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Solution of vector Stefan problems with cross-diffusion

F.J. Vermolen 1, C. Vuik

Delft University of Technology, Department of Applied Mathematical Analysis,
Mekelweg 4, 2628 CD Delft, the Netherlands

Abstract

A general model for the dissolution of particles in multi-component alloys is pro-

posed and analyzed. The model is based on diffusion equations with cross-terms

for the several species, combined with a Stefan condition as the equation of motion

of the interface between the particle and diffusant phase. To facilitate the analysis

we use a diagonalization argument or Jordan factorization for the diffusion matrix.

Self-similar solutions with the Boltzmann transformation are derived to get insight

into qualitative behavior of the solution and for comparison with numerical solutions.

Several numerical schemes for the solution of the Stefan problem are proposed and

compared. It turns out that diagonalization is usefull for numerical purposes too.

However, for the case of position dependent diffusion coefficients or a non diagonal-

izable diffusion matrix, one has to use a different scheme. Here, we analyze stability

and workload of several time integrations.

Keywords: Multi-component alloy, Particle dissolution, Cross-diffusion, Vector-valued Stefan problem, Self-similar solution

1 Introduction

In the thermal processing of both ferrous and non-ferrous alloys, homogenization of the
as-cast microstructure by annealing at such a high temperature that unwanted precipitates
are fully dissolved, is required to obtain a microstructure suited to undergo heavy plas-
tic deformation as an optimal starting condition for a subsequent precipitation hardening
treatment. Such a homogenization treatment, to name just a few examples, is applied in
hot-rolling of Al killed construction steels, HSLA steels, all engineering steels, as well as
aluminum extrusion alloys. Although precipitate dissolution is not the only metallurgical
process taking place, it is often the most critical of the occurring processes. The minimum
temperature at which the annealing should take place can be determined from thermody-
namic analysis of the phases present. The minimum annealing time at this temperature,
however, is not a constant but depends on particle size, particle geometry, particle concen-
tration, overall composition etc.

Due to the scientific and industrial relevance of being able to predict the kinetics of
particle dissolution, many models of various complexity [25, 14, 10, 35, 3, 23, 22, 27,
12, 1, 26, 15, 24, 34, 7, 21, 11, 2] have been presented and experimentally validated. In
recent years the simpler models covering binary and ternary alloys have been extended

1corresponding author, e-mail: F.J.Vermolen@math.tudelft.nl
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to cover multi-component particles [29, 31, 30]. These advanced models cover a range of
physical assumptions concerning the dissolution conditions and the initial microstructure.
Furthermore, mathematical implications (such as a possible bifurcation of the solution,
monotonicity of the solution and well-posedness) are addressed and mathematically sound
extensions to the case of n compound particles, with proven theorems concerning existence
of mass-conserving solutions and solution bounds, have been derived.

In the current paper we formulate the model for particle dissolution in multi-component
alloys in which cross-diffusion of the alloying elements is taken into account. Using diago-
nalization, we show that the case of cross-diffusion can be formulated similarly to the case
where no cross-diffusion takes place, only the thermodynamic relation for the interfacial
(equilibrium) concentrations changes. We give asymptotic solutions for the dissolution of
a planar particle. We show that under certain circumstances the multi-component prob-
lem (a ’vector-valued’ Stefan problem) can be approximated by a binary problem (’scalar’
Stefan problem). Furthermore, we formulate several numerical methods to solve the cross-
diffusion problem of which we compare its stability and workload. We show that the
diagonalization, if applicable, is very usefull for numerical purpose too.

2 The model

The as-cast microstructure is simplified into a representative cell containing the ’matrix’
of phase α and a single particle of phase β of a specific form, size and location of the
cell boundary. The boundary between the β-particle and α-phase is referred to as the
interface. Particle dissolution is assumed to proceed by a number of the subsequent steps
[12, 26]: decomposition of the particle, atoms from the particle crossing the interface and
diffusion of these atoms in(to) the α-phase. Here we take the effects of cross-diffusion into
account. We assume in this work that the first two mechanisms proceed sufficiently fast
with respect to diffusion. Hence, the interfacial concentrations are those as predicted by
thermodynamics (local equilibrium).

In [30] we considered the dissolution of a stoichiometric particle in a ternary alloy. The
hyperbolic relationship between the interfacial concentrations for ternary alloys is derived
using a three-dimensional Gibbs space. For the case that the particle consists of n chemical
elements apart from the atoms that form the bulk of the β-phase, a generalization to an n-
dimensional Gibbs hyperspace has to be made. The Gibbs surfaces become hypersurfaces.
We expect that similar consequences follow and that hence the hyperbolic relation between
the interfacial concentrations remains valid for the general stoichiometric particle in a
multi-component alloy. We denote the chemical species by Spi, i ∈ {1, ..., n+1}. We denote
the stoichiometry of the particle by (Sp1)m1

(Sp2)m2
(Sp3)m3

(...)(Spn)mn
. The numbers

m1, m2, ... are stoichiometric constants. We denote the interfacial concentration of species
i by csol

i and we use the following hyperbolic relationship for the interfacial concentrations:

(csol
1 )m1(csol

2 )m2(...)(csol
n )mn = K = K(T ). (1)
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The factor K is referred to as the solubility product and depends on temperature T .
The position of the moving interface between the β-particle and α-phase is denoted by

S(t). Consider a one-dimensional domain, i.e. there is one spatial variable, which extends
from 0 up to M (the cell size). For cases of low overall concentrations in the alloy, the
cell size M may be large and the solution resembles the case where M is infinite. The
spatial co-ordinate is denoted by r, 0 ≤ S(t) ≤ r ≤ M . This domain is referred to as
Ω(t) := {r ∈ R : S(t) ≤ r ≤ M}. The α-phase where diffusion takes place is given by Ω(t)
and the β-particle is represented by the domain 0 ≤ r < S(t). Hence for each alloying
element, we have for r ∈ Ω(t) and t > 0 (where t denotes time)

∂ci

∂t
=

n
∑

j=1

Dij

ra

∂

∂r

{

ra ∂cj

∂r

}

, for i ∈ {1, ..., n}. (2)

Above equations follow from thermodynamic considerations, their derivation can for in-
stance be found in [13, 10]. Here Dij and ci respectively denote the coefficients of the
diffusion matrix and the concentration of the species i in the α-rich phase. This relaxes
the assumption that the alloying elements diffuse independently. When cross-diffusion is
neglected, the diffusion matrix is diagonal. The geometry is planar, cylindrical and spher-
ical for respectively a = 0, 1 and 2. Let c0

i denote the initial concentration of each element
in the α phase, i.e. we take as initial conditions (IC)

(IC)







ci(r, 0) = c0
i (r) for i ∈ {1, ..., n}

S(0) = S0.

At a boundary not being an interface, i.e. at M or when S(t) = 0, we assume no flux
through it, i.e.

∂ci

∂r
= 0, for i ∈ {1, ..., n}. (3)

Furthermore at the moving interface S(t) we have the ’Dirichlet boundary condition’ csol
i

for each alloying element. The concentration of element i in the particle is denoted by
cpart
i , this concentration is fixed at all stages (see Reiso et al [21]). The dissolution rate

(interfacial velocity) is obtained from a mass-balance of the atoms of alloying element i.
For t > 0 and i, j ∈ {1, ..., n}, the mass-balance per unit area leads to:

ci(S(t), t) = csol
i

(

cpart
i − csol

i

) dS

dt
=

n
∑

j=1

Dij
∂cj

∂r
(S(t), t)



















⇒
n
∑

k=1

Dik

cpart
i − csol

i

∂ck

∂r
(S(t), t) =

n
∑

k=1

Djk

cpart
j − csol

j

∂ck

∂r
(S(t), t).

(4)
The right-hand part of above equations follows from local mass-conservation of the com-
ponents. Above formulated problem falls within the class of Stefan-problems, i.e. diffusion

3



with a moving boundary. Since we consider simultaneous diffusion of several chemical
elements, it is referred to as a ’vector-valued Stefan problem’. The unknowns in above
equations are the concentrations ci, interfacial concentrations csol

i and the interfacial posi-
tion S(t). All concentrations are non-negative. The coupling exists in both the diffusion
equations, equation of motion and the values of the concentrations at the interfaces between
the particle and α-rich phase. This strong coupling complicates the qualitative analysis of
the equations. For a mathematical overview of Stefan problems we refer to the textbooks
of Crank [8], Chadam and Rasmussen [5] and Visintin [33].

3 Qualitative remarks and analytical solutions

In this section we first diagonalize the diffusion matrix to facilitate the analysis of the
equations. Subsequently, we show that the concentration profiles do not necessarily satisfy
the maximum principle. Finally, similarity solutions and asymptotic solutions are given
and motivated. These solutions are used for validation of the numerical scheme.

3.1 The vector-valued Stefan problem: decomposition of the dif-

fusion matrix

Subsequently, we change into a vector notation of the equations. We define the vectors
c := (c1, c2, . . . cn)T , cp := (cpart

1 , cpart
2 , . . . , cpart

n )T , cs := (csol
1 csol

2 . . . , csol
n )T , then the

diffusion equations become in vector notation

∂

∂t
c =

1

ra

∂

∂r

{

raD
∂

∂r

}

c. (5)

The equation of motion of the interface becomes in vector notation:

(cp − cs)
dS

dt
=

∂

∂r
Dc(S(t), t).

Since we assume that D is constant, it is convenient for the analysis of equation (5) to
look at a decomposition of the diffusion matrix D. Therefore we use the Decomposition
Theorem in linear algebra, which says that for each D ∈ R

n×n there exists a non-singular
P ∈ R

n×n such that Λ = P−1DP , where Λ represents a Jordan block-matrix (see for
instance Birkhoff and MacLane [4]). For cases where D has n independent eigenvectors, i.e.
D is diagonalizable, Λ is diagonal with the eigenvalues of D on the main diagonal. Further,
the columns of the matrix P consists of the eigenvectors of D. In the more general case of
a Jordan decomposition we have that the matrix P consists of the generalized eigenvectors
of D, which are obtained from solution of

(D − λI)wi+1 = wi, with w1 = v,
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where I ∈ R
n×n is the identity matrix and v and wi are an eigenvector and generalized

eigenvectors of D respectively, belonging to the eigenvalue λ whose geometric multiplicity
is less than the algebraic multiplicity. For the coming we assume that the eigenvalues are
real. Substitution of the decomposition of D into Eq.(5) and using that D is constant gives

∂

∂t
c =

1

ra

∂

∂r

{

ra ∂

∂r

}

PΛP−1c ⇔ ∂

∂t
P−1c =

1

ra

∂

∂r

{

ra ∂

∂r

}

ΛP−1c

(cp − cs)
dS

dt
=

∂

∂r
PΛP−1c(S(t), t) ⇔ P−1 (cp − cs)

dS

dt
=

∂

∂r
ΛP−1c(S(t), t).

We define the transformed concentrations as

u := P−1c, us := P−1cs

up := P−1cp, u0 := P−1c0

then the diffusion equation and equation of motion change into

∂

∂t
u =

1

ra

∂

∂r

{

ra ∂

∂r

}

Λu

(up − us)
dS

dt
=

∂

∂r
Λu(S(t), t).

(6)

Above equations involve Jordan matrices with the eigenvalues of the diffusion matrix. For
non-defective matrices the matrix in the above expressions is diagonal and the system is
fully uncoupled. The homogeneous Neumann conditions at the non-moving boundary are
similar for the transformed concentrations due to the linear nature of the transformation.
Further, we have for t = 0

uj =







u0
j , for x ∈ Ω(0),

upart
j , for x ∈ [0, M ] \ Ω(0).

j ∈ {1, . . . , n} (7)

From the decomposition of the diffusion matrix, with c = Pu ⇒ ci =

n
∑

j=1

pijuj, the coupling

between the interfacial concentrations via the hyperbolic relation (1) changes into

(
n
∑

j=1

p1ju
s
j)

m1(
n
∑

j=1

p2ju
s
j)

m2(. . .)(
n
∑

j=1

pnju
s
j)

mn = K = K(T ). (8)

Although this condition becomes more complicated, the analysis is facilitated using the
diagonalization of the diffusion matrix.

In the Jordan-matrix we have one uncoupled concentration for each eigenvalue of D.
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This implies that whenever one eigenvalue is negative, an uncoupled diffusion equation
with a negative diffusivity results for the decomposed system. In other words, we face the
following equation

∂ui

∂t
= −µ

1

ra

∂

∂r

{

ra ∂ui

∂r

}

, with µ := −λ < 0, for x ∈ Ω(t), t > 0.

It is well-known that the above equation is unstable with respect to perturbations and
hence the problem is ill-posed. This motivates the requirement that the eigenvalues of the
diffusion matrix have to be positive.

3.2 Violation of the maximum principle

For the case of non-coupled diffusion equation it is well-known that solutions of diffusion
equations satisfy a maximum principle. Therefore, after diagonalization, the transformed
concentrations satisfy this maximum principle as well. We will show in this section that the
transformed concentrations possibly violate the maximum principle. This will be treated
for the case that the boundaries do not move. An extension with a moving boundary can
be made with the self-similar solution for a moving boundary, which is presented later.

We explain this for the ternary case, i.e. D ∈ R
2×2, first with non-moving boundaries.

In Section 3 we will treat the case where the boundary moves. The Jordan decomposition
then gives

Λ =

(

λ 1
0 λ

)

.

Hence the system of two equations is reduced to for x ∈ (0, 1), t > 0:



















∂u2

∂t
= λ

∂2u2

∂x2

∂u1

∂t
= λ

∂2u1

∂x2
+

∂2u2

∂x2
.

(9)

We consider smooth solutions of the above equations in the sense of

(S) : u1, u2 ∈ C2,1((0, 1) × R
+) ∩ C1,0([0, 1] × R

+
0 ).

Furthermore, let us consider the following boundary- and initial conditions

(IBC)



























u2(0, t) = us
2, u1(0, t) = us

1,

u2(x, 0) = u0
2, u1(x, 0) = u0

1,

∂u1

∂x
(1, t) = 0,

∂u2

∂x
(1, t) = 0.
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The solution of the first equation in (9) satisfies a maximum principle, i.e. u2 has no
extreme for x ∈ (0, 1) and t > 0. A proof of this fact is given by Protter and Weinberger
[20]. Since u2 satisfies a maximum principle and a homogeneous Neumann boundary
condition at x = 1, it follows that u2 is concave-upward or concave-downward whenever
us

2 > u0
2 or us

2 < u0
2 respectively, i.e.

∂2u2

∂x2
> 0, whenever us

2 > u0
2; and

∂2u2

∂x2
< 0, whenever us

2 < u0
2.

For the function u1 we will show that an interior minimum cannot exist for any x ∈ (0, 1),
t > 0 whenever us

2 > u0
2 and similarly an interior maximum cannot exist whenever us

2 < u0
2:

Proposition 1 Let the functions u2 and u1 satisfy equations (9) and smoothness condition
(S) with initial and boundary conditions (IBC), then

1. no internal minimum exists for u1 whenever u2 is concave-upward,

2. no internal maximum exists for u1 whenever u2 is concave-downward.

Proof: Since u2 and u1 are smooth, it follows that an internal extreme, say for (x, t) =

(x̂, t̂) ∈ (0, 1) × R
+ is necessarily a stationary point, i.e. for u1 this gives

∂u1

∂t
= 0 =

∂u1

∂x
for (x, t) = (x̂, t̂). Furthermore, for an extreme at (x̂, t̂) to be an internal (local) mini-

mum we must have
∂2u1

∂x2
(x̂, t̂) ≥ 0 and similarly for an internal (local) maximum we have

∂2u1

∂x2
(x̂, t̂) ≤ 0. For any stationary point (x̂, t̂) for u1 we obtain from (9)

λ
∂2u2

∂x2
+

∂2u1

∂x2
= 0 ⇔ λ

∂2u2

∂x2
= −∂2u1

∂x2
for (x, t) = (x̂, t̂).

Suppose that
∂2u2

∂x2
(x̂, t̂) > 0, then

∂2u1

∂x2
(x̂, t̂) < 0 and hence an internal minimum cannot

exist for (x̂, t̂). Since
∂2u2

∂x2
> 0 for us

2 > u0
2, an interior minimum cannot exist for u1 when

us
2 > u0

2 and the first part of Proposition 1 is proven, the proof of the second part of
Proposition 1 is analogous. 2

We will derive, for the case of a ’half-infinite’ domain, a criterion for us
2 and u0

2 for the
existence of an internal extreme. For this semi-unbounded domain x > 0 and t > 0 we
consider self-similar solutions in the form of u2, u1(x, t) = u2, u1(η), η :=

x√
t
. For simplicity
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we will take u0
2 = 0 = u0

1. Substitution into (9) implies















−η

2
u2

′ = λu2
′′

−η

2
u1

′ = λu2
′′ + u1

′′
(10)

Here we use as boundary conditions

(BC)







u2(0) = us
2, u1(0) = us

1,

limη→∞ u2(η) = 0 = limη→∞ u1(η).

For simplicity we set f = f(η) = u2
′ and g = g(η) = u1

′, then we obtain the following
solution for f :

f = C1e
− η2

4λ ,

and for the function g we obtain the following linear differential equation:

g′ +
η

2λ
g =

η

2λ2
f

The above differential equation is solved using an integrating factor to obtain

g =

(

C1

η2

4λ2
+ C2

)

e− η2

4λ .

Integration of the functions f and g gives:

u1 = C1

1

4λ2

∫ η

0

s2e− s2

4λ ds + C2

∫ η

0

e− s2

4λ ds + D1

u2 = C1

∫ η

0

e− s2

4λ + D2

By partial integration the integral in the upper equation is computed to yield

u1 =
C1

2λ2

(

−ηλe− η2

4λ + λ
√

πλerf(
η

2
√

λ
)

)

+ C2

√
πλerf(

η

2
√

λ
) + D1

u2 = C1

√
πλerf(

η

2
√

λ
) + D2

The function u1 is monotonous whenever g does not change sign. Furthermore, u1 is
monotonous if and only if u1 is monotonous in space and time. Using the boundary
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conditions the integration constants can be computed. For the function g then follows

g = g(η) = u1
′ =

(

1

2
us

2 − us
1 −

us
2

4λ2
η2

)

e− η2

4λ2

√
πλ

.

The above equation implies that u1 exhibits a (local) interior extreme whenever
1

2
us

2 − us
1 > 0.

We summarize the result in Proposition 2:

Proposition 2 Consider equations (10) for a semi-unbounded domain, supplemented with

boundary conditions (BC), then the self-similar solution with u2, u1(x, t) = u2, u1(η), η :=
x√
t

has an interior extreme whenever
1

2λ
us

2 − us
1 > 0.

3.3 Similarity solutions and asymptotics

In this section we consider the Stefan problem in an unbounded domain. First we deal with
the diagonalizable case where we consider an exact solution and an asymptotic approxi-
mation. Subsequently we deal with the non-diagonalizable case where we also consider an
exact solution and an asymptotic approximation. Atkinson et al [2] use a slightly different
procedure to derive a self-similar solution for the dissolution of stoichiometric particles in
steel. The difference between their problem and our problem is the presence of two moving
boundaries:

1. a boundary between the particle and the diffusant (in their case austenite),

2. a boundary between the diffusant and another phase in which diffusion is neglected
(in their case ferrite).

There and in this paper a self-similar solution based on Boltzmann transformation is de-
rived. Furthermore, in this paper we extend the solution to approximate solutions in terms
of a quasi-binary approach if the particle concentrations are large compared to the other
concentrations.

3.3.1 The exact solution of Neumann for the diagonalizable case

As an trial solution of equations (6) and (7) we assume that the interfacial concentrations
us are constant. Furthermore, we assume that the diffusion matrix, D, is diagonalizable.
Using a similar procedure as in [29], one obtains the solution for each component:

ui = u0
i + (u0

i − us
i )

erfc(
r − S0

2
√

λit
)

erfc(
k

2
√

λi

)

, for i ∈ {1, . . . , n}.
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The assumption that S = S0 + k
√

t leads to the following problem to determine k and us

(P1)































u0
i − us

i

up
i − us

i

·
√

λi

π
· e

− k2

4λi

erfc( k
2
√

λi
)

=
k

2
, for i ∈ {1, . . . , n},

(

n
∑

j=1

p1ju
s
j)

m1(

n
∑

j=1

p2ju
s
j)

m2(. . .)(

n
∑

j=1

pnju
s
j)

mn = K = K(T ).

Here the unknowns are the transformed interfacial concentrations us and rate-parameter
k. In above problem there is no time-dependence, hence the ansatz of time-independent
transformed interfacial concentrations (and hence the physical interfacial concentrations)
is not contradicted. Due to the non-linear nature of the equations, the solution is in general
not unique. We apply numerical zero-point methods to obtain the solution. To get insight
in the qualitative aspects of the solution, we consider some approximate solutions in the
next subsubsection.

3.3.2 An asymptotic solution for the diagonalizable case

Suppose that ||us−u0|| � ||up−us||, then the solution of problem (P1) can be approximated
by the solution of

(P2)



























k = 2
u0

i − us
i

up
i − us

i

√

λi

π
, for i ∈ {1, . . . , n},

(

n
∑

j=1

p1ju
s
j)

m1(

n
∑

j=1

p2ju
s
j)

m2(. . .)(

n
∑

j=1

pnju
s
j)

mn = K = K(T ).

Suppose that the initial concentrations are zero, then u0 = 0, further we assume that
the transformed particle concentration is much larger than the transformed interfacial
concentrations, i.e. us

i � up
i for i ∈ {1, . . . , n}, then it follows that the first equation of

(P2) becomes

k ≈ 2
us

1

up
1

√

λ1

π
. (11)

Hence the equation of motion of the interface becomes

dS

dt
≈ −us

1

up
1

√

λ1

πt
. (12)
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Further, the following recurrence relation between the transformed interfacial concentra-
tions follows (see also [29], [32] for the derivation):

us
i =

up
i

up
1

√

λ1

λi
us

1.

Substitution of above transformed interfacial concentrations into the second equation of
(P3) gives the following real-valued solution

us
1 =















K
(

n
∑

j=1

p1j

up
j

up
1

√

λ1

λj

)m1
(

n
∑

j=1

p2j

up
j

up
1

√

λ1

λj

)m2

(. . .)

(

n
∑

j=1

pnj

up
j

up
1

√

λ1

λj

)mn















1

µ

,

where we defined µ :=
∑n

j=1 mj. Above expression for the transformed interfacial concen-
tration is substituted into the rate equation for the interface (11). This gives

dS

dt
= − 1

up
1















n
∏

k=1

K
(

n
∑

j=1

(

pkj

up
j

up
1

√

λ1

λj

))mk















1

µ
√

λ1

πt
.

In above equation we put the factors up
1 and λ1 out of the summation and product in

the denominator. Furthermore subsequent multiplication of both the denominator and

numerator by
n
∏

k=1

(

√

λk

)1/µ
gives

dS

dt
= − csol

eff

cpart
eff

√

Deff

πt
, (13)

where

csol
eff = K1/µ, Deff =

[

n
∏

i=1

(λk)
mi

]1/µ

, cpart
eff =

[

n
∏

k=1

(

n
∑

j=1

(

pkju
p
j

√

λk

λj

))]1/µ

. (14)

Above equation (14) gives the effective interfacial concentration, effective particle concen-
tration and effective diffusivity. These quantities follow in terms of the solubility product,
transformed particle concentrations and the eigenvalues and eigenvectors of the diffusion
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matrix. The differential equation (13) is solved using separation of variables. Dissolu-
tion times of the particle can be determined then using known parameters such as the
eigenvalues and eigenvectors of the diffusion matrix.

3.3.3 The exact solution of Neumann for the non-diagonalizable case

We deal with a ternary example, where n = 2. Examples with more chemical species can
be treated similarly. When the matrix D is not diagonalizable then we obtain

Λ =

(

λ 1
0 λ

)

as the decomposed form of the diffusion matrix. The set of transformed diffusion equations
become



















∂u1

∂t
= λ

∂2u1

∂x2
+

∂2u2

∂x2

∂u2

∂t
= λ

∂2u2

∂x2

(15)

From the above system it can be seen that the equation for u2 is uncoupled. Its solution
is computed using the self-similarity transformation and subsequently substituted into
the equation for u1. We consider self-similarity solutions u1, u2(x, t) = u1u2, (η), where

η :=
x − S0√

t
, then a similar procedure as in Section 3.4. the following is obtained:

u1 =
C1

2λ2

(

−ηλe− η2

4λ + λ
√

πλerf(
η

2
√

λ
)

)

+ C2

√
πλerf(

η

2
√

λ
) + D1

u2 = C1

√
πλerf(

η

2
√

λ
) + D2

Again we use the trial solution S = S0 +k
√

t, a combination with the boundary conditions
delivers

C1 =
u0

2 − us
2√

πλerfc( k
2
√

λ
)
, D2 = u0

2 − C1

√
πλ

C2 =
1√
πλ

{

u0
1 − us

1

erfc( k
2
√

λ
)
− C1

2

(

√

π

λ
+

k

λ

e− k2

4λ

erfc( k
2
√

λ
)

)}

, D1 = u0
1 −

√
πλC2 − C1

2

√

π
λ
.

Substitution of these constants into the expressions of u1 and u2 gives the transformed
concentrations. Further, the rate factor of the interface movement is obtained from com-
bination of the Stefan condition and the expression for u2. Then we get the following set
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of equations to be solved for k, us
1 and us

2:

(up
2 − us

2)
k

2
√

λ
=

u0
2 − us

2

erfc( k
2
√

λ
)

√

1

π
· e− k2

4λ

(up
1 − us

1)
k

2
√

λ
=

e− k2

4λ

erfc( k
2
√

λ
)

{

(u0
1 − us

1)

√

1

π
+

u0
2 − us

2

2λ
√

π
·
(

1 + 2
k2

4λ
− k

2
√

λ

2√
π

e− k2

4λ

erfc( k
2
√

λ
)

)}

(p11u
s
1 + p12u

s
2)

m1 (p21u
s
1 + p22u

s
2)

m2 = K.

(16)

Note that p
1

and p
2

respectively represent the eigenvector and generalized eigenvector that
correspond to the eigenvalue λ of the defective matrix D. In the next subsection we will
consider some approximations of the solution of the above equations.

3.3.4 An asymptotic solution for the non-diagonalizable case

Suppose |us
2 − u0

2| � |up
2 − us

2|, then k → 0 and hence
e− k2

4λ

erfc( k
2
√

λ
)
→ 1. The above equations

(16) tend to the following expressions:

k

2
√

λ
=

√

1

π

u0
2 − us

2

up
2 − us

2

k

2
√

λ
=

√

1

π

{

u0
1 − us

1

up
1 − us

1

+
u0

2 − us
2

2λ(up
1 − us

1)

}

(17)

As an approximation we set u0
i ≈ 0 and up

i � us
i , then the above equation change into

k = −2

√

λ

π

us
2

up
2

k = −2

√

λ

π

{

us
1

up
1

+
us

2

2up
1λ

}

(18)

From the above equations, we obtain the following relation between us
1 and us

2:

us
2 =

up
2

(up
1 −

up
2

2λ
)
us

1, for up
1 −

up
2

2λ
6= 0.

The above expression is substituted into the bottom equation of equation (16), which
links us

1 and us
2, to obtain a value for us

1. Using this value us
2 can be computed and
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subsequently we can compute the interface rate coefficient k. The interface movement can
then be determined. Note from the above equation that the expression for the interfacial
concentrations is less simple than for the case in which there is no cross-diffusion.

4 . Numerical method for the moving boundary prob-

lem

In general situations the vector-valued Stefan problems cannot be solved analytically. In
order to obtain an approximation numerical methods can be used. The Stefan problems
considered in this paper contain two problems:

• the computation of the moving interface;

• the occurrence of the cross-diffusion terms.

Our main interest is to give an accurate discretization of the boundary conditions for this
Stefan problem with one spatial co-ordinate. For a survey of other methods, we refer to
[25, 14, 19, 6, 9]. Therefore we use the classical moving grid method of Murray and Landis
[17] to discretize the diffusion equations. In this paper we briefly describe the method, for
more details we refer to [29]. In this section we first treat the stability of the numerical
solution of the diffusion equations obtained from various time-integrations. Then, we treat
a one-dimensional discretization of the vector-valued Stefan problem. Finally, we describe
the solution of the cross-diffusion equations with the use of the diagonalization argument.
The numerical performance of the methods is compared experimentally in the next section.

4.1 . Stability analysis of the Numerical method for the non-

diagonalized diffusion equations

In this section we restrict ourselves to a vector cross diffusion problem with fixed bound-
aries. Two methods can be used. First if the diffusion matrix is constant the diagonal-
ization argument can be used (see Section). If this assumption does not hold a numerical
method for the coupled diffusion equations should be used. In the first method (with
diagonalization) the stability properties of the time integration are well-known. In this
section we investigate the stability properties for various time integration methods for the
coupled equations. For the stability analysis we again assume that D is constant. Since,
in future work we will compute the solution of the Stefan problem with cross-diffusion in
more spatial dimensions by the use of Finite Elements, we keep the treatment as general
as possible. Therefore, we consider the time integration of

∂c1

∂t
= D11∆c1 + D12∆c2, (19)

∂c2

∂t
= D21∆c1 + D22∆c2, (20)
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Since the Laplacian operator is negative and self-adjoint, we assume that the discretization
matrix for ∆, denoted by L, is symmetric and negative definite. Hence, its eigenvalues are
negative. Further, we assume that the terms on the main diagonal of D are positive, i.e.
D11, D22 > 0 and D ∈ R

2×2. Then, we write the discretized version as

∂c

∂t
=

(

D11L D12L
D21L D22L

)(

c1

c2

)

=: Ac, (21)

where we use the following notation for N gridpoints:

c1 :=
(

c1,1 c1,2 . . . c1,N

)T
, c2 :=

(

c2,1 c2,2 . . . c2,N

)T
, c =

(

c1

c2

)

. (22)

We observe that the matrix A in equation (21) represents a Kronecker product. For stability
of eq. (20) we require that

<(eig(A)) < 0. (23)

Note that eq. (20) falls into the class of Cauchy problems. Let λ be an eigenvalue of L and
let µ be an eigenvalue of D, then µλ is an eigenvalue of A. This assertion can for instance
be found in Lancaster [16]. Since L is symmetric and only has negative (real-valued)
eigenvalues, this implies in combination with eq. (23) that we should have

<(eig(D)) > 0, (24)

in order to have that perturbations in the solution of equation (21) decrease if time in-
creases.

Now we analyze the numerical stability of the following time integration methods for
equation (21):

1. Euler Forward time integration,

2. Euler Backward time integration,

3. IMplicit EXplicit (IMEX) time integration.

We remark here that the stability analysis is based on the assumption that the eigenvalues
of the discrete Laplacian are negative, i.e. λ ∈ R−. This is always true for a symmetric dis-
cretization. For finite element methods, it follows that the stiffness matrix (the discretized
Laplacian) is always symmetric. However, equations (22) change due to the mass-matrix
M that appears in the Finite Element formulation:

(

M 0
0 M

)

∂c

∂t
=

(

D11L D12L
D21L D22L

)(

c1

c2

)

=: Ac. (25)

Since M is symmetric and assumed to be positive (diagonally dominance), the above
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equation is re-written as

∂c

∂t
=

(

D11M
−1L D12M

−1L
D21M

−1L D22M
−1L

)(

c1

c2

)

=: Ac, (26)

We use that L is symmetric negative definite and that M is symmetric positive definite
(hence M1/2 exists) to show that M−1L has negative (real-valued) eigenvalues. Since
M−1L is similar to M1/2M−1LM−1/2 = M−1/2LM−1/2, it can be seen that the eigenvalues
of M−1L are real-valued due to symmetry of M−1/2LM−1/2. Next we show that M−1L has
negative eigenvalues only. Since (Lx, x) < 0 for all x 6= 0, we have (LM−1/2y, M−1/2y) <
0 for all y 6= 0 (M−1/2 is non-singular). Since M−1/2 is symmetric, it follows that
(M−1/2LM−1/2y, y) < 0 for all y 6= 0. Combined with symmetry this gives that all eigenval-
ues of M−1/2LM−1/2 are negative. Hence, due to the similarity of M−1L to M−1/2LM−1/2,
M−1L has negative (real-valued) eigenvalues only. This implies that the stability analysis
also applies for Finite Element methods and that for Finite elements the matrix L in the
treatment to follow should be replaced by M−1L.

Euler Forward

The Euler Forward time integration method of equation (21) is given by

cn+1 = (I + ∆tA)cn. (27)

If the eigenvalues of A are real, we obtain the following bound on ∆t:

∆t <
2

|λ1|µ1

, (28)

where |λ1| and µ1 respectively represent the maximum absolute value of eig(L) and max-
imum value of eig(D). For the case of finite differences with uniform gridsize h in one
spatial dimension, Gerschgorin’s Theorem delivers

∆t <
h2

2µ1

. (29)

This stability condition co-incides with the stability condition that is obtained if the di-
agonalization argument is combined with an explicit time integration. If eig(D) /∈ R, we
obtain

(1 + λ∆tα)2 + (λ∆tβ)2 < 1, where µ = α + iβ, (30)

as a necessary and sufficient condition for stability. Some elementary algebra reveals that
the above condition co-incides with

∆t <
2<(eig(D))

|eig(D)|2|λ| . (31)
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Euler Backward

The Euler Backwards time integration method of equation (21) is given by

cn+1 = cn + ∆tAcn+1 ⇔ (I − ∆tA)cn+1 = cn. (32)

Since we only consider cases in which <(µ) > 0 and λ < 0, it appears that the Euler
Backward method is unconditionally stable. The use of Euler backward time integration
guarantees the stability of the numerical solution. However, the use of this method gives a
large discretization matrix A, which makes each time-integration step expansive, especially
for more dimensional problems.

IMEX time integration

Here we assume that both D12 and D21 are non-zero. In order to combine the advantages
of the stability of the Euler Backward method with the low cost per iteration step if the
Euler Forward method is used, we analyze the IMEX method. If one of the cross-diffusion
coefficients is zero, then the diffusion equation with the zero cross term can be integrated
by the direct use of Euler Backward to obtain its concentration profile. Subsequently,
this concentration can be substituted into the other diffusion equation to obtain the other
concentration by the use of Euler Backward. Hence the use of IMEX is not necessary to
decrease the cost per time iteration.

In the IMEX time integration we consider the implicit treatment of the terms of the
diffusion matrix that are on the main diagonal and explicit treatment of the off-diagonal
terms, i.e.

cn+1 = cn + ∆t

(

D11L 0
0 D22L

)

cn+1 + ∆t

(

0 D12L
D21L 0

)

cn (33)

This time integration can be represented by

cn+1 =

(

I − ∆t

(

D11L 0
0 D22L

))−1(

I + ∆t

(

0 D12L
D21L 0

))

cn. (34)

Let r and w be an eigenvalue and eigenvector of the above matrix, then we consider

(

I − ∆t

(

D11L 0
0 D22L

))−1(

I + ∆t

(

0 D12L
D21L 0

))

w = rw. (35)

For stability, we need |r| < 1, and the above equation can be written as a generalized
eigenvalue problem

(

I + ∆t

(

0 D12L
D21L 0

))

w = r

(

I − ∆t

(

D11L 0
0 D22L

))

w. (36)

Let v be an eigenvector of L with eigenvalue λ, then, we set w = (v βv)T . Since L is
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symmetric its eigenvectors form a basis for R
n, i.e. it is complete, and since A ∈ R

2n×2n

the set of eigenvectors w represents a basis for R
2n if there are two distinct values for β for

each eigenvector v. Note that

(

I + ∆t

(

0 D12L
D21L 0

))(

v
βv

)

=

(

(1 + ∆tD12λβ)v
(β + ∆tD21λ)v

)

, (37)

and similarly

(

I − ∆t

(

D11L 0
0 D22L

))(

v
βv

)

=

(

(1 − ∆tD11λ)v
(β − ∆tD22λβ)v

)

, (38)

We search β such that the right-hand side of equation (38) is a multiple of the right-hand
side of (37), here this multiple defines the eigenvalue r, hence,

r = r(λ∆t) =
1 + ∆tD12λβ

1 − ∆tD11λ
=

β + ∆tD21λ

β − ∆tD22λβ
. (39)

The above equation gives a quadratic equation for β with solutions:

β±(ξ) =
D22 − D11 ±

√

(D12 − D22)2 + 4D12D21(1 + ξD22)(1 + ξD11)

2D12(1 + ξD22)
, (40)

where we set ξ := −|λ|∆t for ease of notation. First we consider the case D12D21 > 0,
and we assume that β± ∈ R, which is reasonable since ξ < 0. Since β± stays bounded as
ξ → 0, we see that |r| → 1 as ξ → 0. Furthermore, since

lim
ξ→∞

β± = ±
√

D21D11

D12D22

,

it follows that

lim
ξ→∞

|r| =

√

D12D21

D11D22

< 1 if and only if D12D21 < D11D22.

Note that this is also a necessary and sufficient condition for <(eig(D)) > 0, which is
necessary and sufficient for an analytically stable system. Now we consider solutions for ξ
of

|r| = 1, i.e. (1 − ξD12β±)2 = (1 + ξD11)
2. (41)

Note that β± is a function of ξ (see equation (40)). The roots of the above equation are
given by

ξ ∈ {0, −(D11 + D22) ±
√

(D11 + D22)2 − 4(D11D22 − D12D21)

D11D22 − D12D21

}. (42)
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The first root is not interesting and the last two roots are negative or complex-valued since
D11D22 − D21D12 > 0. This implies that none of the roots is positive and we always have
|r| < 1 if D11D22 − D12D21 > 0 and D12D21 > 0 so the method is unconditionally stable.
The roots in equation (42) apply for all cases when β± ∈ R. Since for this case we have
that |r| < 1 also as ξ → ∞ this implies that the chosen time integration is super-stable.

Next we consider D12D21 < 0, then β± ∈ R for small values of ξ, whereas for sufficiently
large values of ξ we have β± /∈ R (see equation (40)). Now we treat the case that β± /∈ R,
the real-valued case was treated in the preceding paragraph where it followed that |r| < 1
for D12D21 > 0. We obtain again that

lim
ξ→∞

|r| =

√

|D12D21|
D11D22

< 1 if and only if |D12D21| < D11D22.

Note that this guarantees that <(eig(D)) > 0. Again we solve |r| = 1, taking into account
that possibly β± /∈ R. Assuming that β± /∈ R, we rewrite equation (39) by

|r|2 =
1 − 2ξD12<(β) + ξ2|β|2

(1 + ξD11)2
= 1. (43)

The real part and modulus of β± follow easily from equation (40). All parameters in the
above equation are real-valued. A solution by MAPLE reveals the solution

ξ ∈ {0,− D11 + D22

D11D22 + D12D21

}.

Note that the roots for the case of a real-valued β also apply, however, these roots are
not treated here since they give non-positive values for ξ. The first root is not interesting,
however, the second root is positive if and only if |D12D21| > D11D22 and D12D21 < 0.
This implies the following criterion for stability if −D12D21 > D11D22:

ξ < − D11 + D22

D11D22 + D12D21

.

Further, it can be seen that if |D12D21| < D11D22, then, there is no positive root and hence
the method is unconditionally stable and super stable.

To summarize this all, we end up with the following theorem:

Theorem 1 Consider the time integration of eq. (22), and let λ be an eigenvalue of the
discretized Laplace operator whose eigenvalues are all negative, D ∈ R

2×2 and D11, D22 > 0,
and let <(eig(D)) > 0, then;
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1. The explicit time integration is stable if

∆t <
2<(eig(D))

|λ||eig(D)|2 .

2. The implicit time-integration is unconditionally stable and super stable.

3. If 0 < |D12D21| < D11D22 then the IMEX time-integration, given in eq. (33), is
unconditionally stable and super stable. If −D12D21 > D11D22 then the IMEX time-
integration is stable if

|λ|∆t < − D11 + D22

D11D22 + D12D21

.

As consequences of the above assertion one can easily prove the following statements:

Corollary 1 Let all hypotheses in Theorem 1 be satisfied, then

1. For all symmetric discretizations, Finite Element discretization in particular, Theo-
rem 1 holds.

2. A consequence of Theorem 1 is that the IMEX time integration is unconditionally
stable if the diffusion matrix is diagonally dominant and if the discretized Laplacian
is symmetric (in particular for Finite Element discretization).

As an example we present the modulus of the eigenvalue r as a function of |λ|∆t for
D11 = 3, D22 = 1, D12 = −0.05 and D21 = −0.01 in Figure 1. We see that that the

magnitude starts at 1 and asymptotically converges towards

√

D12D21

D11D22

as |λ|∆t → ∞.

Moreover, the eigenvalue stays real-valued here since β± are real-valued. In the plot we
use both modes for β±, where mode 1 and mode 2 correspond to β+ and β− respectively.

Further in Figure 2, we plot the case with D12 = 0.05 and otherwise the same data,
where the eigenvalue r becomes complex-valued since β± are no longer real-valued. For
completeness we plot the imaginary part of the eigenvalue r for both modes in Figure 3.
We see that from a certain value of |λ|∆t the eigenvalues become complex. As a final
example we plot the modulus of r as a function of |λ|∆t for D11 = 3, D22 = 1, D12 = 5 and
D21 = −1 in Figure 4. It can be seen that r decreases at the early stages and increases up

to the asymptotic value
√

|D21D12|
D11D22

> 1. The magnitude of the eigenvalue r becomes one at

|λ|∆t = 2.

Numerical experiments reveal that the derived criterion in Theorem 1 is sharp.

4.2 Discretization of the Stefan problem

In this section we describe the full numerical solution of the vector-valued Stefan problems.
First, we describe the discretization of the diffusion equations. Subsequently, the discrete
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Figure 1: The modulus of the eigenvalue r as a function of |λ|∆t for D11 = 3, D22 = 1,
D12 = −0.05 and D21 = −0.01. Mode 1 and mode 2 correspond to β+ and β− respectively.
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Figure 2: The modulus of the eigenvalue r as a function of |λ|∆t for D11 = 3, D22 = 1,
D12 = 0.05 and D21 = −0.01. Mode 1 and mode 2 correspond to β+ and β− respectively.
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Figure 3: The imaginary part of the eigenvalue r as a function of |λ|∆t for D11 = 3,
D22 = 1, D12 = 0.05 and D21 = −0.01. Mode 1 and mode 2 correspond to β+ and β−
respectively.
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Figure 4: The modulus of the eigenvalue r as a function of |λ|∆t for D11 = 3, D22 = 1,
D12 = 5 and D21 = −1. Note that the two modes overlap.
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boundary conditions at the moving interface and the solution procedures to solve the re-
sulting non-linear problem are treated. Finally, the adaptation of the moving boundary is
described.
Discretisation of the interior region
We use a finite difference method with a Euler Forward or backward or IMEX time in-
tegration to solve the diffusion equation in the inner region. An explicitly treated con-
vection term due to grid-movement is included. Since the magnitude of the gradient is
maximal near the moving interface we use a geometrically distributed grid such that the
discretization near the interface is fine and coarse farther away from the moving interface.
Furthermore, we use a virtual grid-point near the moving boundary. The distance between
the virtual node and the interface is chosen equal to the distance between the interface
and the first grid-node. The resulting set of linear equations is solved using a tridiagonal
matrix solver.

Discrete boundary conditions at the interface
We define the discrete approximation of the concentration as cj

i,k, where j, i and k respec-
tively denote the time-step, the index of the chemical (alloying) element and gridnode. The
virtual gridnode behind the moving interface and the gridnode at the interface respectively
have indices k = −1 and k = 0. At the moving interface, we obtain from discretization of
the Stefan condition for i ∈ {1, . . . , n − 1}:

1

cpart
i − csol

i

{

n
∑

j=1

Di,j

ck+1
j,1 − ck+1

j,−1

2∆r

}

=
1

cpart
i+1 − csol

i+1

{

n
∑

j=1

Di+1,j

ck+1
j,1 − ck+1

j,−1

2∆r

}

.

Note that the concentration profile of each element is determined by the value of the
interfacial concentration. Above equation can be re-arranged into a zero-point equation
for all chemical elements. All interfacial concentrations satisfy the hyperbolic relation (1).
Combination of all this, gives for i ∈ {1, ..., n − 1} and i = n

fi(c
sol
1 , . . . , csol

n ) = (cpart
i+1 − csol

i+1)
∑n

j=1 Di,j(c
k+1
j,1 − ck+1

j,−1) − (cpart
i − csol

i )
∑n

j=1 Di+1,j(c
k+1
j,1 − ck+1

j,−1) = 0,

(csol
1 )m1(csol

2 )m2(...)(csol
n )mn = K = K(T ).

To approximate a root for the ’vector-function’ f we use a numerical method. We compare
the solution by use of the ’inaccurate Newton’ method to the Picard iterations. Let z :=
(csol

1 , . . . , csol
n )T , then

zk+1 = zk − J−1(zk)f(zk),

where J denotes the discretized Jacobian matrix, where central differences are used for the
determination of the derivatives of the first n − 1 equations. The iteration is terminated
when sufficient accuracy is reached. This is explained in more detail in [29]. Note that for
each Newton iteration five evaluations of the concentration profiles are needed. Further,
the initial guess must be close to the solution and the convergence of the Newton iteration
scheme is quadratic. Hence, if the method converges, then convergence is fast. The Picard

23



iteration scheme is based on
zk+1 = g(zk),

where the vector-function g is defined as:

csol
1 = g1 :=

K

(csol
1 )m1−1(csol

2 )m2(...)(csol
n )mn

,

csol
i+1 = gi+1 := cpart

i+1 −
(cpart

i − csol
i )
∑n

j=1 Di+1,j(c
k+1
j,1 − ck+1

j,−1)
∑n

j=1 Di,j(c
k+1
j,1 − ck+1

j,−1)
, i ∈ {1, . . . , n − 1}.

A disadvantage of the Picard-iteration scheme is that the convergence is linear. However,
only one evaluation of the concentration profile is needed per iteration, hence cost per
iteration is reduced five times. A criterion for convergence of the Picard iterations is that
the spectral radius of the Jacobian of the function g should be less than one. For large ∆t
we observed that the spectral radius becomes larger than one. For these cases a Picard
iteration scheme with relaxation is used, then

zk+1 = zk + ω(g(zk) − zk),

where ω is the relaxation parameter. For some ω > 0 a slightly better convergence is
obtained, although not for all 0 < ω < 1 the improvement is significant. Further, we see
that the error, defined by ||zk+1 − zk||2, never gets less than 10−6 within 20 iterations.

Adaptation of the moving boundary
The moving interface is adapted according to the stefan condition. In [28] the forward
(explicit) Euler and Trapezium time integration methods are described and compared. It
was found that the (implicit) Trapezium method was superior in accuracy. Furthermore,
the iteration step to determine the interfacial concentrations is included in each Trapezium
step to determine the interfacial position. Hence, the work per time-iteration remains
the same for both time-integration methods. Therefore, the Trapezium rule is used to
determine the interfacial position as a function of time. We terminate the iteration when
sufficient accuracy is reached, i.e. let ε be the inaccuracy, then we stop the iteration when
the inequality

n
∑

i=1

|us
i(p + 1) − us

i(p)| + |Sj+1(p + 1) − Sj+1(p)|
Sj+1 − M

< ε

holds. Here Sj denotes the discrete approximation of the interfacial position at time-step
j. The integer p represents the iteration number during the determination of the interfacial
concentrations and position. We finally remark that a numerical solution for diffusion in
ternary alloys including cross-diffusion for fixed boundaries can be found in Naumann and
Savoca [18].
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4.3 Diagonalization of the diffusion matrix

First the eigenvalues and eigenvectors of the diffusion matrix are computed for the trans-
formation of the concentration. The particle concentrations are also transformed and the
hyperbolic relation between the interfacial concentrations changes. A great advantage
of the diagonalization argument is that a fully implicit method, which is unconditionally
stable, can be used easily to integrate the concentration profile in time. However, the eigen-
values and eigenvectors should be determined at each time-step when the diffusion matrix
is not constant. Further, if the diffusion matrix varies over the domain of computation,
then the method is no longer applicable.

Using the diagonalization argument gives that the discrete boundary conditions at the
interface change into:

λi

upart
i − us

i

uj+1
i,1 − uj+1

i,−1

2∆r
=

λi+1

upart
i+1 − us

i+1

uj+1
i+1,1 − uj+1

i+1,−1

2∆r
, for j ∈ {1, ..., n − 1},

hence

fi(u
j+1
i,0 , uj

i+1,0) := λi(u
j+1
i,1 − uj+1

i,−1)(u
part
i+1 − us

i+1) − λi+1(u
j+1
i+1,1 − uj+1

i+1,−1)(u
part
i − us

i) = 0

fn(us
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s
n) := (

n
∑

j=1

p1ju
s
j)

m1(

n
∑

j=1

p2ju
s
j)

m2(. . .)(

n
∑

j=1

pnju
s
j)

mn − K = 0.

For the determination of the interface position, one uses the Stefan condition obtained
after diagonalization. The method becomes similar to the method described in [29].

5 Numerical experiments

First we present a comparison between the analytical solution and the numerical solution
by the use of the diagonalization argument and Newton iterations. Subsequently, the
various numerical solution techniques are compared.

5.1 Numerical solutions and analytical solutions

As a numerical experiment we show the computation of the dissolution of a planar phase
for the case that the diffusion matrix is diagonalizable. Furthermore, we compare the
computed numerical solutions with the self-similar solution as developed in Section 3. As
input-data we used

c0 = (0, 0)T , cpart = (50, 50)T ,

D =

(

1 −1/2
1/4 2

)

, K = 1.

25



0 20 40 60 80 100 120
0.7

0.75

0.8

0.85

0.9

0.95

1

Time

In
te

rf
ac

e 
po

si
tio

n

Self−similar solution

Finite Volume solution

Figure 5: The interfacial position as a function of time. The dotted curve corresponds to
self-similar solution and the other curve corresponds to the numerical approach.

The above matrix is diagonalizable. In Figure 5 we plot the interface as a function of
time for the self-similar solution and numerical solution, which was obtained by the use
of diagonalization and Newton iterations. As to be expected the solutions co-incide for
small times and start to deviate for later stages. From Figure 5 it is concluded that the
numerical scheme is applicable for cross-diffusion. We further show the interface position
as a function of time for the self-similar (exact) solution and the quasi-binary approach in
Figure 6. It can be seen that the quasi-binary approach is very accurate for this case.

Subsequently, we show the interfacial position as a function of time for the case that
the diffusion matrix is not diagonalizable in Figure 7. The data-set that we used is given
by:

c0 = (0, 0)T , cpart = (100, 50)T ,

D =

(

2 −1
1 2

)

, K = 1.

We show the results for the exact solution, see Section 4.3. and the results for the asymp-
totic approximation (i.e. the quasi-binary approach), see Section 4.4. It can be seen that
the curves co-incide well and hence for this case the asymptotic approach is accurate.

5.2 Comparison of the numerical methods

In this section we compare the performance of several numerical techniques. First we
distinguish between the IMEX and fully implicit time integration methods for the coupled
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Figure 6: The interfacial position as a function of time for the same dataset as in Fig-
ure 5 for the exact self-similar solution and the asymptotic approximation (quasi binary
approach).
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Figure 7: The interface position as a function of time for the case that the diffusion matrix
is not diagonalizable. The exact- and asymptotic solution are shown.
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set of equations. For both time integrations we analyze the performance of the Newton and
Picard iterations to solve the non-linear problem. Finally, we compare these solutions with
those that were obtained by the use of the diagonalization argument. As a test-problem
we take

D =

(

1 −0.25
−0.25 2

)

cp =

(

50
50

)

csol
1 csol

2 = 1 c0 =

(

0
0

)

.

For the above configuration the IMEX time integration of the concentration profiles should
be unconditionally stable with respect to the time-step according to Theorem 1.

5.2.1 The IMEX time integration

Note that the proof of Theorem 1 has been given for the case that the interface position
does not change in time. From the numerical simulations it turned out that convergence
to the solution of the non-linear problem depends on the choice of the time-step and the
grid-size. In Table 1 we present the CPU time for the Newton, Picard (with and without
relaxation) for time-steps ∆t = 0.1 and ∆t = 1. The CPU-time is at t = 100. The number
of iterations is for the numerical solution of the non-linear problem at the second time-step.
All values in Table 1 are for the IMEX time integration. The numbers 0.5 and 1.5 denote
the value of ω used in the relaxated Picard method.

Table 1: CPU-times and number of iterations for the numerical solution of

the non-linear problem for a grid of 50 gridnodes.

method / convergence CPU-time (∆t = 0.1) CPU-time (∆t = 1)
IMEX-Newton 12.08 -
IMEX-Picard 3.36 -

IMEX-Picard (0.5) 3.47 1.33∗

IMEX-Picard (1.5) 3.13 -

∗ inaccurate solution
From Table 1 it can be seen that Newton’s method takes most CPU-time. This is caused

by the fact that for each time iteration we need to evaluate the concentration profiles five
times. Further, it turns out that the IMEX method performs badly when the time-step
is enlarged. The minus-bars in Table 1 denote that the method did not converge (for the
Picard method) or converged to a wrong solution (Newton). Convergence to the wrong
solution in the Newton case could not be avoided by the choice of a better initial guess for
the interface concentrations. For the Picard method, this is attributed to the fact that the
spectral radius of the Jacobian of the function g in the Picard method becomes larger than
one. We remark that the solution can be determined numerically for large ∆t by means of
relaxation of Picard’s method. However, we recommend here to choose a small time-step
∆t instead, since it is not easy to obtain an optimal choice for ω for different values of ∆t
and ∆x.
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5.2.2 The Euler Backward time integration

We remark that this method is unconditionally stable, see Theorem 1. In Table 2 we
present the number of iterations for the solution of the non-linear problem and CPU-time
for the Newton, Picard (with relaxation) methods for time-steps ∆t = 0.1 and ∆t = 1.
The CPU-time is at t = 100. All values in Table 2 are for the fully implicit time-integration.

Table 2: CPU-times and number of iterations for the numerical solution of

the non-linear problem for a grid of 50 gridnodes.

method / convergence CPU-time (∆t = 0.1) CPU-time (∆t = 1)
Euler Backward-Newton 88.82 8.88
Euler Backward-Picard 4.41 1.15

Euler Backward-Picard (0.5) 20.88 3.61
Euler Backward-Picard (1.5) 13.92 2.14

From Table 2 we see that Picard’s method is faster than the Newton method. This agrees
with the observation for the IMEX time-integration. Further, we see that for ∆t = 0.1
the IMPLICIT method takes more CPU-time than the IMEX scheme. However, for large
time-steps it turns out that the Euler Backward method is more reliable than the IMEX
method method. Picard (without relaxation) seems to give the best results. For reasons
of robustness the IMPLICIT method is favorable over the IMEX method. However, for
CPU-time and small time-step we prefer to use the IMEX method. Although the speed-up
of the IMEX method compared to the Euler Backward method does not seem to be very
significant for the Picard iterations compared to the Newton iterations.

5.2.3 Computation times of the IMEX and Euler Backward methods

From the above it seems that the Euler Backward method is advantageous. Since we in-
tend to extend the models to more dimensions as well, we present some CPU-times for 10
time-iterations for a two-dimensional diffusion equations. The discretization is done on an
equidistant grid with the use of Finite Volumes. Furthermore, the values of the interfacial
concentrations are prescribed csol

1 = 1 = csol
2 and the boundaries are fixed. The calculations

are done by the use of an IMEX and Euler Backward time integration. The linear system of
equations has been solved by Gaussian elimination for all cases. The results are presented
in Table 3.

Table 3: Calculation times for 10 time iterations

method / grid 25 × 25 50 × 50 100 × 100 200 × 200
IMEX 0.1500 0.8500 5.7700 46.5700

Euler Backward 0.2800 1.6900 14.0400 116.9400
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From Table 3 it can be seen that the IMEX method requires less CPU-time than the Euler
Backward method. The difference increases as the number of gridnodes increases. This
is a consequence of the fact that the overall discretization matrix of the Euler Backward
method gets larger and gets a larger bandwidth. For three-dimensional problems with
many more gridnodes, this difference is expected to increase. Hence, for small time-steps,
we prefer the use of the IMEX method.

5.2.4 Use of diagonalization of the diffusion matrix

Until now we observed that the Euler Backward method is more robust than the IMEX
method, but the solution of the linear system of equations takes more time, especially
when the number of spatial dimensions increases. If the diagonalization argument is used
then the IMEX method and Euler Backward method are equivalent and hence both effi-
ciency from IMEX and robustness of the Euler Backward are obtained. The CPU-times
and number of iterations are listed in Table 4.

Table 4: CPU-times and number of iterations for the numerical solution of

the non-linear problem for a grid of 50 gridnodes.

method / convergence CPU-time (∆t = 0.1) CPU-time (∆t = 1)
DIAG-Newton 11.22 1.12
DIAG-Picard 2.94 1.01

DIAG-Picard (0.5) 3.00 1.17
DIAG-Picard (1.5) 3.01 0.88

We see from Table 4 that Picard’s method gives the shortest CPU-time. Further, we see
that this method is efficient (shortest computation times for both ∆t = 0.1 and ∆t = 1) and
robust. Therefore, we recommend the use of the diagonalization argument of the diffusion
matrix and the Picard iterations for the non-linear problem. We note that whenever the
diffusion matrix varies over the domain of computation, which is the case when diffusion is
non-linear, then the diagonalization argument is not applicable. However, if the diffusion
matrix is only a function of time, then the diagonalization argument is very beneficial.
Note that then at each time-step the concentrations should be transformed.

Furthermore, if the matrix is not diagonalizable, the diffusion matrix can be transformed
to a Jordan matrix to uncouple some of the diffusion equations. This can also give a speed-
up. Then, a choice between the IMEX and Euler Backward time integration can be made.

Remark: In the numerical experiments we observed that the number of iterations is
smaller for the Newton method than for the Picard iterations. However, the CPU-time is
higher for Newton iterations since each Newton iteration requires multiple evaluation of
the concentration profiles. Further, it was observed that the dependence of the convergence
on the time-step is larger for the Newton iterations than for the Picard iterations.
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6 Conclusions

A model, based on a vector-valued Stefan problem, has been developed to predict dis-
solution kinetics of stoichiometric particles in multi-component alloys. Cross-diffusion of
the alloying elements is taken into account, which gives a strong coupling of the differen-
tial equations. Using a diagonalization argument the vector-valued Stefan problem with
cross-diffusion is transformed into a vector-valued Stefan problem where the cross-terms
vanish whenever the diffusion matrix is diagonalizable. If the diffusion matrix is not di-
agonalizable, the Jordan decomposition is used to facilitate the analysis. The hyperbolic
relation between the interfacial concentrations becomes more complicated, however, since
the eigenvectors of the diffusion matrix have to be taken into account as well. In spite
of this complication, the vector-valued Stefan problem can be approximated by a quasi-
binary in a similar way as for the case in which no cross-diffusion is taken into account for
the vector-valued Stefan problem. Similar as in the case of no cross-diffusion we obtain
expressions for the effective interfacial concentration, particle concentration and effective
diffusion coefficient.

Further, we analyzed several numerical methods for the cross-diffusion problem with
the moving interface. We analyze the Euler Backward time integration method, which is
proven to be unconditionally stable. This method turns out to be very robust when it is
used in the solution of the non-linear system to determine the interfacial concentrations. A
drawback is the long computation time needed to solve the large system of linear equations
from the discretization. This becomes worse as the dimensionality of the problem increases.
The IMEX time-integration method to integrate the concentration profiles as a function
of time is conditionally stable under the circumstance that −D12D21 > D11D22 > 0 and
for other cases the method is unconditionally stable. However, it turns out the method
is less robust when a large time-step is used. Although, the computation times are less
than for the fully implicit method. If diagonalization is used then the IMEX and Euler
Backward time-integration methods are equivalent. Then, stability is guaranteed and the
discretization (stiffness) matrix conserves its original sparsity pattern (A and L have the
same sparsity). Hence, the method is efficient. If the diffusion matrix is constant over
the domain of computation (such as for non-linear diffusion), then the diagonalization
argument is no longer applicable. Further, if the diffusion matrix depends on time only,
then the diagonalization has to be carried out at each time-step. Since D is a small sized
matrix in general, this does not restrict its applicability.
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