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Abstract

In this chapter the parametric excitation of two one-degree-of-freedom nonlinear
aeroelastic oscillators in cross-flow is considered. This is relevant for understand-
ing of aeroelastic oscillations of bridge stay cables induced by bridge deck or bridge
tower oscillations, see Da Costa et al. [12]. In particular the parametric excitation
for a plunge oscillator and a seesaw oscillator are discussed. The following model
equation for the parametric excitation of the aeroelastic oscillators is considered:

z̈ + 2βż + (1 − κ cos(ωt))z = F (z, ż, U). (0.1)

Here, for the plunge oscillator, z denotes the vertical displacement of a mass-spring-
damper system, and for the seesaw oscillator, z denotes the rotation of a seesaw
structure around the hinge axis. F represents the nonlinear aeroelastic force which
depends on z, ż and wind velocity U . Assuming F , the coefficients of parametric
excitation κ and structural damping β to be small, the averaging method can be
applied to study equation (0.1). Note that equation (0.1) is a nonlinear Mathieu
equation.
Without the parametric excitation one typically finds an aerodynamic instability for
a critical wind velocity above which finite amplitude, periodic oscillations result. The
parametric excitation complicates this simple picture, especially for the seesaw oscil-
lator. Depending on the ratio of κ and β a critical wind velocity may still exist. For
some cases though, increasing the wind velocity above the critical wind velocity, a re-
stabilization of the trivial solution may occur. Next to the familiar periodic solutions
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Figure 1: Schematic sketch of the structure of the plunge oscillator.

also solutions with periodically modulated amplitudes and phases are obtained.
Criteria for the stability of the trivial solution, the existence and the stability of
various nontrivial (periodic) solutions and their bifurcations are given.

Keywords: Aeroelasticity, nonlinear oscillation, parametric excitation, averaging, bifur-
cation analysis.

1 Introduction

This chapter is concerned with the parametric excitation of two aeroelastic oscillators, a
plunge oscillator and a seesaw oscillator respectively, exposed to a homogeneous and uni-
form wind flow. A schematic sketch of the plunge oscillator and the seesaw oscillator is
given in Figure 1 and Figure 2, respectively. The first oscillator is a spring supported cylin-
der with linear damping. It is restricted to oscillate perpendicular to the flow direction. If
the cylinder has a non-circular cross section and is exposed to a homogeneous and uniform
wind flow, self-excited galloping oscillations may arise, see Blevins, Parkinson, Haaker and
van der Burgh [9, 10, 3]. Here we assume that the spring supporting the cylinder has a
periodically varying stiffness, causing a parametric excitation, see Figure 1. The second
oscillator is a seesaw like structure consisting of a rigid bar hinged around an axis. The
bar holds at its right end a cylinder. On the other end a counter weight is fixed balancing
the cylinder with respect to the hinge axis. A pendulum weight fixed to the bar provides
for a restoring moment. Haaker and van der Burgh [3] modelled and analyzed the equation
of motion of the seesaw oscillator for low velocity and constant linear stiffness. The wind
forces then act as perturbation on the linear Hamiltonian system modelling the unforced
oscillations of the seesaw structure for small amplitudes. Lumbantobing and Haaker [5, 6]
considered the aeroelastic oscillations of seesaw type oscillation under strong wind condi-
tions. Van Oudheusden [11] investigated the galloping oscillations with a single rotational
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Figure 2: Schematic sketch of the structure of the seesaw oscillator with an electrical rotor.

degree of freedom under the combined effect of both viscous and frictional damping. He
studied how the additional effect of even slight amounts of frictional damping affects the
galloping curve. He provided results finding from wind tunnel experiments confirm the
major findings of analysis. Again self-excited galloping oscillations may arise. Here we
assume that an electrical rotor is mounted on the hinge axis and connected to the pendu-
lum weight via a string. The rotor causes the pendulum weight to slide periodically up
and down the arm holding the pendulum, see Figure 2. In the model equation this sliding
pendulum weight causes a parametric excitation, see for example van der Burgh [1].
The main purpose of this chapter is to study the influence of a parametric excitation on the
well-known aeroelastic behaviour of the plunge and the seesaw oscillators. Such a study is
relevant for the understanding of the aeroelastic behaviour of coupled structural elements
exposed to wind flow. For example, Da Costa, et al. [12] studied the excitation of bridge
stay-cable oscillations due to deck and/or towers motions. As a model equation for the
first mode for a vertical taut string they found a nonlinear Mathieu equation, with cubic
nonlinear stiffness effect. They found that the most dangerous situations arise when the
frequency of the parametric excitation is close to one or two times the natural frequency.
Here we take into account both the nonlinear aeroelastic forces as well as the parametric
excitation due to the prescribed cable anchorage oscillation. Tondl et al. [8] considered
parametric excitations for general oscillators with special nonlinear damping. They applied
the averaging method to study the the stability of the equilibrium solution. Lumbantob-
ing and Haaker [7] considered the parametric excitation of a nonlinear aeroelastic seesaw
oscillator. They applied the averaging method to study the behaviour of the trivial and
the nontrivial solutions. Here we consider parametric excitation for a plunge oscillator and
a seesaw oscillator, respectively. The model equation we obtain is a nonlinear Mathieu
equation. To study the behaviour of the solutions of this equation we apply the averaging
method.
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This chapter is organized as follows. In section 2, the parametric excitation of the nonlinear
aeroelastic plunge oscillator is considered. The analysis is started with the derivation of the
model equation in section 2.1 and then followed by the analysis of the model equation in
section 2.2. Also some phase portraits for the averaged equations are presented. In section
3, the parametric excitation of the nonlinear aeroelastic seesaw oscillator is considered.
The derivation of the model equation for the aeroelastic response of the seesaw oscillator
with parametric excitation is given in section 3.1. The analysis of this equation is presented
in section 3.2. Again some phase portraits for the averaged equations are presented. In
section 4, some conclusions will be given. Finally, the analytical proofs of Hopf bifurcation
and Pitchfork bifurcation are shown in appendix 5.

2 Parametric excitation of a nonlinear aeroelastic

plunge oscillator

In this section, the parametric excitation of a nonlinear aeroelastic plunge oscillator is
considered. To model the aeroelastic force a quasi steady approximation is used, see the
introduction of this thesis or Blevins [9]. As a model equation a nonlinear Mathieu equation
is obtained. The analysis of this equation is presented, which is based on the averaging
method.

2.1 Derivation of the model equation

In [9, 2, 10], the equation of motion for the plunge oscillator is derived as follows

mÿ + bẏ + ky =
1

2
ρdlU2CN(α), (2.2)

where ρ, d, l, y, U and CN(α) denote air density, a characteristic length of cross section,
the length of the cylinder, the distance along the vertical is measured along the y axis
which is pointing downward, wind velocity and aerodynamic coefficient curve, respectively.
Furthermore, α denotes the so called angle of attack, which in the dynamic situation may
be approximated through α = − ẏ

U
.

Here we assume a periodically varying stiffness according to k = k0−k1 cos(Ωt). We intro-
duce the system parameters ω (frequency), ε (small parameter) and µ (reduced velocity)

according to ω2 = k0

m
, ε = ρd2l

2m
and µ = U

ωd
. Note that ε may be assumed a small parameter

due to air density ρ being of the order 10−3. Defining a new damping coefficient β and
parametric excitation coefficient a according to εβ = b

2mω
and εa = k1

mω2 , respectively, and
introducing new variables x and τ according to x = ωy

U
and τ = ωt, respectively then one

gets the equation

x“ +
(

1 − εa cos
(

Ω

ω
τ

))

x = ε(−2βx‘ + µCN(α)), (2.3)
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with α = −x‘ and ” ‘ ” denotes the differentiation with respect to τ .
Finally we take for the aerodynamic coefficient curve CN a cubic polynomial CN = c1α +
c2α

2 + c3α
3, with c1 < 0, c3 > 0 (relevant for cylinders with nearly circular cross section,

see for example Nigol & Buchan [13]).
Then the model equation we obtain is

x“ +
(

1 − εa cos
(

Ω

ω
τ

))

x = ε
(

−(2β + c1µ)x‘ + c2µx
‘2 − c3µx

‘3
)

. (2.4)

This equation is a nonlinear Mathieu equation.

2.2 Analysis of the model equation

In this subsection an amplitude-phase transformation is applied to transform the system
(2.4) to a suitable form for applying the averaging method.
We define amplitude r and phase ψ or alternatively euclidean coordinates u and v through

x = r(τ) cos(τ + ψ(τ)), (2.5)

x‘ = −r(τ) sin(τ + ψ(τ)). (2.6)

or

x = u(τ) cos(τ) + v(τ) sin(τ), (2.7)

x‘ = −u(τ) sin(τ) + v(τ) cos(τ). (2.8)

Note that the following relation between the coordinate pairs holds u = r cos(ψ) and
v = −r sin(ψ).
To obtain the averaged equations in (r, ψ) or (u, v) coordinates one substitutes expressions
(2.5 - 2.6) or (2.6 - 2.7) into equation (2.4). To simplify the equations we transform
r → r̄√

c3
, or equivalently (u, v) → ( ū√

c3
, v̄√

c3
). After setting Ω

ω
= 2 + εδ with δ a detuning

coefficient, and transforming the time (2+ εδ)τ → 2s , then after neglecting the ”bar”, one
obtains the following averaged equations for (r

′

, ψ
′

) and for (u
′

, v
′

) , respectively (′ = d
ds

).

r
′

= ε

(

−
(

a

4
sin(2ψ) + β +

1

2
c1µ

)

r − 3

8
µr3

)

, (2.9)

ψ
′

= ε

(

−δ
2
− a

4
cos(2ψ)

)

(2.10)

and

u
′

= ε

(

−
(

β +
1

2
c1µ

)

u+

(

a

4
− δ

2

)

v − 3

8
µ(uv2 + u3)

)

, (2.11)

v
′

= ε

((

δ

2
+
a

4

)

u− (β +
1

2
c1µ)v − 3

8
µ(u2v + v3)

)

. (2.12)
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Note that in this chapter we choose Ω
ω

= 2 + εδ, because the most dangerous situations
arise when the frequency of the parametric excitation is close to two times the oscillator
frequency, see Da Costa et al.[12] and Verhulst [14].
Before starting the analysis we show that both a and δ may be assumed positive. Suppose
a solution of equations (2.9, 2.10) is denoted as
(r(s; a, δ), ψ(s; a, δ)). Then, if in equations (2.9, 2.10) a is replaced by −a, it is readily
shown that the solutions of this new equation follows from the solutions of the original
equations as follows

(r(s;−a, δ), ψ(s;−a, δ)) = (r(s; a, δ), ψ(s; a, δ) + π
2
).

Similarly, one may show that

(r(s; a,−δ), ψ(s; a,−δ)) = (r(s; a, δ),−ψ(s; a, δ) + π
2
).

2.2.1 Stability analysis of the trivial solution

From equations (2.11 - 2.12), one obtains the eigenvalues evaluated at (0, 0) as follows
λ01 = −1

2
c1µ− β − 1

4

√
a2 − 4δ2 and λ02 = −1

2
c1µ− β + 1

4

√
a2 − 4δ2.

Depending on the strength of the parametric excitation a compared to detuning δ and
structural damping β one obtains the following cases:

1. In the case 2δ
a
< 1, both eigenvalues evaluated at (0, 0) are real.

Note that λ01 < λ02, so the equilibrium position is stable if λ02 < 0. Even without
wind, i.e. µ = 0, the equilibrium position may be unstable, depending on the sign of
−β + 1

4

√
a2 − 4δ2, that is,

(a) if a2 > 4δ2 +16β2, i.e. if the parametric resonance is strong compared to detun-
ing and damping, then the equilibrium position is a saddle for µ = 0. In that
case a stable nontrivial critical point (r2, ψ2) exists. Note that if µ is increased
from zero, one finds that for µ = − 2β

c1
− 1

2c1

√
a2 − 4δ2, a pitchfork bifurcation

occurs in which an unstable critical point (r1, ψ1) is born. See Appendix 5 for
a proof.

(b) if a2 < 4δ2 + 16β2, then the equilibrium solution is stable for µ = 0. On
increasing µ from zero a critical flow velocity µ = − 2β

c1
+ 1

2c1

√
a2 − 4δ2 is reached

for which a pitchfork bifurcation occurs in which a stable critical point (r2, ψ2)
is born. Increasing µ further such that λ01 = 0, one finds the second pitchfork
bifurcation in which an unstable critical point (r1, ψ1) is born.

2. In the case 2δ
a

= 1, the stability of (0, 0) is determined by the sign of − 1
2
c1µ−β, i.e. a

critical flow velocity µcr
= −2β

c1
exists such that the equilibrium position is unstable

for µ > µcr
. At µ = µcr

a pitchfork bifurcation occurs indicating the loss of stability
of the trivial solution and the creation of a stable nontrivial solution.
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3. In the case 2δ
a
> 1, both of the eigenvalues are complex. The equilibrium solution is

stable if µ < µcr
. We see that for µ < µcr

, (0, 0) is a stable focus. At µ = µcr
, the

eigenvalues are purely imaginary which indicates that there exists a Hopf bifurcation
leading to the creation of a stable limit cycle. See Appendix 5 for a proof. This limit
cycle corresponds to a solution with periodically modulated amplitudes and phases
for the original equation. For µ > µcr

, the equilibrium position becomes an unstable
focus.

2.2.2 Nonlinear analysis

Note that equations (2.9 - 2.10) have the following so called rotational symmetry: (r, ψ) →
(r, ψ + π). This indicates that if (r, ψ) is a solution of (2.9 - 2.10) then (r, ψ + π) is also a
solution. In the phase portrait the solution (r, ψ + π) is obtained by rotating the solution
(r, ψ) over π. In the sequel we only consider 0 ≤ ψ ≤ π. Setting the right hand side of
equation (2.10) to zero, one gets

cos(2ψ) = −2δ

a
. (2.13)

We consider again the three cases by extending the linear analysis.

1. In the case 2δ
a
< 1 there are two solutions for equation (2.13), say ψ1 and ψ2. Assume

that ψ1 < ψ2 then sin(2ψ1) > 0 and sin(2ψ2) < 0.

From equation (2.9) one gets that r =
{

− 8
3µ

(

a
4
sin(2ψ) + β + 1

2
c1µ

)} 1

2 . From equa-

tion (2.13) one finds that sin(2ψ) = ± 1
a

√
a2 − 4δ2. For ψ = ψ1 we have r1 =

(

8
3µ
λ01

) 1

2 . The solution (r1, ψ1) exists for µ > − 2β

c1
− 1

2c1

√
a2 − 4δ2. Its eigenvalues

are λ11 = 1
2

√
a2 − 4δ2+2β+c1µ and λ12 = 1

2

√
a2 − 4δ2 > 0. We conclude that (r1, ψ1)

is always unstable. For ψ = ψ2 we have r2 =
(

8
3µ
λ02

) 1

2 . The solution (r2, ψ2) exists for

µ > −2β
c1

+ 1
2c1

√
a2 − 4δ2. Its eigenvalues are λ21 = −1

2

√
a2 − 4δ2+2β+c1µ and λ22 =

−1
2

√
a2 − 4δ2 < 0. The eigenvalue λ21 < 0 if and only if µ > − 2β

c1
+ 1

2c1

√
a2 − 4δ2.

From here we conclude that the solution (r2, ψ2) is always stable.

2. In the case 2δ
a

= 1 the solution of equation (2.13) is ψ2 = π
2
. From equation (2.9) one

gets r =
{

8
3µ

(

−β − 1
2
c1µ

)} 1

2 . The nontrivial solution is stable and exists for µ > µcr
.

3. In the case 2δ
a
> 1 there is no nontrivial solution at all. Instead of this one finds a

stable limit cycle born in the Hopf bifurcation for µ = µcr
.

2.2.3 Phase portraits for the averaged equations

Some phase portraits for the averaged equations for the case 2δ
a
< 1 are given in this

subsection. Assume a = 1, β = 0.5, c1 = −1 and δ = 0.125. Then one gets that for a
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Figure 3: Phase portraits for a = 1, β = 0.5, c1 = −1, and δ = 0.125.

wind velocity µ = 0.4 there is only one solution, i.e. the trivial solution as a stable node,
see Figure 3(a). For µ = 0.8 one gets the trivial solution as a saddle and two symmetric
nontrivial solutions as stable nodes, see Figure 3(b). For µ = 1.8 one gets the trivial
solution as an unstable node and two pairs of nontrivial solutions, i.e. two stable nodes
and two saddles, see Figure 3(c).

3 Parametric excitation of a nonlinear aeroelastic see-

saw oscillator

In this section the parametric excitation of a nonlinear aeroelastic seesaw oscillator is
analyzed. Based on the quasi steady approach the equation of motion is derived and using
the averaging method the analysis of this equation is presented.

3.1 Derivation of the model equation

In this chapter, θ denotes the angle of rotation of the seesaw structure around the hinge
axis. Following Haaker and van Oudheusden [2, 4], the following equation describes the
aeroelastic response of the seesaw oscillator to a homogeneous uniform wind flow

Iθ̈ + cθ̇ +mp gh sin θ =
1

2
ρdlRU2CN(α). (3.14)

Here I, c,mp, g and h are the structural moment of inertia, the linear viscous damping
coefficient, the pendulum mass, the gravity constant and the pendulum length, respectively.
The right hand side of equation (3.14) represents the external aerodynamic force where
ρ, d, l, and R denote air density, a characteristic length of the cross section, the length
of the cylinder and the distance from the cylinder’s axis to the hinge axis, respectively.
Finally, U denotes the wind velocity and α denotes the instantaneous angle of attack.
Assuming a periodically varying pendulum-length h = h0(1 − h̃ cos (Ωt)), one gets

I = I0 − 2 h̃mph
2
0 cos (Ωt) +O(h̃2), (3.15)
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where I0 denotes the structural moment of inertia corresponding with fixed pendulum
length h0. Furthermore, h̃ denotes the relative amplitude of the periodic variation which
is assumed small. So from equations (3.14 - 3.15) one obtains

(I0 − h̃mph
2
0 cos(Ωt))θ̈ + cθ̇ +mpgh0(1 − h̃ cos(Ωt)) sin θ =

1

2
ρdlRU2CN(α) +O(h̃2). (3.16)

Let ν = mph
2
0 and approximate sin θ ≈ θ, one can rewrite equation (3.16) to become

θ̈ +
c

I0

(

1 +
νh̃

I0
cos(Ωt)

)

θ̇ +
mpgh0

I0

(

1 − h̃ cos(Ωt)
)

×
(

1 +
νh̃

I0
cos(Ωt)

)

θ =
ρdlR

2I0
U2CN(α)

(

1 +
νh̃

I0
cos(Ωt)

)

. (3.17)

Scaling time with τ = ωt, where ω2 = mpgh0

I0
and introducing ε = ρldR3

2I0
; µ = U

ωR
; 2βε = c

I0ω
,

and assuming h̃ = ã ε, then one finds ( ”
′

” = d
dτ

)

θ
′′

+ θ = ε

(

ã

(

1 − ν

I0

)

cos
(

Ω

ω
τ

)

θ − 2βθ
′

+ µ2CN(α)
)

+O(ε2). (3.18)

Letting a = ã
(

1 − ν
I0

)

> 0, one obtains

θ
′′

+
(

1 − εa cos
(

Ω

ω
τ

))

θ = ε(−2βθ
′

+ µ2CN(α)) +O(ε2), (3.19)

with α = θ− θ
′

µ
, see Haaker [2] and CN(α) = c1α+ c2α

2 + c3α
3, c1 < 0 and c3 > 0. So the

equation becomes

θ
′′

+ θ = ε

((

a cos
(

Ω

ω
τ

)

+ c1µ
2
)

θ − (c1µ+ 2β)θ
′

+ c2µ
2θ2

+c2θ
′2 − 2c2µθθ

′

+ c3µ
2θ3 −c3

µ
θ
′3 − 3c3µθ

2θ
′

+ 3c3θθ
′2
)

+O(ε2). (3.20)

The equation (3.20) is a nonlinear Mathieu equation.

3.2 Analysis of the model equation

To reduce complexity in the first order perturbation analysis we set Ω
ω

= 2 + δ, with
δ = O(ε2) rather than δ = O(ε), and thus remove δ from our first order averaged equations.
We define amplitude r and phase ψ or alternatively coordinates u and v through

θ = r(τ) cos(τ + ψ(τ)), (3.21)

θ
′

= −r(τ) sin(τ + ψ(τ)), (3.22)
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or

θ = u(τ) cos(τ) + v(τ) sin(τ), (3.23)

θ
′

= −u(τ) sin(τ) + v(τ) cos(τ). (3.24)

Substituting equations (3.21 - 3.24) into (3.20) one obtains the averaged equations for r
and ψ or for u and v, respectively, as follows

r
′

= ε

(

1

4
(−4β − 2c1µ+ a sin(2ψ))r − 3c3

8µ
(1 + µ2)r3

)

, (3.25)

ψ
′

= ε

(

a

4
cos(2ψ) +

c1µ
2

2
+

3c3
8

(1 + µ2)r2

)

, (3.26)

or

u
′

= ε

(

−(
c1

2
µ+ β)u+

1

4
(a− 2c1µ

2)v − 3c3
8

(
1

µ
+ µ)uv2

−3c3
8

(1 + µ2)u2v − 3c3
8

(
1

µ
+ µ)u3 − 3c3

8
(1 + µ2)v3

)

, (3.27)

v
′

= ε

(

+
1

4
(a + 2c1µ

2)u− (
c1

2
µ+ β)v +

3c3
8

(1 + µ2)uv2

−3c3
8

(
1

µ
+ µ)u2v +

3c3
8

(1 + µ2)u3 − 3c3
8

(
1

µ
+ µ)v3

)

. (3.28)

3.2.1 Stability of the trivial solution

For the linear analysis of the trivial solution we use the (u, v)-coordinates, i.e. equations
(3.27 - 3.28). One can find that (0, 0) is a critical point of (3.27 - 3.28).

Transforming u →
√

4|c1|µ
3c3(1+µ2)

ũ, v →
√

4|c1|µ
3c3(1+µ2)

ṽ, and time τ → |c1|
2
s, one finds (after

neglecting the ”tilde”, ’ ˙ ’ = d
ds

)

u̇ = ε

((

µ− 2β

|c1|

)

u+

(

a

2|c1|
+ µ2

)

v − uv2 − µu2v

−u3 − µv3
)

, (3.29)

v̇ = ε

((

a

2|c1|
− µ2

)

u+

(

µ− 2β

|c1|

)

v + µuv2 − u2v

+µu3 − v3
)

. (3.30)

Letting p = 2β
|c1| and q = a

2|c1| then one obtains

u̇ = ε
(

(µ− p)u+ (µ2 + q)v − uv2 − µu2v − u3 − µv3
)

, (3.31)

v̇ = ε
(

(−µ2 + q)u+ (µ− p)v + µuv2 − u2v + µu3 − v3
)

. (3.32)
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The eigenvalues evaluated at the critical point (0, 0) are

λ1 = (µ− p) +
√

q2 − µ4,

λ2 = (µ− p) −
√

q2 − µ4.

Note that Re(λ1) > Re(λ2) always holds, therefore the stability of the trivial solution is
determined by Re(λ1) < 0. If q = 0, i.e. in absence of parametric excitation, the stability
of the trivial solution is completely determined by the sign of µ− p. If µ < p, the trivial
solution is stable; if µ > p the trivial solution is unstable. In fact µ = p corresponds with
the familiar Den Hartog’s criteria for instability as p = − 2β

c1
. If q 6= 0 and µ ≥ √

q holds
then the trivial solution is stable if µ < p and unstable if µ > p. It remains to check what
happens if q 6= 0 and µ <

√
q. In that case both eigenvalues are real. Because of that the

trivial solution is stable if eigenvalue λ1 is negative. One gets for µ <
√
q

dλ1

dµ
= 1 − 2µ3

√
q2 − µ4

,
d2λ1

dµ2
= −

(

6q2µ2 − 2µ6

(q2 − µ4)
√
q2 − µ4

)

< 0,

dλ1

dµ
(0) = 1, lim

µ→√
q

dλ1

dµ
(µ) = −∞, λ1(0) = q − p.

From here one knows that λ1 first increases with increasing µ until a maximum value, say
λ1max

, is reached and then strictly decreases. Because of that λ1 has at most two roots.
One can distinguish between two main cases as follows
A. Case p <

√
q.

B. Case p >
√
q.

In the (q, p) parameter plane, the cases A and B are separated by the curve p =
√
q as

shown in Figure 4.

1. Case A: p <
√
q.

In this case one finds that λ1(
√
q) =

√
q − p > 0. The region may be divided into

two parts. The region I is the region below of the curve p =
√
q and the line p = q.

The region II is the closed region between the curve p =
√
q and the line p = q,

see Figure 4. In region I, one finds λ1(0) = q − p > 0. Combined with λ1(
√
q) > 0

and d2λ1

dµ2 < 0, it follows that λ1(µ) is positive for 0 < µ <
√
q. Therefore (0, 0) is

unstable.
From the properties of λ2(µ) it follows that a single root µ2 for λ2 exists with µ2 <√
q. Therefore the trivial solution is a saddle for µ < µ2 and an unstable node for

µ2 < µ <
√
q. Finally, for µ >

√
q it follows from the assumption p <

√
q that the

trivial solution is an unstable focus. In region II, one finds λ1(0) < 0. Combined
with dλ1

dµ
(0) > 0, d2λ1

dµ
< 0, and λ1(

√
q > 0 one finds that a single root µ1 exists for

λ1 in the interval 0 < µ <
√
q. Therefore the trivial solution is stable for µ < µ1

and unstable for µ1 < µ <
√
q. For µ = µ1, a pitchfork bifurcation occurs in which

a stable nontrivial solution is born. The type of the instability also depends on the
sign of λ2. From the properties of λ2 it readily follows that a single root µ2 for λ2
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p = q

p =

0
q

p

q

III

II I

IV V

g = 0

Figure 4: Separation of the (q, p)-plane into five regions.

exists with µ1 < µ2 <
√
q. The trivial solution is a saddle for µ1 < µ < µ2 and an

unstable node for µ2 < µ <
√
q. Again for µ >

√
q, the trivial solution is an unstable

focus. One gets a stability diagram for the trivial solution in the regions I and II as
in Figure 5a and Figure 5b, respectively.

2. Case B: p >
√
q.

In this case one finds that λ1(
√
q) =

√
q − p < 0. Note that dλ2

dµ
= 1 + 2µ3√

q2−µ4
> 0,

λ2(0) < 0, λ2(
√
q) < 0. It shows that λ2(µ) < 0 for 0 < µ ≤ √

q.
Above the line p = q one finds λ1(0) = −p + q < 0. One obtains two roots if
λ1max

> 0, no root if λ1max
< 0. The cases are separated by the case λ1max

= 0, i.e.
the case for which λ1(µ) has a double root. Solving λ1 = 0 and dλ1

dµ
= 0 for µ one

obtains a curve g(q, p) = 0 in (q, p)-plane on which a double root occurs, with

g(q, p) = −p +
1

6
k − 1

k
+

(

q2 −
(

1

6
k − 1

k

)4
) 1

2

,

where k =
(

54p+ 6
√

6 + 81p2
) 1

3 .
Above g = 0, in the region III, we find λ1max

< 0, and no root exist. The trivial
solution is a stable node for 0 < µ <

√
q, a stable focus for

√
q < µ < p and an

unstable focus for µ > p. The stability diagram is shown in Figure 5c. Below g = 0,
in region IV, we find λ1max

> 0, and two roots µ11 and µ12 for λ1 are found. The
trivial solution is a stable node for 0 < µ < µ11. It is a saddle for µ11 < µ < µ12
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Stability diagram of the trivial solution in the region I 

Stability diagram of the trivial solution in the region II
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Figure 5: Stability diagrams for the trivial solution in the five regions.

and again a stable node for µ12 < µ <
√
q. Furthermore, it is a stable focus for√

q < µ < p and an unstable focus for µ > p. The stability diagram is shown in
Figure 5d.
Finally, in region V, between the curves p = q and p =

√
q, one has λ1(0) = −p+ q >

0. In that case a single root µ1 for λ1 exists. Then the trivial solution is a saddle for
0 < µ ≤ µ1, a stable node for µ1 < µ <

√
q, stable focus for

√
q < µ < p, and an

unstable focus for µ > p. The stability diagram is shown in Figure 5e.
Furthermore one can see that for the case p >

√
q at µ = p, the system has a purely

imaginary pair of eigenvalues. It indicates the occurrence of a Hopf bifurcation. After
a straightforward calculation, one gets the Lyapunov number

σ = −1
8

(

1 − p2+q
−p2+q

)

< 0.

See Appendix 5 for a proof. This Hopf bifurcation therefore indicates the creation
of a stable limit cycle in the averaging equations. This corresponds to oscillations in
the original system with periodically modulated amplitudes and phases.
We finally remark that the zeroes of the eigenvalues λ1 and λ2 are related to pitchfork
bifurcations which involve the creation of branches of nontrivial critical points. See
Appendix 5 for a proof.
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3.2.2 Nonlinear analysis

In the analysis of the nontrivial solutions, the averaged equations in polar coordinates are
used. Transforming equations (3.31 - 3.32) into polar coordinates by using u = rcos(ψ)
and v = −rsin(ψ) one gets

ṙ = ε
(

(µ− p− q sin(2ψ))r − r3
)

, (3.33)

ψ̇ = ε
(

µ2 − q cos(2ψ) − µr2
)

. (3.34)

Multiplying equation (3.33) by r and setting R = r2 yields

Ṙ = ε
(

2 (µ− p− q sin(2ψ))R− 2R2
)

, (3.35)

ψ̇ = ε
(

µ2 − q cos(2ψ) − µR
)

. (3.36)

Setting the right hand sides of equations (3.35) and (3.36) to zero one obtains

AR2 +BR + C = 0, R > 0 (3.37)

with

A = 1 + µ2,

B = −2(µ− p+ µ3),

C = µ4 − q2 + (µ− p)2.

The zeroes of equation (3.37) are

R1,2 =
−B ±

√
B2 − 4AC

2A
.

Note that every solution of equation (3.37) corresponds to two solutions, (R0, ψ0) and
(R0, ψ0 + π), of equations (3.35 - 3.36). Let D denotes the discriminant of (3.37), then
D = 4 ((1 + µ2) q2 − µ2p2). One gets two positive zeroes of (3.37) if C > 0, B < 0, and
D > 0, one positive zero if C < 0, a double positive zero if D = 0 and B < 0, no positive
zero in other cases.
Note that a pitchfork bifurcation occurs for C = 0, a saddle-node bifurcation occurs forD =
0. Figures 6 and 7 show the location of saddle-node bifurcation (SN), pitchfork bifurcation
(P), Hopf bifurcation (H) and saddle-connection bifurcation (SC) in the (µ, q)-plane for
p > 1 and p < 1, respectively. The saddle-node and pitchfork bifurcation curves have an
intersection point Q, in which one gets B = C = D = 0. The coordinates of Q are (µQ, qQ),

with µQ = 1
6
k − 2

k
, qQ =

√
6

6

(

p
k

(−k2 + 6pk + 12)
) 1

2 , and k =
(

108p+ 12
√

12 + 81p2
) 1

3 .

The equations for the pitchfork bifurcation curve (P) and the saddle-node bifurcation curve
(SN) are

q
p

=
(

µ4 + (µ− p)2
) 1

2 and q
sn

= pµ√
1+µ2

, respectively.
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Figure 6: Number of nontrivial solutions, Hopf (H), saddle connection (SC), saddle-node
(SN), and pitchfork (P) bifurcations for case p > 1.
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Figure 7: Number of nontrivial solutions, Hopf (H), saddle connection (SC), saddle-node
(SN), and pitchfork (P) bifurcations for case p < 1.

The coordinate of the minimum point of the pitchfork bifurcation curve is (µt, qt) with

µt = 1
6
t− 1

t
, qt =

(

µ4
t + (µt − p)2

) 1

2 , and

t =
(

54p+ 6
√

6 + 81p2
) 1

3 .

The Hopf bifurcation is found for µ = p and q < p2. In the Figures 6 and 7, the numbers
denote the number of nontrivial critical point of equations (3.35 - 3.36) found in each
region. The roman numerals to the right correspond with the stability regions of the linear
analysis. The pitchfork and the saddle-node bifurcation curves divide the (µ, q)-parameter
plane into three big regions, i.e.

• The region where one finds no nontrivial solution, below the pitchfork and saddle-
node curves.

• The region where one finds two nontrivial solutions, above the pitchfork curve.
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• The region where one finds four nontrivial solutions, between the pitchfork and
saddle-node curves.

The number of nontrivial solution in each region is determined from the number of positive
roots of the equation (3.37) in that region.
We now consider Figure 6, i.e. the case p > 1. For a fixed value of q = q0 such that
q0 > p2, starting with a small value of µ, one finds readily two stable nontrivial critical
points. Increasing the value of µ such that the pitchfork curve is reached then one gets
a pitchfork bifurcation which leads to the creation of two new nontrivial critical points
of saddle type. At the point (p, p2), on the pitchfork curve, one finds that both of the
eigenvalues of the trivial solution are zero. From this point, the Hopf (H) and the saddle
connection (SC) bifurcation curves start.
For q = q0 such that p < q0 < p2, starting with a small value of µ, one finds two stable
nontrivial critical points. Increasing the value of µ such that the pitchfork curve is reached
one obtains another two nontrivial critical points (unstable). At µ = p, a Hopf bifurcation
occurs and a stable limit cycle is born. Increasing the value of µ further such that the
saddle connection (SC) curve is reached the limit cycle disappears in the saddle connection
bifurcation (SC). The four nontrivial solutions survive though.
For q = q0 such that qQ < q0 < p starting with a small value of µ, one gets only a
stable trivial solution. Increasing the value of µ such that the pitchfork bifurcation curve
is passed, one finds two stable nontrivial critical points and the trivial solution becomes
unstable. Increasing again the value of µ such that the pitchfork bifurcation curve is passed
once more, another two unstable critical points are born. However the trivial solution is
now stable again. Increasing the value of µ such that the Hopf bifurcation curve is passed
one gets a stable limit cycle and four nontrivial solutions. The critical solution is now
unstable focus. After increasing the value of µ passed the saddle-node bifurcation curve
(SN), both pairs of nontrivial solutions disappear in a saddle-node bifurcation and only
the stable limit cycle survives. But if one reaches the saddle-node bifurcation curve (SN)
first, then after passing the saddle-node bifurcation curve (SN) both pairs of nontrivial
solutions disappear in the saddle-node bifurcation. Finally, increasing the value of µ one
gets a stable limit cycle after passing the Hopf bifurcation curve and the trivial solution is
an unstable focus.
For q = q0 such that qt < q0 < qQ, starting with a small value for µ, then one gets only a
stable trivial solution. Increasing the value of µ such that the first pitchfork point is reached
then one finds one pair of stable critical points bearing from the pitchfork bifurcation and
the trivial solution becomes unstable. Increasing again the value of µ, such that the second
pitchfork point is reached then one obtains that the nontrivial critical points disappear and
the trivial solution becomes stable. Furthermore, increasing the value of µ, then one obtains
a Hopf bifurcation from which the stable limit cycle is born and the trivial solution becomes
an unstable focus.
For q = q0 such that q0 < qt, starting with a small value for µ, then one gets a stable trivial
solution. Increasing the value of µ, one gets a Hopf bifurcation from which the stable limit
cycle is born and the trivial solution becomes an unstable focus.
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Figure 8: Phase portraits in the region III for p = 2 and q = 1.

The story for Figure 7 is nearly the same as for Figure 6. The difference is the saddle
connection (SC) bifurcation in Figure 7, that now corresponds with the creation of a
stable limit cycle.
To consider the stability of the nontrivial critical points, one can determine the eigenvalues
of the Jacobian from the equation (3.35 - 3.36) evaluated at (r0, ψ0), where r0 =

√
R and

ψ0 are determined from the zeroes of equations (3.35 - 3.36).

3.2.3 Phase portraits for the averaged equations

In this section some phase portraits for the averaged equations (3.31 - 3.32) are given.
Some special values for the parameters are considered to depict the behaviour of the trivial
and the nontrivial solutions in the (u, v)-plane. Depending on the wind velocity µ, one
finds how the stability of the trivial solution changes and how the nontrivial critical points
and a stable limit cycle appear.
Assuming p = 2 and choosing q = 1 then q < qt < p and one is in the region III, see
Figures 4 and 6. The stability diagram of the trivial solution is shown in Figure 5c.
Varying the wind velocity µ one gets the following: At µ = 0.5, one gets only the trivial
solution as a stable node. The phase portrait in the (u, v)-plane is shown in Figure 8(a).
Increasing the value of µ to µ = 1.5 one obtains the trivial solution is a stable focus.
The phase portrait is shown in Figure 8(b). Furthermore, increasing the value of µ to
µ = 2.3 one finds that the trivial solution is an unstable focus. There is also a stable
limit cycle bearing from the Hopf bifurcation at µ = p = 2. The limit cycle corresponds
to oscillations in the original system with periodically modulated amplitudes and phases.
The phase portrait is shown in Figure 8(c).
Assuming p = 2 and choosing q = 1.38 then qQ < q < p, one is in the region IV, see
Figures 4 and 6. The stability diagram of the trivial solution is shown in the Figure 5d
with µ11 = 0.72, µ12 = 0.94 and

√
q = 1.17. Varying the wind velocity µ one gets the

following: At µ = 0.1 one gets only the trivial solution as a stable node. The phase
portrait in the (u, v)-plane is shown in Figure 9(a). Increasing the value of µ to µ = 0.8
one finds a symmetric pair of nontrivial critical points as stable nodes and the trivial
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Figure 9: Phase portraits in the region IV for p = 2 and q = 1.38.

solution is a saddle. The phase portrait in the (u, v)-plane is shown in Figure 9(b). In
this case, the amplitudes of the symmetrical pair of nontrivial solutions are increasing with
increasing µ up to certain value of µ after which they are shrinking to zero in the second
pitchfork bifurcation at µ = µ12 and the trivial solution becomes stable. At µ = 1.2 one
gets the trivial solution is a stable focus and there is no nontrivial solution at all. The
phase portrait in (u, v)-plane is given in Figure 9(c). Increasing again the value of µ to
µ = 3.2 one gets the trivial solution as an unstable focus. There is also a stable limit
cycle bearing from the Hopf bifurcation at µ = p = 2. The phase portrait is shown in
Figure 9(d).
Assuming p = 2 and q = 1.9 then qQ < q < p, one is in the region IV, see Figures 4 and 6.
The stability diagram of the trivial solution is shown in the Figure 5d, with µ11 = 0.10,
µ12 = 1.33 and

√
q = 1.378. Compared to the case p = 2 and q = 1.38, here the

second pitchfork bifurcation, i.e. at µ = µ12 corresponds to the creation of another pair of
nontrivial critical points. Varying the wind velocity µ one gets the following: For µ = 0.06
one finds the trivial solution as a stable node without nontrivial critical points. The phase
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Figure 10: Phase portraits in the region IV for p = 2 and q = 1.9.

portrait is shown in Figure 10(a). Increasing the value of µ to µ = 0.4 one obtains the
trivial solution as a saddle and a pair of nontrivial solutions as stable nodes. The phase
portrait is shown in Figure 10(b). Increasing the value of µ such that µ = µ12 then one
gets the second pitchfork bifurcation leading to the exchange of the stability of the trivial
solution and the creation of the second pair of nontrivial critical points. At µ = 1.35
one gets two pairs of nontrivial critical points, one pair as saddles and the other pair as
stable foci. The trivial solution becomes a stable node. The phase portrait is shown in
Figure 10(c).
Increasing again the value of µ to µ = 1.4, one finds that the trivial solution is a stable
focus and two pairs of nontrivial critical points. One pair of them as saddles and the other
pair as stable foci. The phase portrait is shown in Figure 10(d). Furthermore, increasing
µ to µ = 2.5, one obtains two pairs of nontrivial critical points, one pair as saddles and the
other pair as stable foci. The trivial solution is an unstable focus. There is also a stable
limit cycle bearing from the Hopf bifurcation at µ = p = 2. The phase portrait is shown in
Figure 10(e). Increasing again the value of µ to µ = 3.1, one gets only a stable limit cycle
and the trivial solution as an unstable focus. Both pairs of nontrivial critical points are
disappeared in the saddle node bifurcation. The phase portrait is shown in Figure 10(f).
Assuming p = 2 and choosing q = 3.333 then p < q < p2, one is in the region V, see
Figures 4 and 6. The stability diagram of the trivial solution is shown in Figure 5e, with
µ1 = 1.82 and

√
q = 1.825. Varying the wind velocity µ one gets the following: At µ = 1.7,



On the Parametric Excitation 20

0

U

V

−2 2

−2

2

−1.5 1.5
−1.8

1.8

V

U

0

−1.3 1.3
−2

2

V

U

0

(a) µ = 1.7 (b) µ = 1.9 (c) µ = 2.1

−2.5

−2.5

2.5

2.5

0

U

V

−2.5

−2.5

2.5

2.5

0

U

V

(d) µ = 4 (e) µ = 4.1

Figure 11: Phase portraits in the region V for p = 2 and q = 3.333.

one finds two nontrivial critical points as stable foci and the trivial critical point as a saddle.
The phase portrait in the (u, v)-plane is shown in Figure 11(a). Increasing the value of µ,
to µ = 1.9, one obtains two pairs of nontrivial critical points, one pair as saddles and the
other pair as stable foci. The trivial solution is a stable focus. The phase portrait is shown
in Figure 11(b). Increasing the value of µ, to µ = 2.1, one gets two pairs of nontrivial
critical points, one pair as saddles and the other pair as stable foci. The trivial solution is
an unstable focus. There is also a stable limit cycle bearing from the Hopf bifurcation at
µ = p = 2. The phase portrait is shown in Figure 11(c). For µ = 4 one finds that the limit
cycle has disappeared in a heteroclinic loop connecting the two symmetric saddle points,
when passing the saddle connection curve. The phase portrait is shown in Figure 11(d).
Finally, for µ = 4.1 one obtains that the saddle connection is broken. All solutions tend to
one of the stable foci. The phase portrait is shown in Figure 11(e).
Assuming p = 2 and q = 5 then q > p2, one is in the region I, see Figures 4 and 6.
The stability diagram of the trivial solution is shown in Figure 5a, with µ2 = 2.23 and√
q = 2.24. Varying the wind velocity µ one gets the following: For value of µ < µc one

finds a pair of symmetric nontrivial critical points as stable foci and the trivial solution
is a saddle. The phase portrait is given in Figure 12(a) for µ = 2. Increasing the value
of µ to µ = 2.5, one obtains two pairs of symmetric nontrivial critical points, one pair as
saddles and the other pair as stable foci. The trivial solution is an unstable focus. The
phase portrait is shown in Figure 12(b).



On the Parametric Excitation 21

−2.5 2.5

−2.5

2.5

U

V
0

−1.5 1.5
−2.3

2.3

U

V

(a) µ = 2 (b) µ = 2.5
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Figure 13: Phase portraits in the region III for p = 0.5 and q = 0.1.

Finally we consider phase portraits for the case p < 1.
Assuming p = 0.5 and q = 0.1 then 0 < q < qt, one is in the region III, see Figures 4 and
7. The diagram of the stability of the trivial solution is given in Figure 5c with

√
q = 0.32.

Varying the wind velocity µ one gets the following: At µ = 0.1 one finds only the trivial
solution as a stable node. The phase portrait is shown in Figure 13(a). Increasing the value
of µ such that µ >

√
q then both of the eigenvalues are complex and the trivial solution

changes from a stable node to a stable focus. At µ = 0.4 one finds the trivial solution is
a stable focus. The phase portrait is shown in Figure 13(b). Furthermore, increasing the
value of µ to µ = 0.6, one gets that the trivial solution is an unstable focus. There is also
a stable limit cycle bearing from the Hopf bifurcation at µ = 0.5. Its phase portrait is
shown in Figure 13(c).
Assuming p = 0.5 and q = 0.24 then qt < q < qQ one is in the region IV, see Figures 4 and
7. The diagram of the stability of the trivial solution is the same as in the Figure 5d, with
µ11 = 0.27, µ12 = 0.4897, and

√
q = 0.4898.

Varying the wind velocity µ one gets the following: At µ = 0.1, one finds only the trivial
solution as a stable node. Its phase portrait is shown in Figure 14(a). Increasing the
value of µ to µ = 0.3, one obtains the trivial solution as a saddle and a pair of symmetric
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Figure 14: Phase portraits in the region IV for p = 0.5 and q = 0.24.

nontrivial critical points as stable nodes. The phase portrait is shown in Figure 14(b).
Increasing the value of µ to µ = 0.4897, one gets two pairs of nontrivial critical points, one
pair as saddles and the other pair as stable foci. The trivial solution becomes a stable focus.
The phase portrait is shown in Figure 14(c). For larger value of µ such that µ = 0.53 one
gets the trivial solution is an unstable focus. There is a stable limit cycle bearing from the
saddle connection bifurcation. The two pairs of nontrivial points still survive, see the phase
portrait in Figure 14(d). Increasing the value of µ to µ = 0.6, one gets only the stable
limit cycle and the trivial solution as an unstable focus. There is no nontrivial solution at
all. The nontrivial points are destroyed in the saddle node bifurcation. Its phase portrait
is given in Figure 14(e).
Assuming p = 0.5 and choosing q = 0.26 then p2 < q < p and one is in region II, see
Figures 4 and 7. The stability diagram of the trivial solution is shown in Figure 5b, with
µ1 = 0.25, µ2 = 0.5097, and

√
q = 0.5099. Varying the wind velocity µ one gets the

behaviour of the solutions as follows: Figure 15(a) depicts the phase portrait for µ = 0.1.
It shows the trivial solution as a stable node and no other critical points exist.
Increasing the value of µ to µ = 0.4, one gets a pair of nontrivial solutions as stable nodes
and the zero solution as a saddle. The phase portrait in (u, v)-plane as in the Figure 15(b).
Increasing the value of µ further such that µ = 0.57 then one gets the zero solution is an
unstable focus. The phase portrait in the (u, v)-plane is given in Figure 15(c). Increasing
again the value of µ to µ = 0.6084, one gets a stable limit cycle bearing from the saddle
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Figure 15: Phase portraits in the region II for p = 0.5 and q = 0.26.

connection bifurcation. Domains of attraction are separated by the stable manifolds of the
two saddles. Inside those manifolds the flow tends to the limit cycle, outside it tends to
one of the stable node. The phase portrait is shown in Figure 15(d). Increasing the value
of µ further to µ = 0.8, one finds saddle-node bifurcations in which the stable and unstable
nontrivial solutions disappear. Only the stable limit cycle survives and all flow tends to
this limit cycle, see Figure 15(e).
Assuming p = 0.5 and q = 1 then p < q, one is in the region I, see Figures 4 and 7. The
stability of the trivial solution is given in Figure 5a with µ2 = 0.946. Varying the wind
velocity µ one gets the following behaviour: At µ = 0.8 one gets two symmetric nontrivial
critical points as stable foci and the trivial solution is a saddle. The phase portrait is
shown in Figure 16(a). Increasing the value of µ to µ = 0.96, one finds that the trivial
solution is an unstable node and two pairs of symmetric nontrivial critical points, one pair
as stable foci and the other pair as saddles. The phase portrait is given in Figure 16(b).
Furthermore, increasing the value of µ to µ = 1.2, one obtains that the trivial solution is
an unstable focus and two pairs of symmetric nontrivial critical points exist, one pair as
stable foci and the other pair as saddles . The phase portrait is given in Figure 16(c).
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Figure 16: Phase portraits in the region I for p = 0.5 and q = 1.

4 Conclusions

In this chapter the parametric excitation of two nonlinear aeroelastic oscillators was stud-
ied. In practice, parametric excitation of structural elements, like bridge stay cables, may
be caused by the periodic motion of the bridge deck or the bridge tower. The induced
vibrations are most prominent if the excitation frequency is nearly twice the natural fre-
quency.
For the plunge oscillator the following results were obtained;

1. For strong parametric excitation, δ
2a

< 1, i.e. when the ratio of detuning δ and
parametric force coefficient a is small, the critical flow velocity is shifted to a lower
value. For flow velocities above this value stable periodic oscillations were found. If
there is a small structural damping, the critical flow velocity shifts to zero, indicating
that even in absence of wind the equilibrium position is unstable.

2. For weak parametric excitation, δ
2a
> 1, the well-known critical wind velocity accord-

ing to Den Hartog’s criterion was found. Rather than a stable periodic oscillation,
one obtains a stable solution with periodically modulated amplitude and phase.

For the seesaw oscillator the following results were obtained:

1. The observed behaviour for strong and weak parametric excitation is identical to the
behaviour observed for the plunge oscillator.

2. Interesting new dynamics is found when the parametric excitation, the structural
damping and the linear aeroelastic force are in close range. In that case a critical
flow velocity may still exist, above which the equilibrium position becomes unsta-
ble. However, in some cases the trivial solution re-stabilizes when the flow velocity
is increased above a certain value. This may be understood from the fact that the
flow velocity causes an increased detuning between the excitation frequency and the
natural frequency, which effectively reduces the parametric excitation. Increasing
the flow velocity further though, an aeroelastic instability is found for a flow velocity
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corresponding to Den Hartog’s criterion. Next to periodic solutions with constant
amplitudes also stable solutions, with periodically modulated amplitudes and phases,
are found bearing from limit cycles in the averaged equations. Both Hopf and saddle
connection bifurcations were found responsible for the appearance of these limit cy-
cles. In some cases constant amplitude periodic solutions and periodically modulated
solutions were found to co-exist.
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5 Appendix

In this appendix the existence of the Hopf and pitchfork bifurcations are considered.

5.1 Hopf bifurcation

Consider the system below

u̇ = ε
(

−(γµ+ λ)u+ (1 − γµ2)v − uv2 − µu2v − u3 − µv3
)

, (5.38)

v̇ = ε
(

(1 + γµ2)u− (γµ+ λ)v + µuv2 − u2v + µu3 − v3
)

. (5.39)

Letting

X =

(

u

v

)

then we have

Ẋ = ε

((

−(γµ+ λ) 1 − γµ2

1 + γµ2 −(γµ + λ)

)

X

+

(

f 1(µ, u, v)
f 2(µ, u, v)

))

, (5.40)

with

f 1(µ, u, v) = −uv2 − µu2v − u3 − µv3,

f 2(µ, u, v) = µuv2 − u2v + µu3 − v3.

Letting a = −(γµ+ λ), b = 1 − γµ, and c = 1 + γµ2 then we have

Ẋ = ε (AX + F) , (5.41)

with

A =

(

a b

c a

)

and

F =

(

f 1(µ, u, v)
f 2(µ, u, v)

)

.

We now translate the equation (5.41) to normal form with transformation

X = TZ, (5.42)

where

T =

(

0
√
−bc
c

1 0

)



On the Parametric Excitation 27

and

Z =

(

z1
z2

)

.

We get

T−1 =

(

0 1
c√
−bc

0

)

.

From equation (5.42) we get u =
√
−bc
c
z2 and v = z1.

So from (5.41) and (5.42) we get

Ż = ε
((

T−1AT
)

Z + G
)

, (5.43)

with

G ≡ T−1F =

(

g1(µ, z1, z2)
g2(µ, z1, z2)

)

,

T−1AT =

(

a
√
−bc√

−bc a

)

,

g1(µ, z1, z2) = −µ
√
−bc
c

z2
1z2 +

b

c
z1z

2
2 − µ

b

c2

√
−bc z3

2 − z3
1 , (5.44)

g2(µ, z1, z2) = −z2
1z2 − µ

√
−bc
c

z1z
2
2 +

b

c
z3
2 − µ

c√
−bc

z3
1 . (5.45)

From equations (5.44− 5.45) we get g1
z1z1z1

= −1, g1
z1z2z2

= b
c
, g2

z2z2z2
= b

c
, and g2

z1z1z2
= −1.

The Lyapunov number evaluated at (0, 0) is

σ =
1

16

(

g1
z1z1z1

+ g1
z1z2z2

+ g2
z2z2z2

+ g2
z1z1z2

)

,

=
1

16

(

−1 +
b

c
+
b

c
− 1

)

,

= −1

8

(

1 − b

c

)

,

< 0. (5.46)

Eigenvalues of (5.41) evaluated at (0,0) are
λ1 = a+

√
bc and λ2 = a−

√
bc

To have a purely imaginary pair of eigenvalues, we have to set a = −(γµ + λ) = 0, i.e.
µ ≡ µc = −λ

γ
and bc = 1 − γ2µ4 < 0, i.e. λ2 > |γ|.

Then the system becomes

Ż = ε

((

0 −ω
ω 0

)

Z +

(

g1(µc, z1, z2)
g2(µc, z1, z2)

))

. (5.47)
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The equation (5.47) is a normal form from (5.38 - 5.39) evaluated at µ = µc. The Lyapunov
number at µ = µc is

σ = −1

8





1 +
−
(

1 − λ4

γ2

)

(

1 + λ2

γ

)2







< 0.

Using the method in the book of Wiggins [15] on the page 277, we conclude that there is
a stable limit cycle bifurcates at µ = µc.

5.2 pitchfork bifurcation

We consider the system
Ẋ = ε (AX + F) , (5.48)

with

X =

(

u

v

)

, A =

(

a b

c a

)

,

F =

(

f 1(µ, u, v)
f 2(µ, u, v)

)

,

with

f 1(µ, u, v) = −uv2 − µu2v − u3 − µv3

f 2(µ, u, v) = µuv2 − u2v + µu3 − v3,

a = −(γµ + λ), b = 1 − γµ2 > 0, and c = 1 + γµ2.
In this case bc = 1 − γ2µ4 > 0. Therefore c > 0. The eigenvalues of A are

λ1 = a−
√
bc and λ2 = a +

√
bc.

Let

T =

(

1
2

1
2

−1
2

c√
bc

1
2

c√
bc

)

then T−1 =

(

1 −
√

bc
c

1
√

bc
c

)

and T−1AT =

(

a−
√
bc 0

0 a+
√
bc

)

.

We transform equation (5.48) with transformation

X = TZ, (5.49)

where

Z =

(

z1
z2

)

.



On the Parametric Excitation 29

Then we get u = 1
2
(z1 + z2), v = r0(−z1 + z2), with r0 = 1

2

√

c
b
,

f 1(z1, z2) = a30z
3
1 + a21z

2
1z2 + a12z1z

2
2 + a03z

2
2 ,

f 2(z1, z2) = b30z
3
1 + b21z

2
1z2 + b12z1z

2
2 + b03z

2
2

and

• a30 = µr3
0 − 1

2
r2
0 + 1

4
µr0 − 1

8
,

• a21 = −3µr3
0 + 1

2
r2
0 + 1

4
µr0 − 3

8
,

• a12 = 3µr3
0 + 1

2
r2
0 − 1

4
µr0 − 3

8
,

• a03 = −µr3
0 − 1

2
r2
0 − 1

4
µr0 − 1

8
,

• b30 = r3
0 + 1

2
µr2

0 + 1
4
r0 + 1

8
µ,

• b21 = −3r3
0 − 1

2
µr2

0 + 1
4
r0 + 3

8
µ,

• b12 = 3r3
0 − 1

2
µr2

0 − 1
4
r0 + 3

8
µ,

• b03 = −r3
0 + 1

2
µr2

0 − 1
4
r0 + 1

8
µ.

Consider that

Ż = ε
((

T−1AT
)

Z + T−1F
)

= ε

((

a−
√
bc 0

0 a+
√
bc

)(

z1
z2

)

+

(

g1(z1, z2)
g2(z1, z2)

))

, (5.50)

where

g1(z1, z2) = α30z
3
1 + α21z

2
1z2 + α12z1z

2
2 + α03z

3
2 , (5.51)

g2(z1, z2) = β30z
3
1 + β21z

2
1z2 + β12z1z

2
2 + β03z

3
2 . (5.52)

where

• α30 = −
√

b
c

(

r3
0 + 1

2
µr2

0 + 1
4
r0 + 1

8
µ
)

+ µ
4
r3
0 − 1

2
r2
0 + 1

4
µr0 − 1

8

• α21 = −
√

b
c

(

−3r3
0 − 1

2
µr2

0 + 1
4
r0 + 3

8
µ
)

− 3µr3
0 + 1

2
r2
0 + 1

4
µr0 − 3

8

• α12 = −
√

b
c

(

3r3
0 − 1

2
µr2

0 − 1
4
r0 + 3

8
µ
)

+ 3µr3
0 + 1

2
r2
0 − 1

4
µr0 − 3

8

• α03 = −
√

b
c

(

−r3
0 + 1

2
µr2

0 − 1
4
r0 + 1

8
µ
)

− µr3
0 − 1

2
r2
0 − 1

4
µr0 − 1

8
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• β30 =
√

b
c

(

r3
0 + 1

2
µr2

0 + 1
4
r0 + 1

8
µ
)

+ µr3
0 − 1

2
r2
0 + 1

4
µr0 − 1

8

• β21 =
√

b
c

(

−3r3
0 − 1

2
µr2

0 + 1
4
r0 + 3

8
µ
)

− 3µr3
0 + 1

2
r2
0 + 1

4
µr0 − 3

8

• β12 = −
√

b
c

(

3r3
0 − 1

2
µr2

0 − 1
4
r0 + 3

8
µ
)

+ 3µr3
0 + 1

2
r2
0 − 1

4
µr0 − 3

8

• β03 =
√

b
c

(

−r3
0 + 1

2
µr2

0 − 1
4
r0 + 1

8
µ
)

− µr3
0 − 1

2
r2
0 − 1

4
µr0 − 1

8

From equation (5.50), λ1 = 0 if a =
√
bc and λ2 > 0. Let µ = µλ20

is a zero of λ2 such that
λ2(µλ20

) = 0. Of course (0, 0) is unstable at µ = µλ20
, because λ1(µλ20

) > 0.
We now consider the pitchfork bifurcation at µ = µλ10

.
We apply the center manifold theory to our system, i.e. to equation (5.50). Letting

z2 ≡ h(z1) = αz2
1 + βz3

1 +O(4). (5.53)

dh

dz1
= 2αz1 + 3βz2

1 +O(3). (5.54)

At µ = µλ10
we get

a4z
4
1 +O(4) ≡ η2z

2
1 + η3z

3
1 +O(4), (5.55)

with

a4 = 2α



µr3
0 −

1

2
r2
0 +

1

4
µr0 −

1

8
−
√

b

c

(

r3
0 +

1

2
µr2

0 +
1

4
r0 +

1

8
µ

)



 ,

η2 = (a +
√
bc)α,

η3 = µr3
0 −

1

2
r2
0 +

1

2
µr0 + (a+

√
bc)β − 1

8
+

√

b

c

(

r3
0 +

1

2
µr2

0 +
1

4
r0 +

1

8
µ

)

After equaling the coefficients of (5.55), then we get α = 0 and

β = − 1
8c(a+

√
bc)

(

8(
√
bc+ µc)r3

0 + 4(µ
√
bc− c)r2

0 + 2(cµ+
√
bc)r0 +

√
bcµ− c

)

.

From here we get that

h(z1) = βz3
1 +O(4).

The flow in the center manifold is determined by the 1-dimensional equation

ω̇ = p1ω + p3ω
3, (5.56)

with p1 = a−
√
bc and p3 = − 1

8c

(

8(
√
bc− cµ)r3

0

+4(c+
√
bcµ)r2

0 + 2(
√
bc− cµ)r0 + c+

√
bcµ

)

.

We rewrite the equation (5.56) to becomes

ω̇ = q(µ)ω − ω3, (5.57)
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where
q(µ) = −8(a−

√
bc)

(

−3+( c
b
µ−3µ)

√
b
c
− c

b
−µ
√

b
c

) with c
b
< 1.

We see that −8
(

−3+( c
b
µ−3µ)

√
b
c
− c

b
−µ
√

b
c

) > 0.

We can see that

1. If µ < µλ10
then λ1 < 0.

In this case we can also see that q(µ) < 0

2. If µ = µλ10
then λ1 = 0 .

In this case we can also see that q(µ) = 0

3. If µ > µλ10
then λ1 > 0 .

In this case we can also see that q(µ) > 0

So from (5.57) we conclude that

1. For µ ≤ µλ10
there is only one trivial solution exists.

2. For µ > µλ10
there are three critical points we get, i.e. a zero solution and two

nontrivial solutions.

Note

In this paper, we only consider the positive nontrivial solution.
We conclude that from (5.57) the pitchfork bifurcation is born at µ = µλ10

, i.e. the zero of
the eigenvalue λ1.

References

[1] VAN DER BURGH, A. H. P. 1996 Parametric excitation in mechanical systems. Pro-
ceedings of the International Conference on Differential Equations, theory, numerics and
applications (Indonesia), 3 - 16.

[2] HAAKER, T. I. 1996 Quasi-steady modelling and asymptotic analysis of aeroelastic os-
cillators. Ph.D. Thesis, Department of Applied Analysis, Delft University of Technology,
The Netherlands.

[3] HAAKER, T. I. & VAN DER BURGH, A. H. P. 1994 On the dynamics of aeroelastic
oscillators with one degree of freedom. SIAM Journal on Applied Mathematics Vol 54,
No. 4, 1033-1047.

[4] HAAKER, T. I. & VAN OUDHEUSDEN, B. W., One-degree-of-freedom rotational
galloping under strong wind conditions, International Journal Non-Linear Mechanics,
Vol 32, No. 5 (1997), pp. 803 - 814.



On the Parametric Excitation 32

[5] LUMBANTOBING, H. & HAAKER, T.I. 2000 Aeroelastic oscillations of a single see-
saw oscillator under strong wind conditions. Journal of Indonesian Mathematical Society,
Vol.6, No.5, 439 - 444.

[6] LUMBANTOBING, H. & HAAKER, T.I. 2002 Aeroelastic oscillations of a seesaw-type
oscillator under strong wind conditions. Journal of Sound and Vibrations, Vol. 257, Issue
3, 439 - 456.

[7] LUMBANTOBING, H. & HAAKER, T.I. 2002 On the parametric excitation of a non-
linear aeroelastic oscillator. Proceedings of ASME International Mechanical Engineering
Congress & Exposition 2002 (IMECE2002)(New Orleans - Lousiana, USA) , with num-
ber IMECE2002-32163.

[8] TONDL, A., RUIJGROK, T., VERHULST, F. & NABERGOJ, R. 2000 Autoparamet-
ric resonance in mechanical system. Cambridge University press, USA.

[9] BLEVINS, R. D. 1990 Flow induced vibration (2nd edition). Van Nostrand Reinhold,
New York.

[10] PARKINSON, G. V. & SMITH, J. D. 1964 The square prism as an aeroelastic non-
linear oscillator, Quart. J. Mech. and Appl. Math, Vol XVII, Pt. 2, 225 - 239.

[11] Van Oudheusden, B. W., Rotational one-degree-of-freedom galloping in the presence
of viscous and frictional damping, Journal of Fluids and Structures Vol 10 (1996), pp.
673 - 689.

[12] PINTO DA COSTA, A. MARTINS, J. A. C. & LILIEN, J. L. 1996 Oscillations of
bridge stay cables induced by periodic motions of deck and/or towers. Journal of Engi-
neering Mechanics, 613 - 622.

[13] NIGOL, O. & BUCHAN, P. G. 1981 Conductor galloping part I - Den Hartog mech-
anism. IEEE Trans. Pow. App. Sys, Vol. PAS-100, No. 2, 699 - 707.

[14] VERHULST, F. 1996 Nonlinear differential equations and dynamical systems (2nd
edition). Springer-Verlag, Berlin Heidelberg.

[15] WIGGINS, S. 1990 Introduction to applied nonlinear dynamical systems and chaos,
Springer - Verlag, New York.


