20.7266 | 1553.0419 | 200.7735 | 2093.0118
4| 222851 | 2715.3508 | 202.3940 | 3255.3083
5| 25.5660 | 4211.1029 | 205.7544 | 4751.0444
6 | 31.5277 | 6041.3146 | 211.8131 | 6581.2367
7| 41.3424 | 8207.2282 | 221.7421 | 8747.1272
8 | 56.3963 | 10710.3116 | 236.9272 | 11250.1842
9 | 78.2898 | 13552.2590 | 258.9689 | 14092.1016
10 | 108.8385 | 16734.9903 | 289.6825 | 17247.7995

2.2 The case a < 2.

In this case the solutions of the characteristic equation (37) will be

Va+bu —\Va+be B.a—va, —\B.-va

and the solution of the differential equation (31) can be written in the form

Y (y) =G cosh (y/ Va+Bny)+Ga sinh (\/ vVa+B,y)+Gs cosh (\/ B —Vay)+ Gy sinh (1/ B, —Vay), (40)

where G1, G2, G3, and G4 are constants of integration.

By substituting (38) into the four boundary conditions (32)-(34) a system of four equations for G,
G2, G3, and Gy is obtained. To find nontrivial solutions for Y (y) the determinant of the corresponding
coeffitient matrix should be set equal to zero, that is,

a? —vBn 0
(a® — vf3,) cosh (ad) (a® — vB3,) sinh (ad)
_2 a
aj sinh (ad) —p? cosh (ad) a1 cosh (ad)—p? sinh (ad)

where a = \/\/a + B, ¢ = Bn— /@, a1 = a(a®— (2—v)B,) and ¢; = c¢(c? — (2—v)B,). The eigenvalues
« can be calculated from (41). Some numerical approximations of « are given in Table 3 for some values
of the parameters.

(CQ — vfn) 0
(c® — vB3y) cosh (cd) (c% — vBy) sinh (cd)
) 1
c1 sinh (cd) —p2 cosh (cd) ¢ cosh (cd) —p? sinh (cd)

=0, (41)

Table 3.
n 1=10,d=1,p>°=1
v=0.3 vr=04 v=0.5 v=20.6 v=20.8

5 5.0474

6 12.5524 11.4163 8.1418

7 23.1493 21.6909 19.4993 13.3306

8 38.1964 35.6143 32.1065 21.4984

9 | 62.9993 60.2307 | 56.2396 50.7482 33.7101
10 | 95.1879 91.1683 85.3165 77.1611 51.2067
11 | 138.7581 | 133.1580 | 124.9248 | 113.3053 | 75.3987 136.9501
12 | 196.1310 | 188.5811 | 177.3735 | 161.3620 | 107.8584 | 178.9353
13 | 269.9607 | 260.0502 | 245.1999 | 223.7315 | 150.3134 | 231.0134




Extension of Table 3.

n =10, d=1,72=1
v=20.3 v=04 v=0.5 v =0.6 v=20.8
14 | 363.1342 350.4097 | 331.1689 303.0322 204.6407 | 294.8865
15 | 478.7715 462.7357 438.2735 402.1001 272.8618 | 372.4121
16 | 620.2261 600.3362 569.7342 523.9882 357.1389 | 465.6039
17 | 791.0843 766.7508 729.9995 671.9661 459.7719 | 576.6301
18 | 995.1661 965.7514 | 919.7457 | 849.5199 583.1959 | 707.8135
19 | 1236.5247 | 1201.3419 | 1145.8771 | 1060.3514 | 729.9795 | 861.6300
20 | 1519.4465 | 1477.7582 | 1411.5258 | 1308.3781 | 902.8236 | 1040.7077
2.3 The case a = .
In this case the characteristic equation (37) becomes
k*(k* —28,) =0 (42)
and its solutions are
ki12=0, kss==E20,.
The solution of the differential equation (31) is then given by
Y (y) = S1 + Soy + S3cosh (2+/,) + Syasinh (2+/5,), (43)

where Sy, S, S3, and Sy are constants of integration. As in the previous two cases the following
determinant is similary obtained when we look for nontrivial solutions of the boundary value problem for
Y (Y) (where Y(y) is given by (43)): Like in previous two cases using boundary conditions (32)-(34) the
system of the four equations for the determination of eigenvalues is recieved. This system has nontrivial
solution when the determinant of the coefficient matrix for the unknown quantaties S; = 0,7 =1,2,3,4
is equal to zero. In this case such determinant has following form:

—vfn 0 (2—-v)Bn 0
—vfn —vfpd (2 — v)By, cosh (b1 d) (2 — v) B, sinh (b1d) _ 0. (44
P —(2-v)B, P VB,by =0, (44)

9% —~(p*d+(2 —v)Bn) vPBubisinh (b1d)—p?cosh (bid) vBpb1 cosh (bd)—p? sinh (b1 d)

where b; = +/2/3,,. Solutions exist for some special values of the parameters. For example for [ = 100, d =
0.1,p? = 1,v = 0.6 solutions for « exist for first five modes. For | = 100,d = 1, 5% = 1, = 0.6 solutions
exist for the first three modes and these solutions for anwill be exactly the same las for d = 0.1. This is
due to the fact that a = 32 = (%)4 and that a depends only on n and [. The other parameters such as
v and p? will only determine the existnce of nontrivil solutions Y (y).

3 Conclusions and remarks.

In this paper the free vibrations of a rectangular plate with two opposite sides simply supported and the
other two densely attached to linear springs have been studied. This combination of boundary conditions
seems to be not considered in the literature before. This rectangular plate model is one of the simplest
models to describe a suspension bridge. For the rectangular plate model the relationship between the
plate parameters and the frequencies has been obtained by using an adapted version of the method of
separation of variables (see [18]). This result is important to investigate the wind-induced oscillations of a
rectangular plate. The relationship between the plate parameters and the frequencies has been obtained
analytically. For some values of the parameters numerical approximations of the frequencies are given.
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