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On Rain-wind Induced Vibrations of a Seesaw Oscillator

Hartono and W. T. van Horssen

Abstract

In this paper the rain-wind induced vibrations of a seesaw oscillator will be stud-

ied. The model equations will be derived under the assumption that the position

of the rivulet of water on the oscillator varies in time. The eigenfrequency of the

oscillator and the frequency of the movement of the water rivulet on the oscillator

are assumed to be close to each other. Several Hopf and saddle node bifurcations

will occur when the amplitude of the movement of the water rivulet on the oscillator

is varied.

1 Introduction

There are many examples of rain-wind induced vibrations of elastic structures such as cables
or bridges. The Erasmus bridge in Rotterdam and the Meikonishi bridge in the Nagoya
Harbor in Japan are examples of such elastic structures. The cables of these bridge are
stable under dry wind condition (no rain), but can become unstable when it is raining (see
also [3]). Another instability mechanism can be caused by torsional flutter as for instance
described in [6]. This instability mechanism might have been the cause of the collapse of
the Tacoma Narrows bridge. The first instability mechanism can be described by spring
type oscillators, and the torsional instability mechanism can be modelled by seesaw type
oscillators (see also [1, 2]). In [1, 2] a rather complete analysis of the vibrations of a spring
type oscillator and of a seesaw type oscillator with a fixed position of the water-rivulet on
the oscillators has been presented. And in [9] an analysis for the spring oscillator has been
given when the position of the water ridge on the oscillator varies in time.
In this paper the vibrations of a seesaw oscillator with a time-varying position of a water
ridge on the surface of the oscillator will be studied. In Figure 1 a sketch is given of the
circular cross-section of the seesaw oscillator with such a water ridge (in black) on the
surface. In fact the seesaw oscillator consists of a circular cylinder connected to a rigid
bar. At the other end of the bar a hinge-axis is connected such that the bar-cylinder can
rotate around this axis (see also Figure 1). It is assumed that for each cross-section of the
cylinder the time-varying position of the water ridge is the same.
This paper is organized as follows. In section 2 the equations describing the vibrations
of the seesaw oscillator will be derived. In section 3 and in section 4 the effect of the
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amplitude of the variation in the position of the water rivulet will be studied for different
values of the parameters. Finally in section 5 some conclusions will be drawn.

2 Derivation of the equation of motion

The angle θ, measured positive in clockwise direction, describes the angle between the arm
holding the cylinder and the horizontal line. The angle αs denotes the angle between the
rotation arm and a symmetry axis of the cylinder’s cross-section, counted positive in clock
wise direction, see Figure 1. Further, R is the distance from the cylinder’s axis to the pivot
O. It is assumed that a quasi-steady theory can be used to model the windforces acting on
the cylinder. The quasi-steady theory implies that for the description of the dynamics of
the elastic structure with the flowing medium one may use data which describes the static
situation. More precisely one assumes that the fluid forces on the structure are determined
solely by the instantaneous resultant flow velocity [1, 8]. The aerodynamic moment M
exerted on the structure can be modeled by using the aerodynamic forces exerted on the
cylinder. A moment coefficient curve CM(α) for the structure will be used to describe M .

flow

U
R

M

O

θ

α

αs

r
θR
.

U

Figure 1: The cross-section of the seesaw oscillator, the fluid flow with respect to the
cylinder, and the definitions of the angles α, αs, and θ.

In the dynamic situation the aerodynamic moment is assumed to be given by

M(α) =
1

2
ρ d l R U2

r CM(α), (1)

where ρ is the density of air, d the diameter of the cylinder, l the length of the cylinder
and

α = αs + θ − arctan(
Rθ̇ cos θ

U − Rθ̇ sin θ
), (2)

the angle between the instantaneous velocity vector Ur of the flow relative to the cylinder
and the symmetry axis, measured positive in clockwise direction, and

U2

r = (U − Rθ̇ sin θ)2 + (Rθ̇ cos θ)2. (3)
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The equation of motion is given by :

Iθ̈ + cθθ̇ + kθθ = M(α), (4)

where I is the structural moment of inertia, kθ > 0 the linear torsional spring constant,
and cθ > 0 the structural damping coefficient of the oscillator. Defining the dimensionless
parameters ω2

θ = kθ/I and µ = U/Rωθ and introducing the transformation τ = ωθt, the
following equation is obtained from (4) :

d2θ

dτ 2
+

cθ

ωθI

dθ

dτ
+ θ =

ρdlR3

2I
(µ2 − 2µ

dθ

dτ
sin θ + (

dθ

dτ
)2)CM(α), (5)

where α = αs + θ − arctan(
dθ

dτ
cos θ

µ− dθ

dτ
sin θ

). By assuming that both damping and aerodynamic

moments are small, i.e. :
ρdlR3

2I
= ε,

cθ

ωθI
= 2βθε, (6)

where 0 < ε � 1 it follows from (5) that

d2θ

dτ 2
+ θ = ε[(µ2 − 2µ

dθ

dτ
sin θ + (

dθ

dτ
)2)CM(α) − 2βθ

dθ

dτ
]. (7)

A similar derivation of this equation also can be found in [1]. As described in [7] the CM(α)
curves may be obtained from wind tunnel experiments, and some typical results obtained
from measurements in a wind tunnel are sketched in Figure 2. Now the CM(α) curves will
be approximated by cubical polynomials in α near those values of α for which aerodynamic
instabilities occur, that is, near α = αo for which CM(αo) = 0. So, it is assumed that

CM(α) = c1(α − αo) + c3(α − αo)
3, (8)

where c1 < 0 and c3 > 0. Further it is assumed that the position of the water ridge on the

0.1

−0.1

α o α

CM

π
2

Figure 2: The aerodynamic torsion coefficient CM(α).
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oscillator varies in time according to the following formula

αs − αo = f(t) = A cos(ωt) = A cos(
ω

ωθ

τ), (9)

where A is an amplitude related to the position of the water ridge, and ω is the frequency
of the movement of the water ridge. By putting ω

ωθ

= Ω = 1+ εη, where η is a detuning pa-

rameter and by introducing the transformation Ωτ = σ it follows that (7) can be rewritten
in

d2θ

dσ2
+ Ω−2θ = ε[(

µ2

Ω2
− 2

µ

Ω

dθ

dσ
sin θ + (

dθ

dσ
)2)CM(α) − 2

βθ

Ω

dθ

dσ
] (10)

or in

d2θ

dσ2
+ θ = ε[(µ2 − 2µ

dθ

dσ
sin θ + (

dθ

dσ
)2)CM(α) − 2βθ

dθ

dσ
+ 2ηθ] + O(ε2) (11)

with

α − αo = A cos σ + θ − arctan(
dθ
dσ

cos θ

µΩ−1 − dθ
dσ

sin θ
). (12)

It should be observed that in (10) and in (11) it has been assumed that the frequency ω of
the position of the water ridge on the surface of the oscillator and the frequency ωθ of the
oscillator itself are close to each other. Furthermore, it is assumed that θ and dθ

dσ
are small

such that (12) can be expanded in a Taylor series in θ and dθ
dσ

(around θ = 0 and dθ
dσ

= 0).
Then by substituting (8) into (11) and by setting

θ(σ) = y1(σ) cos(σ) + y2(σ) sin(σ), (13)

dθ(σ)

dσ
= −y1(σ) sin(σ) + y2(σ) cos(σ),

and by using the Taylor expansion of (12) a system of two first order ordinary differential
equations for y1 and y2 is obtained. In this system for y1 and y2 all terms of degree four and
higher are neglected. Then, by applying the first order averaging method to the so-obtained
equations for y1 and y2, one finally obtains

˙̄y
1

= ε[(−µp1 − βθ)ȳ1 − µ2p1ȳ2 − 2µAp2ȳ
2

1
+ 2µAp2ȳ

2

2
+ 2A(p2 − 3p5)ȳ1ȳ2 (14)

−
1

µ
(p3 + 3p4 +

1

2
po(9µ

2 + 4))ȳ3

1
− (p3 + 6po)ȳ

3

2
− (p3 − 6po)ȳ

2

1
ȳ2

−
1

µ
(p3 + 3p4 −

1

2
po(9µ

2 − 12))ȳ1ȳ
2

2
] − εηȳ2,

˙̄y
2

= ε[µ2Ap1 + µ2(p1 + 12po)ȳ1 − (µ(p1 + 12po) + βθ)ȳ2

+A(p2 + 9p5)ȳ
2

1
− A(3p2 + 3p5 + 2po)ȳ

2

2
− 4µA(p2 + po)ȳ1ȳ2 + (p3 + 6po)ȳ

3

1

−
1

µ
(p3 + 3p4 +

1

2
po(9µ

2 + 20))ȳ3

2
−

1

µ
(p3 + 3p4 +

1

2
po(27µ2 + 6))ȳ2

1
ȳ2

+(p3 + 18po)ȳ1ȳ
2

2
] + εηȳ1,
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where ȳ1 and ȳ2 are order ε accurate approximations of y1 and y2 respectively on time-scales
of order 1

ε
, and where

po =
1

16
c3A

2, p1 =
1

2
c1 +

3

8
c3A

2, p2 =
1

8
c1 +

3

8
c3 +

1

16
c3A

2,

p3 =
1

4
c1 +

3

8
c3 +

3

8
c3µ

2, p4 =
1

16
c1µ

2, p5 =
1

8
c3µ

2.

For a water ridge with a fixed position (that is, for f(t) ≡ 0 and so A = 0) system (14)
can be rewritten in a more simple form by introducing the polar coordinates ȳ1 = r cos ϕ
and ȳ2 = r sin ϕ, yielding

ṙ = εr[q1 − q2r
2], (15)

ϕ̇ = ε[η +
1

2
µ2c1 + p3r

2],

where q1 = −1

2
µc1 −βθ and q2 = 1

µ
(p3 +3p4). It is obvious from (15) that a limit cycle will

occur when q1 and q2 have the same sign. When q1 and q2 have different signs it is also
obvious that no limit cycles will occur, and that the origin can be the only critical point
of (15). In the next two sections the influence of the movement of the water ridge on the
surface of the cylinder will be studied for the following two cases : case I with q1 < 0 and
q2 < 0 and case II with q1 < 0 and q2 > 0.

3 Case I : q1 < 0 and q2 < 0

In this section the following choice for the parameters has been made µ = 1, c1 = −3,
c3 = 2, βθ = 1, η = 0 or η 6= 0 and A is a parameter. This choice turned out to be
representative for the behaviour of the solution of system (14), that is, for other values of
the parameters the behaviour of the solutions is more or less similar. Firstly it is assumed
that η = 0. It is obvious that the number of critical point of (14) is a function of A. By
using a Gröbner basis algorithm in the software package Maple the relation between A and
the critical points (ȳ1, ȳ2) of system (14) can be determined, and is given in Figure 3. For
some values of A the phase portraits of the system (14) are given in Figure 4, where the
horizontal axis the ȳ1-axis, and the vertical axis is the ȳ2-axis. The label S and U in Figure
3 are related to the stable and unstable critical points respectively. Part of the curve in
Figure 3a with label U1 should be combined with that part of the curve in Figure 3b with
label U1 and so on. The end points of each labeled curve are determined by dȳi

dA
= ±∞.

From Figure 3 and from Figure 4 it can be seen that the number of critical points of system
(14) varies when the value of A is varied. In fact for increasing A the following can be
observed :

(1cp + a stable limit cycle) → 2cp → 3cp → 4cp → 5cp → 4cp →

(3cp + a stable limit cycle) → (2cp + a stable limit cycle) → (1cp + a stable limit cycle),
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Figure 3: Critical points (ȳ1, ȳ2) of system (14) as function of A, where µ = 1, c1 = −3,
c3 = 2, βθ = 1 and η = 0.
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Figure 4: The phase portraits of system (14) for several values of A, and µ = 1, c1 = −3,
c3 = 2, βθ = 1 and η = 0.
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where ’cp’ is an abbreviation for critical point(s). When A = 0 there is one unstable
critical point (the origin) and one stable limit cycle. By increasing A the limit cycle will
disappear, but for larger values of A it will re-appear. A stable or unstable critical point
corresponds with a stable or unstable periodic solution in the original equation (11 ) and
a limit cycle corresponds with a modulated oscillation in the original equation.
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Figure 5: Critical points (ȳ1, ȳ2) of system (14) as a function of η, where µ = 1, c1 = −3,
c3 = 2, βθ = 1 and A = 0.1.
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Figure 6: The phase portraits of system (14) for several values of η, where µ = 1, c1 = −3,
c3 = 2, βθ = 1 and A = 0.1.

Now the effect of the detuning parameter will be studied, and the other parameters are
kept fixed, that is, the following choice is made µ = 1, c1 = −3, c3 = 2, βθ = 1, A = 0.1
and η is varied. It is obvious that the number of critical points of system (14) will depend
on η. Again by using the Gröbner basis algorithm the dependence of the number of critical
points on η can be determined and is given in Figure 5. It can be observed from Figure 5
that the number of critical points of system (14) now decreases from 3 to 1 when η increases
from 0. The phase portraits of system (14) for several values of η are given in Figure 6.
It can be observed from Figure 5 and Figure 6 that a saddle-node bifurcation occurs when
the value of η is around 0.125. For smaller values of η there will be 3 critical points, and
for larger values there will be one critical point and a limit cycle. For the original equation
(11) this implies that for 0 ≤ η < 0.125 three periodic solutions will exist ( two unstable
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Figure 7: Critical points (ȳ1, ȳ2) of system (14) as a function of A where µ = 1, c1 = −3,
c3 = 2, βθ = 1 and η = 0.3.
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Figure 8: Critical points (ȳ1, ȳ2) of system (14) as a function of A where µ = 1, c1 = −3,
c3 = 2, βθ = 1 and η = 1.

and one stable), that for η approximately equal to 0.125 a stable and an unstable periodic
solution will coincide, and that for η larger than 0.125 one unstable periodic solution and
a modulated solution will exist. The effect of the detuning parameter η on the positions of
the critical points in system (14) can also be seen in Figure 7 and in Figure 8. In Figure 7
η taken to be equal to 0.3, and the results on the position of the critical points can readily
be compared with those obtained in Figure 3 for η = 0.

4 Case II : q1 < 0 and q2 > 0

For A = 0 there is only one critical point (stable) of system (14) as has been shown at the
end of section 2. In this section the following choice for the parameters has been made
µ = 1, c1 = −2, c3 = 2, βθ = 2 and A is a parameter. By using a Gröbner basis algorithm
in the software package Maple the relation between A and the critical points (ȳ1, ȳ2) of
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system (14) can be determined, and is given in Figure 9 for η = 0 and in Figure 10 for
η = 3. Also for some values of A the phase portraits of system (14) are given in Figure 11.
The results as given in these figures imply that for the given set of parameters only one
critical point will occur, which is stable. For the original equation (11) these results imply
that a stable periodic solution will exist.
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Figure 9: Critical points (ȳ1, ȳ2) of system (14) as a function of A, where µ = 1, c1 = −2,
c3 = 2, βθ = 2 and η = 0.
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Figure 10: Critical points (ȳ1, ȳ2) of system (14) as a function of A, where µ = 1, c1 = −2,
c3 = 2, βθ = 2, η = 3.

5 Conclusion

In this paper the rain-wind induced vibration of a seesaw oscillator have been studied. The
model equations have been derived under the assumption that the position of the rivulet
of water on the oscillator varies harmonically in time. The eigenfrequency of the oscillator
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Figure 11: The phase portraits of system (14) for µ = 1, c1 = −2, c3 = 2, βθ = 2, and for
different values of A and η.

and the frequency of the movement of the water rivulet on the oscillator are assumed to be
close to each other. Several Hopf and saddle-node bifurcations occur when the amplitude
of the movement of the water rivulet on the oscillator is varied. For some sets of the
parameters in the model equations the existence and the stability of the periodic or of the
modulated vibrations have been established.
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