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Abstract

In this paper we compare various preconditioners for the numerical solution of partial

differential equations. We compare a coarse grid correction preconditioner used in domain

decomposition methods with a so-called deflation preconditioner. We prove that the effective

condition number of the deflated preconditioned system is always, i.e. for all deflation vectors

and all restrictions and prolongations, below the condition number of the system precondi-

tioned by the coarse grid correction. This implies that the Conjugate Gradient method applied

to the deflated preconditioned system converges always faster than the Conjugate Gradient

method applied to the system preconditioned by the coarse grid correction. Numerical results

for porous media flows emphasize the theoretical results.

Keywords. deflation, coarse grid correction, preconditioners, Conjugate Gradients, porous media
flow, scalable parallel preconditioner
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1 Introduction

It is well known that the convergence rate of the Conjugate Gradient method is bounded as a
function of the condition number of the system matrix to which it is applied. Let A ∈ Rn×n be
symmetric positive definite. We assume that the vector b ∈ Rn represents a discrete function on
a grid Ω and that we are searching for the vector x ∈ Rn on Ω which solves the linear system

Ax = b.

Such systems are encountered, for example, when a finite volume/difference/element method is
used to discretize an elliptic partial differential equation defined on the continuous analog of Ω.

Let us denote the ith eigenvalue in nondecreasing order by λi(A) or simply by λi when it is
clear to which matrix we are referring. After k iterations of the Conjugate Gradient method, the
error is bounded by (cf. [8], Thm. 10.2.6):

‖x − xk‖A ≤ 2 ‖x− x0‖A

(√
κ − 1√
κ + 1

)k

(1)

where κ = κ(A) = λn/λ1 is the spectral condition number of A and the A-norm of x is given
by ‖x‖A = (xT Ax)1/2. The convergence may be significantly faster if the eigenvalues of A are
clustered [23].
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If the condition number of A is large it is advisable to solve, instead, a preconditioned system
M−1Ax = M−1b, where the symmetric positive definite preconditioner M is chosen such that
M−1A has a more clustered spectrum or a smaller condition number than that of A. Furthermore,
M must be cheap to solve relative to the improvement it provides in convergence rate. A final
desirable property in a preconditioner is that it should parallelize well, especially on distributed
memory computers. Probably the most effective preconditioning strategy in common use is to
take M = LLT to be an incomplete Cholesky (IC) factorization of A [14]. We denoted the
Preconditioned Conjugate Gradient method as PCG.

With respect to the known preconditioners at least two problems remain:

• if there are large jumps in the coefficients of the discretized PDE the convergence of PCG
becomes very slow,

• if a block preconditioner is used in a domain decomposition algorithm the condition number
of the preconditioned matrix deteriorates if the number of blocks increases.

Both problems can be solved by a deflation technique or a suitable coarse grid correction. In
this section we describe both methods, which are compared in the next sections. To describe the
deflation method we define the projection PD by

PD = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×r, (2)

where the column space of Z is the deflation subspace, i.e. the space to be projected out of the
residual, and I is the identity matrix of appropriate size. We assume that r � n and that Z has
rank r. Under this assumption E ≡ ZT AZ may be easily computed and factored and is symmetric
positive definite. Since x = (I − P T

D )x + P T
Dx and because

(I − P T
D )x = Z(ZT AZ)−1ZT Ax = ZE−1ZT b (3)

can be immediately computed, we need only compute P T
Dx. In light of the identity AP T

D = PDA,
we can solve the deflated system

PDAx̃ = PDb (4)

for x̃ using the Conjugate Gradient method, premultiply this by P T
D and add it to (3).

Obviously (4) is singular. What consequences does the singularity of (4) imply for the Conju-
gate Gradient method? Kaasschieter [9] notes that a positive semidefinite system can be solved as
long as the right-hand side is consistent (i.e. as long as b = Ax for some x). This is certainly true
for (4), where the same projection is applied to both sides of the nonsingular system. Further-
more, he notes (with reference to [23]) that because the null space never enters the iteration, the
corresponding zero-eigenvalues do not influence the convergence. Motivated by this fact, we define
the effective condition number of a positive semidefinite matrix C ∈ Rn×n with r zero eigenvalues
to be the ratio of its largest to smallest positive eigenvalues:

κeff(C) =
λn

λr+1

.

It is possible to combine both a standard preconditioning and preconditioning by deflation (for
details see [7]). The convergence is then described by the effective condition number of M−1PDA.

The deflation technique has been exploited by several authors. For nonsymmetric systems, ap-
proximate eigenvectors can be extracted from the Krylov subspace produced by GMRES. Morgan
[15] uses this approach to improve the convergence after a restart. In this case, deflation is not
applied as a preconditioner, but the deflation vectors are augmented with the Krylov subspace
and the minimization property of GMRES ensures that the deflation subspace is projected out of
the residual (for related references we refer to [7]). A comparable approach for the CG method
is described in [21]. Mansfield [12] shows how Schur complement-type domain decomposition
methods can be seen as a series of deflations. Nicolaides [17] chooses Z to be a piecewise con-
stant interpolation from a set of r subdomains and points out that deflation might be effectively
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used with a conventional preconditioner. Mansfield [13] uses the same “subdomain deflation” in
combination with damped Jacobi smoothing, obtaining a preconditioner which is related to the
two-grid method. In [11] Kolotilina uses a twofold deflation technique for simultaneously deflating
the r largest and the r smallest eigenvalues using an appropriate deflating subspace of dimension
r. Other authors have attempted to choose a subspace a priori that effectively represents the
slowest modes. In [25] deflation is used to remove a few stubborn but known modes from the
spectrum. This method is used in [3] to solve electromagnetic problems with large jumps in the
coefficients. Thereafter this method has been generalized to other choices of the deflation vectors
[26, 27]. Finally an analysis of the effective condition number and a parallel implementation is
given in [7, 24].

We compare the deflation preconditioner with a well-known coarse grid correction precondi-
tioner of the form

PC = I + ZE−1ZT (5)

and in the preconditioned case

PCM−1 = M−1 + ZE−1ZT . (6)

In the multigrid or domain decomposition language the matrices Z and ZT are known as
restriction and prolongation or interpolation operator. Moreover, the matrix E = ZT AZ is the
Galerkin operator.

The above coarse grid correction preconditioner belongs to the class of additive Schwarz pre-
conditioner. It is called the two level additive Schwarz preconditioner. If used in domain decom-
position methods, typically, M−1 is the sum of the local (exact or inexact) solves in each domain.
To speed up convergence a coarse grid correction ZE−1ZT is added.

These methods are introduced by Bramble, Paschiak and Schatz [2] and Dryja and Widlund
[5] [6] [4]. They show under mild conditions that the convergence rate of the PCG method is
independent of the grid sizes.

For more details about this preconditioner we refer to the books of Quarteroni and Valli [19],
and Smith, Bjørstad and Gropp [22]. A more abstract analysis of this preconditioner is given by
Padiy, Axelsson and Polman [18], recently. To make the condition number of PCM−1A smaller
Padiy, Axelsson and Polman used a parameter σ > 0 and considered

PC = I + σZE−1ZT (7)

and

PCM−1 = M−1 + σZE−1ZT . (8)

If M = I , Z consists of eigenvectors and λmax is known, then a good choice is σ = λmax which
implies that κ(PCA) ≤ 2λmax

λr+1
[18]. If M 6= I and/or Z consists of general vectors and λmax is not

known it is not clear how to choose σ.
More abstract results about Schwarz methods applied to nonsymmetric problems are given by

Benzi, Frommer, Nabben and Szyld [1] and [16].
In this article we prove that the effective condition number of the deflated preconditioned sys-

tem M−1PDA is always below the condition number of the system preconditioned by the coarse
grid correction PCM−1A. This implies that for all matrices Z ∈ Rn×r and all positive definite pre-
conditioners M−1 the Conjugate Gradient method applied to the deflated preconditioned system
converges always faster than the Conjugate Gradient method applied to the system preconditioned
by the coarse grid correction. These results are stated in Section 2. In Section 3 we compare other
properties of the deflation and coarse grid preconditioner. These properties are scaling, approxi-
mation of E−1 and an estimate of the smallest eigenvalue. Section 4 contains our numerical results
for porous media flows and parallel problems.
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2 Spectral properties

In this section we compare the effective condition number for the deflation and coarse grid cor-
rection preconditioned matrices. In Section 2.1 we give some definitions and preliminary results.
Thereafter a comparison is made if the projection vectors are equal to eigenvectors in Section 2.2
and for general projection vectors in Section 2.3.

2.1 Notations and Preliminary Results

In the following we denote by λi(M) the eigenvalues of a matrix M . If the eigenvalues are real
the λi(M)′s are ordered increasingly.

For two Hermitian n × n matrices A and B we write A � B, if A−B is positive semidefinite.
Next we mention well-known properties of the eigenvalues of Hermitian matrices.

Lemma 2.1 Let A, B ∈ Cn×n be Hermitian. For each k = 1, 2, . . . , n we have

λk(A) + λ1(B) ≤ λk(A + B) ≤ λk(A) + λn(B)

From the above lemma we easily obtain the next lemma.

Lemma 2.2 If A, B ∈ Cn×n are positive semidefinite with A � B, then λi(A) ≥ λi(B).

Moreover, we will use

Lemma 2.3 Let A, B ∈ Cn×n be Hermitian and suppose that B has rank at most r. Then

• λk(A + B) ≤ λk+r(A), k = 1, 2, · · ·n − r,

• λk(A) ≤ λk+r(A + B), k = 1, 2, · · ·n − r.

Lemma 2.1, Lemma 2.2 and Lemma 2.3 can be found e.g. as Theorem 4.3.1, Corollary 7.7.4.
and Theorem 4.3.6, respectively, in [20].

2.2 Projection vectors are eigenvectors

In this section we compare the effective condition number of PDA and PCA if the projection
vectors are equal to eigenvectors of A.

Definition 2.4 Choose the eigenvectors vk of A such that vT
k vj = δkj , and define Z = [v1 . . . vr].

Theorem 2.5 Using Z as given in Definition 2.4 the spectra of PDA and PCA given in (2) and
(7) are:

spectrum(PDA) = {0, . . . , 0, λr+1, . . . , λn}, and

spectrum(PCA) = {σ + λ1, . . . , σ + λr, λr+1, . . . , λn}.

Proof: For this choice of Z it appears that

E = ZT AZ = diag(λ1, . . . , λr). (9)

To proof the first part we note that (9) implies PD = I − AZE−1ZT = I − ZZT . Consider
PDAvk = (I − ZZT )λkvk for k = 1, . . . , n. Since ZZT vk = vk, for k = 1, . . . , r and ZZT vk = 0
for k = r + 1, . . . , n it is easy to show that

PDAvk = 0, for k = 1, . . . , r, and PDAvk = λkvk , for k = r + 1, . . . , n,

which proofs the first part.
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Secondly we consider PCAvk. For k = 1, . . . , r we obtain

PCAvk = (I + σZ diag(
1

λ1

, . . . ,
1

λr
) ZT )λkvk = (σ + λk)vk,

whereas for k = r + 1, . . . , n it appears that

PCAvk = (I + σZ diag(
1

λ1

, . . . ,
1

λr
) ZT )λkvk = λkvk,

since ZT vk = 0 for k = r + 1, . . . , n. This proofs the second part (cf. Theorem 2.6 in [18]). �

In order to compare both approaches we note that

κeff (PDA) =
λn

λr+1

, (10)

and

κ(PCA) =
max{σ + λr, λn}

min{σ + λ1, λr+1}
. (11)

From (10) and (11) it follows that κ(PCA) ≥ κeff (PDA), so the convergence bound based
on the effective condition number implies that Deflated CG converges faster than CG combined
with coarse grid correction if both methods use the eigenvectors corresponding to the r smallest
eigenvalues as projection vectors.

2.3 Projection vectors are general vectors

In the last section we showed that the deflation technique is better then a coarse grid correction,
if eigenvectors are used. However, computing the r smallest eigenvalues is mostly very expensive.
Moreover, in multigrid methods and domain decomposition methods special interpolation and
prolongation matrices are used to obtain grid independent convergence rates. So a comparison
only for eigenvectors is not enough. But in this section we generalize the results of Section 2.2.
We prove that the effective condition number of the deflated preconditioned system is always, i.e.
for all matrices Z ∈ Rn×r, below the condition number of the system preconditioned by the coarse
grid correction.

Theorem 2.6 Let A ∈ Rn×n be symmetric positive definite. Let Z ∈ Rn×r with rankZ = r.
Then the preconditioner defined in (2) and (7) satisfies

λ1(PDA) = · · · = λr(PDA) = 0 (12)

λn(PDA) ≤ λn(PCA) (13)

λr+1(PDA) ≥ λ1(PCA). (14)

Proof: Obviously all eigenvalues of PCA are real and positive. With Lemma 2.1 of [7] PDA
is positive semidefinite. Thus, all eigenvalues of PDA are real and nonnegative. Since PDAZ = 0
statement (12) holds.

We obtain

A
1
2 PCA

1
2 − PDA = AZE−1ZT A + σA

1
2 ZE−1ZT A

1
2 .

The right hand side is positive semidefinite. Thus, we have with Lemma 2.2

λi(PCA) = λi(A
1
2 PCA

1
2 ) ≥ λi(PDA).

Hence, (13) holds. Next consider

PCAPC − PDA = A + σZE−1ZT A + σAZE−1ZT + σ2ZE−1ZT AZE−1ZT

−A + AZE−1ZT A

= σZE−1ZT A + σAZE−1ZT + σ2ZE−1ZT + AZE−1ZT A

= (A + σI)ZE−1ZT (A + σI).
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Thus, PCAPC − PDA is symmetric and of rank r. Using Lemma 2.3 we obtain

λr+1(PDA) ≥ λ1(PCAPC) = λ1(P
2
CA).

But since PC−I is positive semidefinite, P 2
C−PC and A

1
2 P 2

CA
1
2 −A

1
2 PCA

1
2 are positive semidefinite

also. Hence,
λi(P

2
CA) = λi(A

1
2 P 2

CA
1
2 ) ≥ λi(A

1
2 PCA

1
2 ) = λi(PCA).

Thus,
λr+1(PDA) ≥ λ1(P

2
CA) ≥ λ1(PCA).

�

It follows from Theorem 2.6 that

κ(PCA) ≥ κeff (PDA)

so the convergence bound based on the effective condition number implies that Deflated CG
converges faster than CG combined with coarse grid correction for arbitrary matrices Z ∈ Rn×r.

In Theorem 2.11 we will extend this result to the preconditioned versions of the deflation and
coarse grid correction preconditioners.

Before that, we will show how the deflated preconditioner behave if we increase the number of
deflation vectors. In detail we will show that the effective condition number decrease if we use a
matrix Z2 in (2) satisfying ImZ ⊆ ImZ2 rather than Z. To do so we need several Lemmata.

The first Lemma is probably well-known, but for completeness we give the proof here.

Lemma 2.7 Let A ∈ Rn×n be nonsingular and be partitioned as

A =

[

A11 A12

A21 A22

]

,

where A11 ∈ Mr(R) and A22 ∈ Mn−r(R). Assume that A11 is nonsingular. Define

Ã−1
11 :=

[

A−1
11 0
0 0

]

.

Then, rank(A−1 − Ã−1
11 ) = n − r.

Proof: The inverse of A is given by

A−1 =

[

A−1
11 + A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

,

where S = A22 − A21A
−1
11 A12. Hence

A−1 − Ã−1
11 =

[

A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]

=

[

A−1
11 A12S

−1

−S−1

]

[

A21A
−1
11 ,−I

]

.

Since S and the n−r×n−r identity matrix I have rank n−r we get rank(A−1−Ã−1
11 ) = n−r. �

In the next lemma we compare the preconditioned matrices if a different number of deflation
vectors is used.
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Lemma 2.8 Let A ∈ R
n×n be symmetric positive definite. Let Z1 ∈ R

n×r and Z2 ∈ R
n×s with

rankZ1 = r and rankZ2 = s. Define E1 := ZT
1 AZ1 and E2 := ZT

2 AZ2. If ImZ1 ⊆ ImZ2, then

(I − AZ1E
−1
1 ZT

1 )A � (I − AZ2E
−1
2 ZT

2 )A.

Proof: It suffices to prove that

Z2E
−1
2 ZT

2 � Z1E
−1
1 ZT

1 .

Since ImZ1 ⊆ ImZ2, there exists a matrix T ∈ Ms×r(R) such that

Z1 = Z2T.

Therefore

Z2E
−1
2 ZT

2 − Z1E
−1
1 ZT

1 = Z2(E
−1
2 − TE−1

1 T T )ZT
2

= Z2E
−

1
2

2 (I − E
1
2

2 TE−1
1 T T E

1
2

2 )E
−

1
2

2 ZT
2 .

But E
1
2

2 TE−1
1 T T E

1
2

2 is an orthogonal projection. Thus E
1
2

2 TE−1
1 T T E

1
2

2 has the only eigenvalues 0

and 1. Hence I − E
1
2

2 TE−1
1 T T E

1
2

2 is positive semidefinite. Therefore

Z2E
−1
2 ZT

2 � Z1E
−1
1 ZT

1 .

�

In the next lemma we show that PD1
A = PD2

A, if ImZ1 = ImZ2.

Lemma 2.9 Let A ∈ Rn×n be symmetric positive definite. Let Z1 ∈ Rn×r and Z2 ∈ Rn×r with
rankZ1 = rankZ2 = r. Define E1 := ZT

1 AZ1 and E2 := ZT
2 AZ2. If ImZ1 = ImZ2, then

(I − AZ1E
−1
1 ZT

1 )A = (I − AZ2E
−1
2 ZT

2 )A.

Proof: We can follow the proof of Lemma 2.8. Since ImZ1 = ImZ2, the matrix T is
nonsingular. Hence

Z2E
−1
2 ZT

2 − Z1E
−1
1 ZT

1 = Z2(E
−1
2 − TE−1

1 T T )ZT
2

= Z2E
−

1
2

2 (I − E
1
2

2 TE−1
1 T T E

1
2

2 )E
−

1
2

2 ZT
2 .

= Z2E
−

1
2

2 (I − E
1
2

2 T (T TE2T )−1T T E
1
2

2 )E
−

1
2

2 ZT
2

= Z2E
−

1
2

2 (I − E
1
2

2 TT−1E−1
2 T−T T T E

1
2

2 )E
−

1
2

2 ZT
2

= 0.

�

Using the above lemmata, we can prove the following theorem

Theorem 2.10 Let A ∈ Rn×n be symmetric positive definite. Let Z1 ∈ Rn×r and Z2 ∈ Rn×s

with rankZ1 = r and rankZ2 = s. Let E1 := ZT
1 AZ1 and E2 := ZT

2 AZ2. If ImZ1 ⊆ ImZ2, then

λn((I − AZ1E
−1
1 ZT

1 )A) ≥ λn((I − AZ2E
−1
2 ZT

2 )A) (15)

λr+1((I − AZ1E
−1
1 ZT

1 )A) ≤ λs+1((I − AZ2E
−1
2 ZT

2 )A) (16)
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Proof: With Lemma 2.2 and Lemma 2.8 we obtain inequality (15).
Next we will prove (16). Observe that Z1E

−1
1 ZT

1 and Z2E
−1
2 ZT

2 are invariant under permuta-
tions of the columns of Z1 and Z2 respectively.

Thus, using Lemma 2.9, we can assume without loss of generality that Z2 = [Z1, D], with
D ∈ Rn×s−r.

Moreover, define the s × s matrix

Ẽ−1
1 =

[

E−1
1 0
0 0

]

.

Obviously, we then obtain
Z1E

−1
1 ZT

1 = Z2Ẽ
−1
1 ZT

2 .

Thus,

(I − AZ2E
−1
2 ZT

2 )A − (I − AZ1E
−1
1 ZT

1 )A = A(Z1E
−1
1 ZT

1 − Z2E
−1
2 ZT

2 )A

= A(Z2Ẽ
−1
1 Z2 − Z2E

−1
2 ZT

2 )A

= AZ2(Ẽ
−1
1 − E−1

2 )ZT
2 A.

But since E1 is the leading principal r × r submatrix of E2 we can apply Lemma 2.7. Thus
(I − AZ2E

−1
2 ZT

2 )A − (I − AZ1E
−1
1 ZT

1 )A is of rank s − r. Hence with Lemma 2.3

λr+1((I − AZ1E
−1
1 ZT

1 )A) ≤ λs+1((I − AZ2E
−1
2 ZT

2 )A).

�

Next we include an additional symmetric positive definite preconditioner M−1. We then con-
sider the coarse grid preconditioner

PCM−1 := M−1 + σZE−1ZT . (17)

This type of preconditioner includes a lot of well-known preconditioners. It belongs to the class
of additive Schwarz preconditioner and is called the two level additive Schwarz preconditioner. If
used in domain decomposition methods, typically, M−1 is the sum of the local (exact or inexact)
solves in each domain. To speed up convergence a coarse grid correction ZE−1ZT is added.
Notice, that the BPS preconditioner introduced by Bramble, Paschiak and Schatz [2] and Dryja
and Widlund [5] [6] [4] are of the same type. They show under mild conditions that the convergence
rate of the PCG method is independent of the grid sizes.

We compare the preconditioner (17) with the corresponding deflated preconditioner

M−1PD. (18)

We obtain

Theorem 2.11 Let A ∈ Rn×n and M ∈ Rn×n be symmetric positive definite. Let Z ∈ Rn×r with
rankZ = r. Then

λn(M−1PDA) ≤ λn(PCM−1A), (19)

λr+1(M
−1PDA) ≥ λ1(PCM−1A). (20)

Proof: First observe that Theorem 2.6 still holds if we replace A everywhere by L−1AL−T with
an arbitrary nonsingular matrix L. Here, we will consider M−

1
2 AM−

1
2 . The idea is to transform

PD and PC to this form. We start with

M−1PDA = M−1(A − AZE−1ZT A).



9

The eigenvalues of this matrix are the same as the eigenvalues of

M−
1
2 PDAM−

1
2 = M−

1
2 (A − AZE−1ZT A)M−

1
2 .

Define the matrix G such that G = M
1
2 Z and thus Z = M−

1
2 G. Substituting this in the previous

matrix leads to E = ZT AZ = GT M−
1
2 AM−

1
2 G and

M−
1
2 PDAM−

1
2 = M−

1
2 (A − AM−

1
2 GE−1GT M−

1
2 A)M−

1
2 =

(I − M−
1
2 AM−

1
2 GE−1GT )M−

1
2 AM−

1
2 ,

which is in the required form.

In the same way we can transform PCM−1A = (M−1 + σZE−1ZT )A to

PCM−1A = M−1A + σM−
1
2 GE−1GT M−

1
2 A

which has the same eigenvalues as:

M−
1
2 AM−

1
2 + σGE−1GT M−

1
2 AM−

1
2 = (I + σGE−1GT )M−

1
2 AM−

1
2

which is also in the required form.

Thus, Theorem 2.6 gives the desired result. �

For the case L−1AL−T the same result can be proved if one chooses G = LT Z.
Theorem 2.11 describes the most general case. Arbitrary vectors or matrices Z ∈ Rn×r com-

bined with arbitrary preconditioners are considered. The effective condition number of the deflated
CG method is always below the condition number of the CG method preconditioned by the coarse
grid correction. Thus, the interpolation or prolongation matrices Z used e.g. in the BPS method
give a better preconditioner if used in a deflation technique.

At the end of this section we generalize Theorem 2.10.

Theorem 2.12 Let A, M ∈ Rn×n be symmetric positive definite. Let Z1 ∈ Rn×r and Z2 ∈ Rn×s

with rankZ1 = r and rankZ2 = s. Let E1 := ZT
1 AZ1 and E2 := ZT

2 AZ2. If ImZ1 ⊆ ImZ2, then

λn(M−1(I − AZ1E
−1
1 ZT

1 )A) ≥ λn(M−1(I − AZ2E
−1
2 ZT

2 )A)

λr+1(M
−1(I − AZ1E

−1
1 ZT

1 )A) ≤ λs+1(M
−1(I − AZ2E

−1
2 ZT

2 )A)

Proof: The proof is almost the same as the proof of Theorem 2.10

3 Other properties of Deflation and Coarse Grid Correction

In this section we compare other properties of deflation and coarse grid correction. These properties
are scaling, approximation of E−1 and an estimate of the smallest eigenvalue.

Scaling

Note that PDA is scaling invariant whereas PCA is not scaling invariant. This means that if
deflation is applied to a system γAx = γb the effective condition number of PDγA is independent
of the scalar γ, whereas the condition number of PCγA depends on the choice of γ.

Inaccurate solution

If the matrix E becomes large (so many projection vectors are used) it seems to be good to compute
E−1 approximately (by an iterative method/or to do the procedure recursively). It appears that
the coarse grid correction operator is insensitive for this approach, whereas deflation is sensitive
for the accuracy of the approximation of E−1. A proof of this property if the projection vectors
are eigenvectors is given in the next lemma.
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Lemma 3.1 Use Z as given in Definition 2.4, and assume that

Ẽ−1 = diag(
1

λ1

(1 + ε1), . . . ,
1

λr
(1 + εr))

is an approximation of E−1, where |εi| is small. The spectra of P̃DA and P̃CA given in (2) and
(5), where E−1 is replaced by Ẽ−1 are:

spectrum(P̃DA) = {λ1ε1, . . . , λrεr, λr+1, . . . , λn}, and

spectrum(P̃CA) = {σ + λ1 + ε1, . . . , σ + λr + εr, λr+1, . . . , λn}.

Proof: The proof of this lemma is almost the same as the proof of Theorem 2.5 �

For general vectors a similar situation appears. Assume that Ẽ−1 = (I − F )E−1(I − F ) is a
symmetric approximation (F = F T ) of E−1. Let H := −FE−1 −E−1F +FE−1F . Then we have

P̃DA = PDA + AZHZT A.

Hence, using Lemma 2.1 we obtain

λk(PDA) + λ1(AZHZT A) ≤ λk(P̃DA) ≤ λk(PDA) + λn(AZHZT A).

Since the first r eigenvalues of λk(PDA) are 0, we get for i = 1, . . . , r

λ1(AZHZT A) ≤ λi(P̃DA) ≤ λn(AZHZT A).

If all eigenvalues of AZHZT A are small, the first r eigenvalues λi(P̃DA) are also very small.
Observe that λ1(P̃DA) can be negative if the perturbation H is negative definite.

For the coarse grid correction

P̃CA = PCA + ZHZT A.

we obtain

λk(PCA) + λ1(ZHZT A) ≤ λk(P̃CA) ≤ λk(PCA) + λn(ZHZT A).

Thus, if all eigenvalues of ZHZT A are small, the perturbation has not much effect.
Hence the coarse grid correction operator is insensitive for the accuracy of the approximation,

whereas deflation is sensitive.
To illustrate this we consider two problems. The first one is motivated by a porous media flow

with large contrasts in the coefficients (ratio 10−6, see Example 1 in Section 4) and the second
one is a Poisson problem. In both examples r(= 7) algebraic projection vectors are used (see [27],
Definition 4). We replace E−1 by Ẽ−1 = (I + εR)E−1(I + εR), where R is a symmetric r × r
matrix with random elements chosen from the interval [− 1

2
, 1

2
]. From Figure 1 (porous media flow)

it follows that the convergence of the error remains good for |ε| < 10−12. For larger values of |ε|
we see that the convergence stagnates. For the Poisson problem it appears that the convergence is
good as long as |ε| < 10−6 (Figure 2). For the coarse grid correction operator there is no difference
in the convergence behavior. Using the coarse grid correction operator we need 75 iterations for
the porous media flow problem and 70 iterations for the Poisson problem.

Estimate of smallest eigenvalue

In this paragraph we restrict ourselves to the case that the deflation vectors approximate the
eigenvectors corresponding to the smallest eigenvalues. For a robust iterative solver it is important
to have a good estimate of the smallest and largest eigenvalues of the (preconditioned) matrix.
From the CG method an approximation of the extreme eigenvalues can be obtained from the
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Figure 2: Convergence behavior of DICCG for
the Poisson problem

Ritzvalues [10]. However using M−1PDA the smallest eigenvalues of M−1A are removed. To
obtain an estimate of these eigenvalues, we can use the matrix E as follows:

λmin(M−
1
2 AM−

1
2 ) ≤ min

y∈Rr

yT GT M−
1
2 AM−

1
2 Gy

yT GT Gy
= min

y∈Rr

yT ZT AZy

yT ZT MZy
.

This means that the smallest eigenvalue µmin of the generalized eigenvalue problem

Ey = µZT MZy,

is an upper bound for the smallest eigenvalue of M−
1
2 AM−

1
2 , whereas the smallest eigenvalue

µmin of the generalized eigenvalue problem

Ey = µZT Zy,

is an upper bound for the smallest eigenvalue of A. From experiments for the porous media flow
problem, it appears that the estimates are reasonable sharp see Table 1.

matrix λmin λmin(estimated)

M−
1
2 AM−

1
2 0.7 · 10−8 3.1 · 10−8

A 3.3 · 10−9 9.9 · 10−9

Table 1: The estimated smallest eigenvalue using matrix E

4 Numerical experiments

All numerical experiments are done by using the SEPRAN FEM package developed at the TU
Delft. The multiplication y = E−1b is always done by solving y from Ey = b, where E is
decomposed in its Cholesky factor. In this section, coarse grid correction is abbreviated as CGC.
The choice of the boundary conditions is such that all problems have as exact solution the vector
with compononents equal to 1. In order to make the convergence behavior representative for
general problems we chose a random vector as starting solution, in stead of the zero start vector.

4.1 Porous media flows

In this section we consider problems motivated by porous media flow [25]. Our first problem is
a simple 2 dimensional model problem, whereas our second problem mimics the flow of oil in a
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reservoir. In both problems physical projection vectors are used (see [27], Definition 2), which
approximate the eigenvectors corresponding to the small eigenvalues.

7 layer problem

We solve the following equation
div (σ∇p) = 0,

with p the fluid pressure and σ the permeability. At the earth’s surface the fluid pressure is
prescribed. At the other boundaries we use homogeneous Neumann conditions. In this two
dimensional problem we consider 7 horizontal layers. We use linear triangular elements and the
number of grid points is equal to 22680. The top layer is sandstone then a shale layer etc. We
assume that σ in sandstone is equal to 1 and σ in shale is equal to 10−7. From [26] it follows that
the IC preconditioned matrix has 3 eigenvalues of order 10−7, whereas the remaining eigenvalues
are of order 1. Computing the solution with 3 projection vectors we observe that in every iteration
the norm of the residual using deflation or CGC is comparable. In Figure 3 the norm of the error
for both methods is given. To our surprise the error using deflation stagnates at a lower level than
that of CGC.
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Figure 3: The norm of the error for projected ICCG for the 7 layer problem

An oil flow problem

In this paragraph we simulate a porous media flow in a 3 dimensional layered geometry, where the
layers vary in thickness and orientation (see figures 4 and 5 for a 4 layer problem). Figure 4 shows
a part of the earth’s crust. The depth of this part varies between 3 and 6 kilometers, whereas
horizontally its dimensions are 40 x 60 kilometers. The upper layer is a mixture of sandstone and
shale and has a permeability of 10−4. Below this layer, shale and sandstone layers are present with
permeabilities of 10−7 and 10 respectively. We consider a problem with 9 layers. Five sandstone
layers are separated by four shale layers. At the top of the first sandstone/shale layer a Dirichlet
boundary condition is posed, so the IC preconditioned matrix has 4 small eigenvalues. We use 4
physical projection vectors and stop if ‖rk‖2 ≤ 10−5. Trilinear hexahedral elements are used and
the total number of gridpoints is equal to 148185. The results are given in Table 2 and correspond
well with our theoretical results.

method deflation CGC
iterations 36 47
CPU time 5.9 8.2

Table 2: The results for the oil flow problem
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4.2 Parallel problems

In this section we consider a Poisson equation on a 2 dimensional rectangular domain. On top a
Dirichlet boundary condition is posed, whereas at the other boundaries a homogeneous Neumann
condition is used. We use linear triangular elements. We stop the iteration if ‖rk‖2 ≤ 10−8.

As a first test we solve a problem, where the grid is decomposed into 7 layers with various
gridsizes per layer. The results are given in Table 3. In this table the symbol ’no’ means that
there is no projection method used. Note that in the parallel case we use a block IC precondi-
tioner. Deflation needs again less iterations than CGC. However both projection methods lead to
a considerable gain in the number of iterations. Note that the number of iterations increases if
the gridsize per layer increases.

sequential parallel
grid points deflation CGC no deflation CGC no

10× 10 21 29 35 25 38 50
20× 20 36 48 65 42 61 90
40× 40 62 82 125 80 103 168
80× 80 106 131 244 128 161 321

Table 3: The effect of the gridsize per layer

Secondly we consider the parallel performance for an increasing number of layers or blocks.
The gridsize per layer is 80 × 80 and per block 100 × 100. This implies that the total number
of grid points increases proportionally to the number of layers/blocks. In figures 6 and 7 the
results are given. Note that initially both projection methods show a small increase in the number
of iterations if the number of layers/blocks increases but thereafter the number of iterations is
constant (scalable). If no projection method is used the number of iterations keep increasing.

5 Conclusions

We have compared various preconditioners used in the numerical solution of partial differential
equations. On one hand we considered a coarse grid correction preconditioner. On the other
hand a so-called deflation preconditioner was studied. It turned out that the effective condition
number of the deflated preconditioned system is always, i.e. for all deflation vectors and all
restrictions and prolongations, below the condition number of the system preconditioned by the
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domain decomposition

coarse grid correction. This implies that the Conjugate Gradient method applied to the deflated
preconditioned system converges always faster than the Conjugate Gradient method applied to
the system preconditioned by the coarse grid correction. Numerical results for porous media flows
and parallel preconditioners emphasized the theoretical results.
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