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Abstract

In this paper the suppression of wind-induced vibrations of a seesaw-type oscillator
by means of a dynamic absorber is considered. With suppression the shift of the
critical flow velocity to higher values as well as the reduction of vibration amplitudes
is meant. The equations of motion are derived using Lagrange’s formalism. From
a linear analysis the optimal absorber tuning is obtained. That is, the optimal
frequency and damping combination such that the highest critical flow velocity is
obtained. A strong increase of the critical flow velocity is obtained when the absorber
has a frequency close to the oscillator’s frequency. From the nonlinear analysis the
suppression in terms of a reduction of amplitude is shown. For a specific case, a
comparison between the original and the suppressed vibration behaviour is shown.

1 Introduction

In this paper the suppression of wind-induced vibrations of a one-degree-of-freedom seesaw-
type oscillator, by means of a dynamic absorber, is considered. A schematic sketch of the
seesaw oscillator with an absorber is given in Figure 1. It consists of a rigid bar, holding
a cylinder at the right end. On the other end a counter weight is fixed, balancing the
cylinder with respect to a hinge axis. Two springs provide for a restoring moment. It is
assumed that the cylinder has a uniform cross-section along its axis. Inside of the cylinder,
a dynamic absorber is placed. The absorber consists of a mass, a spring and a damper.

∗Supervised by Dr. ir. T. I. Haaker.
†On leave from Department of Mathematics - FKIP, University of Cenderawasih, Papua, Indonesia
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The motion of the absorber mass is directed perpendicular to the oscillator’s rigid bar.
If the cylinder has a non-circular cross-section and is exposed to a steady wind flow,
self-excited so called galloping oscillation may arise [1]. Several authors have studied
galloping for one-degree-of-freedom structures. Notably, Parkinson & Smith [2] modelled
and analyzed plunge galloping for a square prism. Van der Burgh, Haaker, van Oudheusden
and Lumbantobing analyzed and modelled rotational galloping of seesaw-type oscillators
[3, 4, 5, 7, 8, 9, 13]. These authors applied a quasi-steady theory [1] to model the aeroelastic
forces acting on the cylinder. For low to moderate wind velocities, these forces may be
assumed small. Then a mathematical analysis of the equations of motion can be based on
an asymptotic method [14, 15]. Typically, one finds a critical flow velocity above which
the equilibrium position becomes unstable and stable galloping oscillations occur. The
amplitude of these oscillations grows if the flow velocity is increased. For higher flow
velocities, aeroelastic stiffness forces may arise that are of the same order of magnitude as
the structural stiffness force [6, 7, 8]. The resulting aeroelastic behaviour is of a potentially
catastrophic nature, as a nonlinear divergence phenomenon may occur [6].
The addition of the dynamic absorber is an important means for suppressing the wind-
induced vibrations. With suppression the shift of the critical flow velocity to higher values
as well as the reduction of vibration amplitudes is meant. Tondl [16, 17] investigated the
effect of a dynamic absorber on vibration quenching of pendulum type systems. He applied
the harmonic balance method to analyze the quenching effect. In [10, 11, 12], Matsuhisa,
et al. investigated the efectiveness of dynamic absorbers for ropeway gondolas, chairlifts,
ropeway carrier, ships and cable suspension bridges.
Here the effectiveness of a dynamic absorber for suppression of wind-induced vibrations
for a seesaw-type oscillator is considered.
This paper is organized as follows. In section 2, the equation of motion for the seesaw
oscillator with dynamic absorber is derived using Lagrange’s formalism. In section 3, the
analysis of the model equation is presented. In section 3.1, a linear analysis based on the
harmonic balance method is given. The optimal tuning for the absorber is derived, such
that the critical velocity is shifted to the highest possible value. In section 3.2, a nonlinear
analysis based on the two-time-scales method [15, 18] is given. In particular the reduction
of vibration amplitudes is considered. For a specific example, a comparison between the
original and the suppressed vibration behaviour is given. This paper is ended with some
conclusions in section 4.

2 Derivation of the model equation

To derive the equation of motion the Lagrange’s formalism [19] is used. The kinetic and
potential energies are given by the following expressions

Ek =
1

2
aψ̇2 +mRẋψ̇ +

1

2
mẋ2 +

1

2
mx2ψ̇2, (2.1)

Ep =
1

2

(

κψ2 + k1x
2
)

+mgx cos(ψ), (2.2)
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Figure 1: Schematic sketch of the structure of the seesaw oscillator with absorber.

where the ”dot” denotes the differentiation with respect to time t, ψ and x denote the
angle of rotation of the seesaw structure around the hinge axis and the deflection of the
absorber mass from its equilibrium position, respectively. Furthermore, a,m, κ, k1 and g

are the moment of inertia of the seesaw structure including the absorber with respect to
the hinge axis, mass of absorber, restoring force coefficient due to the springs attached
to the seesaw bar, restoring force coefficient due to the spring of the absorber mass and
acceleration of gravity, respectively. Here, R = R1 + l0, where R1 is the distance from the
cylinder’s center to the hinge axis and l0 is the distance from the equilibrium position of
the small mass to the center of the cylinder, respectively.
From (2.1, 2.2) one gets the Lagrangian as follows

L = Ek − Ep, (2.3)

=
1

2
aψ̇2 +mRẋψ̇ +

1

2
mẋ2 +

1

2
mx2ψ̇2

−
1

2

(

κψ2 + k1x
2
)

−mgx cos(ψ). (2.4)

Then one finds that

d

dt

∂L

∂ψ̇
−
∂L

∂ψ
= aψ̈ +mRẍ + κψ +mx2ψ̈ + 2mxẋψ̇

−mgx sin(ψ), (2.5)

d

dt

∂L

∂ẋ
−
∂L

∂x
= mẍ +mRψ̈ + k1x−mxψ̇2

+mg cos(ψ). (2.6)

So one gets an unperturbed and undamped system as follows

aψ̈ +mRẍ + κψ +mx2ψ̈ + 2mxẋψ̇ −mgx sin(ψ) = 0, (2.7)

mẍ+mRψ̈ + k1x−mxψ̇2 +mg cos(ψ) = 0. (2.8)
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Assuming that b1 and b2 are damping coefficients of the main system and the dynamic ab-
sorber, respectively, and assuming that a quasi-steady aeroelastic force F = 1

2
ρdlU2CN(α)

is exerted on the cylinder, then one gets

aψ̈ +mRẍ + κψ + b1ψ̇ +mx2ψ̈ + 2mxẋψ̇

−mgx sin(ψ) =
1

2
ρdlR1U

2CN(α), (2.9)

mẍ +mRψ̈ + k1x+ b2ẋ−mxψ̇2 +mg cos(ψ) = 0, (2.10)

where ρ, d, l, U and CN are air density, characteristic diameter of the cylinder cross sec-
tion, length of the cylinder, wind velocity and aerodynamic coefficient curve, respectively.

Furthermore, the dynamic angle of attack α is approximated by ψ − R1ψ̇
U

.
Using the approximation for sin(ψ) and cos(ψ) up to quadratic terms and transforming
x→ w − mg

k1
then one gets

a0ψ̈ +mRẅ + a1ψ + b1ψ̇ +mw2ψ̈ −
2m2g

k1
wψ̈

+2mwẇψ̇ −
2m2g

k1
ẇψ̇ −mgwψ =

1

2
ρdlR1U

2CN(α), (2.11)

mẅ +mRψ̈ + k1w + b2ẇ −mwψ̇2 +
m2g

k1
ψ̇2 −

1

2
mgψ2 = 0, (2.12)

where a0 = a+ m3g2

k2

1

and a1 = κ+ m2g2

k1
.

Introducing Ω2
1 = a1

a0
, Ω2

2 = k1
m

and Q = Ω2

Ω1

then after transforming time τ → Ω1t one gets

ψ̈ +
mR

a0
ẅ + ψ +

b1

a0Ω1
ψ̇ +

m

a0
w2ψ̈ −

2m2g

a0k1
wψ̈

+
2m

a0
wẇψ̇ −

2m2g

a0k1
ẇψ̇ −

mg

a0Ω2
1

wψ =
1

2a0Ω2
1

ρdlR1U
2CN(α), (2.13)

ẅ +Rψ̈ +Q2w +
b2

mΩ1
ẇ − wψ̇2 +

mg

k1
ψ̇2 −

g

2Ω2
1

ψ2 = 0, (2.14)

where α = ψ − R1Ω1

U
ψ̇ and the ”dot” now denotes differentiation with respect to τ . One

can assume that the wind force is small as the air density, ρ, is O(10−3). Introducing a
small parameter ε = 1

2a0
ρdlR3

1 and a reduced velocity µ = U
Ω1R1

and assuming m
a0

= O(ε)

and b1
a0

= O(ε), then one gets

ψ̈ + ψ = ε
(

−λ1w
2ψ̈ + λ2wψ̈ − λ3ẅ − β1ψ̇ − 2λ1wẇψ̇

+λ2ẇψ̇ + λ4wψ + µ2CN(α)
)

, (2.15)

ẅ +Rψ̈ +Q2w + β2ẇ = wψ̇2 − λ5ψ̇
2 + λ6ψ

2, (2.16)

where α = ψ − ψ̇

µ
, εβ1 = b1

a0Ω1

, β2 = b2
mΩ1

, ελ1 = m
a0
, ελ2 = 2m2g

a0k1
, ελ3 = mR

a0
, ελ4 = mg

a0Ω2

1

,

λ5 = mg
k1

, λ6 = g

2Ω2

1

.
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Assuming the cylinder cross section to be symmetric, then one can approximate the aerody-
namic coefficient curve up to the cubic term as follows CN(α) = c1α+ c3α

3, see [20]. After
substituting the aerodynamic coefficient curve into equation (2.15) and defining U = − c1µ

β1

then one gets

ψ̈ + ψ = ε

(

−λ3ẅ − β1(1 − U)ψ̇ +
β2

1

c1
U2ψ − λ1w

2ψ̈

+λ2wψ̈ − 2λ1wẇψ̇ + λ2ẇψ̇ + λ4wψ

+c3

(

β2
1U

2

c21
ψ3 +

3β1U

c1
ψ2ψ̇

+3ψψ̇2 +
c1

β1U
ψ̇3

))

, (2.17)

ẅ +Rψ̈ +Q2w + β2ẇ = wψ̇2 − λ5ψ̇
2 + λ6ψ

2. (2.18)

Introducing a final scaling to equations (2.17 - 2.18) through w̄ = w
d

and ψ̄ = R
d
ψ then

after neglecting the ”bar” one gets

ψ̈ + ψ = ε

(

−η3ẅ − β1(1 − U)ψ̇ +
β2

1

c1
U2ψ − η1w

2ψ̈

+η2wψ̈ − 2η1wẇψ̇ + η2ẇψ̇ + η4wψ

+c̃3

(

β2
1U

2

c21
ψ3 +

3β1U

c1
ψ2ψ̇

+3ψψ̇2 +
c1

β1U
ψ̇3

))

, (2.19)

ẅ + ψ̈ +Q2w + β2ẇ = −η5ψ̇
2 + η6ψ

2 + η7wψ̇
2, (2.20)

where η1 = d2λ1, η2 = dλ2, η3 = Rλ3, η4 = dλ4, η5 = d
R2λ5, η6 = d

R2λ6, η7 = d2

R2 and

c̃3 = c3d
2

R2 . Note that U = 1 corresponds with the critical flow velocity for the seesaw
oscillator without absorber.

3 Analysis of the equation

In this section the equations (2.19 - 2.20) are analyzed. Firstly, the harmonic balance
method is applied for the linear analysis and then the two time scales method is applied
for the nonlinear analysis.

3.1 Linear analysis

In this section a linear analysis for equations (2.19 - 2.20) around the equilibrium position
is presented. One gets the following linearized equations from (2.19 - 2.20)

ψ̈ +

(

1 −
εβ2

1

c1
U2

)

ψ + εβ1 (1 − U) ψ̇ + εη3ẅ = 0, (3.21)
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ẅ + ψ̈ +Q2w + β2ẇ = 0. (3.22)

To apply the harmonic balance method one sets ψ = cos(Ωτ) and w = Acos(Ωτ) +
Bsin(Ωτ) and substituting into equations (3.21 - 3.22) then one finds

(1 − Ω2) −
εβ2

1U
2

c1
− εη3Ω

2A = 0, (3.23)

β1(1 − U) + η3ΩB = 0, (3.24)

(Q2 − Ω2)A+ β2ΩB = Ω2, (3.25)

−β2ΩA + (Q2 − Ω2)B = 0. (3.26)

Note that in this analysis no assumptions have to be made with respect to the size of ε.

From equations (3.25 - 3.26) one finds A = Ω2(Q2−Ω2)
(Q2−Ω2)2+β2

2
Ω2 and B = β2Ω3

(Q2−Ω2)2+β2

2
Ω2 .

After substituting B into equation (3.24) one gets

U = 1 +
β2η3Ω

4

β1 ((Q2 − Ω2)2 + β2
2Ω

2)
. (3.27)

After substituting A and U into equation (3.23) then one gets



(1 − Ω2) −
εβ2

1

c1

(

1 +
β2η3Ω

4

β1 ((Q2 − Ω2)2 + β2
2Ω

2)

)2


×

(

(Q2 − Ω2)2 + β2
2Ω

2
)

− εη3Ω
4(Q2 − Ω2) = 0. (3.28)

Without a dynamical absorber the critical wind velocity for the onset of galloping is U = 1.
From (3.27) one finds that after applying the dynamical absorber the critical value of the
velocity is shifted to a higher value. A numerical result is presented in Figure 2 showing
the minimum values for the wind velocity U in dependence on the tuning coefficient Q
for different values of the coefficient β2 of the absorber damping. (The function U(Q) is
arranged by solving equation (3.28) for Ω then substituting the obtained Ω into equation
(3.27)). For the calculation the dynamic absorber is located in the center of the cylinder,
i.e. l0 = 0. The values of some parameters are chosen from wind tunnel measurements
on an actual seesaw oscillator in [4]. Figure 2(a) shows the critical wind velocity, U ,
depending on tuning Q for different values of the absorber damping coefficient β2 with
η3 = 0.33, β1 = 1.285, ε = 1.33 × 10−3 and c1 = −3. For smaller values of β2, U(Q)
consists of two branches reaching its optimal value near Q = 1. The lower branch (for
Q < 1) corresponds to higher frequencies Ω, the lower branch (for Q > 1) to the lower
frequencies Ω. Figure 2(b) shows the projection of Figure 2(a) on the (β2,U)-plane. One
finds that U reaches its optimal value at U = 8.375, near β2 = 0.028 and tuning Q = 1.021,
with resulting oscillation frequency Ω = 1.029. Figure 3(a) shows the oscillation frequency
of the obtained periodic solution as a function of tuning Q for β2 = 0.028. From this
figure, one can see that there are some values of Q having three corresponding values of
Ω2. This means that three periodic solutions may exist for some (β2, Q) combinations,
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Figure 2: Critical wind velocity U in dependence on Q for different values of damping
coefficient β2.

each corresponding with a distinct critical flow velocity. Now considering the stability of
the trivial solution, one obtains a diagram as given in Figure 3(b). The trivial solution
is stable for 0 < U < U1 and for U2 < U < U3 and is unstable for U1 < U < U2 and for
U > U3. So, after a first instability at U = U1, re-stabilization occurs for U = U2. The
final instability occurs for U = U3. For example, for the optimal damping, i.e. β2 = 0.028
at Q = 1.022 one gets three periodic solutions with frequencies Ω1 = 1.005, Ω2 = 1.018
and Ω3 = 1.06, respectively. For each frequency, one obtains the critical flow velocities
U1 = 4.048, U2 = 5.953 and U3 = 8.507, respectively. The diagram of the stability of the
trivial solution is that of Figure 3(b).

3.2 Nonlinear analysis

In this section the equations (2.19 - 2.20) are considered again. In the analysis the nonlinear
terms in the second equation are neglected because the strong linear coupling term is the
most important. Note that the coefficients of the nonlinear terms contain d

R2 � 1. From
equations (2.19 - 2.20) one gets

ψ̈ + ψ = ε

(

−η3ẅ − β1(1 − U)ψ̇ +
β2

1

c1
U2ψ − η1w

2ψ̈

+η2wψ̈ − 2η1wẇψ̇ + η2ẇψ̇ + η4wψ

+c̃3

(

β2
1U

2

c21
ψ3 +

3β1U

c1
ψ2ψ̇

+3ψψ̇2 +
c1

β1U
ψ̇3

))

, (3.29)

ẅ + ψ̈ +Q2w + β2ẇ = 0. (3.30)

The two time scales method is applied by introducing new time variables ξ = τ and η = ετ

[21] and assuming ψ = ψ(ξ, η) and w = w(ξ, η) then one gets
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Q

Ω2

(a)

u u2 30 u1

. . .. u

(b)

Figure 3: (a): Quadratic frequency of periodic solution as a function of tuning Q for
β2 = 0.028. (b): Stability diagram of the trivial solution depending on the wind velocity
for the optimal absorber tuning, i.e. (β2, Q) = (0.028, 1.022).

dψ(ξ,η)
dτ

= ∂ψ(ξ,η)
∂ξ

+ ε
∂ψ(ξ,η)
∂η

,

d2ψ(ξ,η)
dτ2 = ∂2ψ(ξ,η)

∂ξ2
+ 2ε∂

2ψ(ξ,η)
∂ξ∂η

+ ε2
∂2ψ(ξ,η)
∂η2

,

dw(ξ,η)
dτ

= ∂w(ξ,η)
∂ξ

+ ε∂w(ξ,η)
∂η

,

d2w(ξ,η)
dτ2 = ∂2w(ξ,η)

∂ξ2
+ 2ε∂

2w(ξ,η)
∂ξ∂η

+ ε2 ∂
2w(ξ,η)
∂η2

.

Expanding ψ(ξ, η) = ψ0(ξ, η)+ εψ1(ξ, η)+ · · ·, and w(ξ, η) = w0(ξ, η)+ εw1(ξ, η)+ · · · and
substituting these into equations (3.29 - 3.30) then one gets:

• A system for O(1) as follows

ψ0ξξ
+ ψ0 = 0, (3.31)

w0ξξ
+ ψ0ξξ

+Q2w0 + β2w0ξ
= 0. (3.32)

• A system for O(ε) as follows

ψ1ξξ
+ ψ1 = −2ψ0ξη

− η3w0ξξ
− β1(1 − U)ψ0ξ

+
β2

1U
2

c1
ψ0
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− η1w
2
0ψ0ξξ

+ η2w0ψ0ξξ
− 2η1ψ0ξ

w0w0ξ

+ η2w0ξ
ψ0ξ

+ η4ψ0w0

+ c̃3

(

β2
1U

2

c21
ψ3

0 +
3β1U

c1
ψ2

0ψ0ξ

+3ψ0ψ
2
0ξ

+
c1

β1U
ψ3

0ξ

)

, (3.33)

w1ξξ
+ ψ1ξξ

+ Q2w1 + β2w1ξ
= −2

(

w0ξη
+ ψ0ξη

)

− β2w0η
. (3.34)

From equation (3.31) one gets a general solution as follows

ψ0(ξ, η) = A(η) cos(ξ + φ(η)). (3.35)

After substituting the solution into equation (3.32) then the equation becomes

w0ξξ
+ β2w0ξ

+Q2w0 = A(η) cos(ξ + φ(η)). (3.36)

The general solution of equation (3.36) is

w0(ξ, η) = c1(η)e
r1ξ + c2(η)e

r2ξ + f1(η) cos(ξ + φ(η))

+ f2(η) sin(ξ + φ(η)), (3.37)

with

r1,2 = 1
2

(

−β2 ±
√

β2
2 − 4Q2

)

,

f1(η) = (Q2−1)A(η)
(Q2−1)2+β2

2

,

f2(η) = β2A(η)
(Q2−1)2+β2

2

,

where r1 and r2 are either real negative or complex with negative real part, c1(η), c2(η)
and φ(η) can be determined from initial conditions.
From equations (3.35) and (3.37) one gets

ψ0ξ
= −A(η) sin(ξ + φ(η)),

ψ0ξη
= −

dA(η)

dη
sin(ξ + φ(η)) −A(η) cos(ξ + φ(η))

d φ(η)

dη
,

ψ0ξξ
= −A(η) cos(ξ + φ(η)),

w0ξ
= r1c1(η)e

r1ξ + r2c2(η)e
r2ξ − f1(η) sin(ξ + φ(η))

+ f2(η) cos(ξ + φ(η)),

w0η
= er1ξ

d c1(η)

dη
+ er2ξ

d c2(η)

dη
+ cos(ξ + φ(η))

d f1(η)

dη

+ sin(ξ + φ(η))
d f2(η)

dη
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+
(

− f1(η) sin(ξ + φ(η)) + f2(η) cos(ξ + φ(η))
)

d φ(η)

dη
,

w0ξξ
= r2

1c1(η)e
r1ξ + r2

2c2(η)e
r2ξ − f1(η) cos(ξ + φ(η))

− f2(η) sin(ξ + φ(η)),

w0ξη
= r1e

r1ξ
d c1(η)

dη
+ r2e

r2ξ
d c2(η)

dη
− sin(ξ + φ(η))

d f1(η)

dη

+ cos(ξ + φ(η))
d f2(η)

dη

−
(

f1(η) cos(ξ + φ(η)) + f2(η) sin(ξ + φ(η))
)

d φ(η)

dη
.

After substituting these into the equations of order O(ε), one gets

ψ1ξξ
+ ψ1 = g1(ξ, η), (3.38)

w1ξξ
+Q2w1 + β2w1ξ

+ ψ1ξξ
= g2(ξ, η), (3.39)

where

g1(ξ, η) = a0 + a1c1(η)e
r1ξ + a2c2(η)e

r2ξ

+ η1A(η)
(

c1(η)e
r1ξ + c2(η)e

r2ξ
)

cos(ξ + φ(η))

+ (η4 − η2)A(η)
(

c1(η)e
r1ξ + c2(η)e

r2ξ
)

cos(ξ + φ(η))

+ 2η1A(η)
(

r1c1(η)
2e2r1ξ + r2c2(η)

2e2r2ξ

+(r1 + r2)c1(η)c2(η)e
(r1+r2)ξ

−η2

(

r1c1(η)e
r1ξ + r2c2(η)e

r2ξ
))

sin (ξ + φ(η))

+
(

a3c1(η)e
r1ξ + a4c2(η)e

r2ξ
)

cos (2 (ξ + φ(η)))

+
(

a5c1(η)e
r1ξ + a6c2(η)e

r2ξ
)

sin (2 (ξ + φ(η)))

+ a7 cos(ξ + φ(η)) + a8 sin(ξ + φ(η))

+ a9 cos(2(ξ + φ(η))) + a10 sin(2(ξ + φ(η)))

+ a11 cos(3(ξ + φ(η))) + a12 sin(3(ξ + φ(η))),

g2(ξ, η) = b1r1e
r1ξ + b2r2e

r2ξ + b3 cos(ξ + φ(η)) + b4 sin(ξ + φ(η))

with

a0 =
(Q2−1)η4 A(η)2

2D0
,

a1 = r1 η1 β2 A(η)2

D0
− η3r1

2,

a2 = r2 η1 β2 A(η)2

D0
− η3r2

2,
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a3 = η1
D0

A(η)2 (2 (Q2 − 1) − β2r1) ,

a4 = η1
D0

A(η)2 (2 (Q2 − 1) − β2r2) ,

a5 = η1
D0

A(η)2 (r1Q
2 + 2β2 − r1) ,

a6 = η1
D0

A(η)2 (r2Q
2 + 2β2 − r2) ,

a7 =
(

β2

1
U2

c1
+ 2dφ(η)

dη
+ η3

D0

(1 −Q2)
)

A(η)

+
(

3c̃3
4

(

1 +
β2

1
U2

c2
1

)

+ η1
4D2

0

(

(Q2 − 1)
2
+ 3β2

2

))

A(η)3,

a8 = 2dA(η)
dη

+
(

β1 (1 − U) + β2η3
D0

)

A(η)

−
(

3c̃3
4

(

c1
β1U

+ β1U

c1

)

+ β2η1
2D0

(Q2 − 1)
)

A(η)3,

a9 =
(Q2−1)
D0

(

η4
2
− η2

)

A(η)2,

a10 =
(

η4−2η2
2D0

)

β2A(η)2,

a11 =
(

−3c̃3
4

(

c1
U
− β1U

c1

)

+
η1β2(1−Q2)

2D2

0

)

A(η)3,

a12 =
(

c̃3
4

(

c1
β1U

− 3β1U

c1

)

+ 3β2η1
2D2

0

(Q2 − 1)
)

A(η).

b1 = −
(

2d c1(η)
dη

+ β2c1(η)
)

,

b2 = −
(

2d c2(η)
dη

+ β2c2(η)
)

b3 = df2(η)
dη

− f1(η)
dφ(η)
dη

−A(η)dφ(η)
dη

− β2f2(η),

b4 = −d f1(η)
dη

− f2(η)
d φ(η)
dη

− dA(η)
dη

d φ(η)
dη

+ β2f1(η),

D0 = (Q2 − 1)2 + β2
2 .

From equation (3.38) one knows that the secular terms are the terms containing cos(ξ +
φ(η)) and sin(ξ + φ(η)). After equating to zero the coefficient of the secular terms, one
gets

(

β2
1U

2

c1
+ 2

dφ(η)

dη
+
η3(Q

2 − 1)

D0

)

A(η)

+

(

η1

4D2
0

(

(Q2 − 1)2 + 3β2
2

)

+
3

4
c̃3(1 +

β2
1U

2

c21
)

)

A(η)3 = 0, (3.40)

dA(η)

dη
+

1

2

(

β1 − β1U +
β2η3

D0

)

A(η)

−
1

2

(

3c̃3(c
2
1 + β2

1U
2)

4β1c1U
+
β2η1

2D2
0

(Q2 − 1)

)

A(η)3 = 0. (3.41)
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From equation (3.41) one obtains

dA(η)

dη
= −

1

2

(

β1 − β1U +
β2η3

D0

)

A(η)

+
1

2

(

3c̃3(c
2
1 + β2

1U
2)

4β1c1U
+
β2η1

2D2
0

(Q2 − 1)

)

A(η)3, (3.42)

from which the critical flow velocity follows as

U = 1 +
β2η3

β1

(

(Q2 − 1)2 + β2
2

) .

Note that the highest flow velocity is obtained for Q = 1.
The nontrivial critical point of equation (3.42) is

A =

(

4β1c1D0U (β1D0(1 − U) + β2η3)

3c̃3D2
0(c

2
1 + β2

1U
2) + 2β1β2c1η1U(Q2 − 1)

) 1

2

. (3.43)

In absence of a dynamic absorber one gets the following

A0 =

(

4β2
1c1U(1 − U)

3c̃3(c
2
1 + β2

1U
2)

) 1

2

. (3.44)

Comparing A from (3.43) and with A0 from (3.44) one obtains

A

A0
=







1 + β2η3
β1D0(1−U)

1 + 2β1β2c1η1U(Q2−1)
3c̃3D2

0
(c2

1
+β2

1
U2)







1

2

. (3.45)

From equation (3.43) it follows readily that, for case Q ≤ 1 and U > 1 + β2η3
β1D0

one gets

A =

(

4β1c1D0U {β1D0(1 − U) + β2η3}

3c̃3D2
0(c

2
1 + β2

1U
2) + 2β1β2c1η1U(Q2 − 1)

) 1

2

,

<

(

4β2
1c1U(1 − U)

3c̃3(c21 + β2
1U

2)

) 1

2

,

= A0. (3.46)

From here one concludes that the dynamic absorber is useful to suppress the amplitude of
the vibrations. A similar result holds for Q > 1. From equation (3.45), it can be shown
that the optimal amplitude suppression, i.e. the lowest ratio of A over A0, is obtained for
Q = 1. In Figure 4, the amplitude ratio A

A0

as a function of wind velocity U for various
values of tuning parameter Q is shown. The same specific parameter values are used as for
the linear example, i.e. one sets η1 = 0.024, η3 = 0.33, β1 = 1.285, c1 = −3, c̃3 = 5.867 and
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Figure 4: Comparison of amplitude ratios A

A0

versus wind velocity U for β2 = 0.028 and
various values of Q

β2 = 0.028. The figure shows clearly that the optimal suppression result is obtained for
Q = 1. In that case the critical flow velocity is the highest and the vibration amplitude
is the lowest. Figure 5 shows the comparison of amplitude and critical wind velocity for
the seesaw oscillator with and without a dynamic absorber. One can see that the critical
velocity is shifted from U = 1 to U = 10.17. Also the amplitude of the vibrations is
suppressed to a lower value for U > 1. Note that this critical flow velocity compares with
the highest critical flow velocity, U , as obtained from the linear example. The asymptotic
analysis does not reproduce the re-stabilization phenomenon as obtained from the linear
analysis. This may be understood from the fact that the linear analysis does not assume
ε to be small. The asymptotic analysis under-estimates the actual critical flow velocity.
However, the amplitude occurring after the first critical flow velocity are rather small. The
asymptotic analysis adequately calculate the final instability after which oscillations with
larger amplitudes are found.

4 Conclusions

The suppression of wind-induced vibrations of a seesaw-type oscillator by means of a dy-
namic absorber has been considered in this paper. The absorber is placed inside the
cylinder of the seesaw oscillator.
The linear analysis shows that an optimal combination of absorber tuning Q and damping
coefficient β2 exists, such that the critical flow velocity is shifted to the highest possible
value. This analysis also shows that a re-stabilization phenomenon may occur for a flow
velocity above the critical flow velocity. Subsequently, a second critical flow velocity is
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a dynamic absorber
amplitude with 

a dynamic absorber
amplitude without

u

A

Figure 5: Comparison of amplitude and critical wind velocity for the seesaw oscillator with
and without a dynamic absorber for β2 = 0.028 and Q = 1.

found.
The nonlinear analysis using the two time scales method, shows that the absorber sup-
presses the vibration amplitudes that exist above the critical flow velocity. The (single)
critical flow velocity obtained from the asymptotic analysis corresponds with the highest
critical flow velocity obtained from the linear analysis. The asymptotic analysis neglects
the first instability and does not reproduce the re-stabilization phenomenon.
One concludes that a small dynamic absorber is capable of suppressing wind-induced vi-
brations of a seesaw-type oscillator in the following way,

1. The critical flow velocity is shifted to a higher value from U = 1 to U = 1 +
β2η3

β1((Q2−1)2+β2

2)
.

2. The amplitudes of the oscillations occurring above the critical flow velocity are re-
duced.
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of absorbers, 1st edition, CERM akademické nakladatelstvi, s.r.o., Brno, Czech Republic,
2001.

[17] Tondl, A., Quenching of self-excited vibrations, Elsevier science publishers, Amster-
dam, 1991.

[18] Nayfeh, A. H., Mook, D. T., Nonlinear Oscillations, John Wiley & Sons, Inc., New
York, 1995.

[19] Goldstein, H. , Classical mechanics, 2nd edition, Addison - Wesley publishing company,
Inc., 1980.

[20] Nigol, O. & Buchan, P. G., Conductor galloping part I - Den Hartog mechanism,
IEEE Trans. Pow. App. Sys, Vol. PAS-100, No. 2 (1981), pp. 699 - 707.

[21] Online help.
http://www.tam.cornell.edu/Rand.html#pub


