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1 Introduction

In [1] a liquid model is described, in which an information buffer is rep-
resented by a “fluid buffer”, filled up by several independent two-state
sources, and drained by an output channel at a constant depletion rate c.
The on-off transitions of the input sources are Poisson distributed.

In [2] L. Kosten makes a generalization in which the filling rate of the buffer
depends on the momentary state of an m-state continuous time-parameter
Markov proces. In this approach, the system is supposed to have m “states”
S1,52,...,Sn. Each state Sy has its own filling rate v;, and the transition
between different states is described by the differential equation:

dp
— =M 1
dt p M

where the components py(t) of the vector p(t) represent the probabilities of
the system to be in the corresponding state S}, at time ¢:

pr(t) = P{S; at time t}
The matrix M, the infinitisemal generator of the Markov process, is as-
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sumed to be non-degenerate. It has the properties:

Mk,k <0
My, >0 ifk#1 2)

d My=0 1=12,...,m
k=1

In the state Sy, the buffer is filled at rate v, and drained at rate ¢, hence
the resulting filling rate is 74 — c. This however doesn’t hold if the buffer
is empty and at the same time 7, < c. In that situation, the incoming infor-
mation is drained completely.

The question of interest is, of course, the probability of overflow, in relation
to the “capacity” c of the output channel. This question is dealt with by
assuming a buffer of infinite capacity, and asking for the probability that
some stochastic level-parameter h will exceed some value u. If the system
is in the state S}, the level will change according to

dh_{ 0 if(w<c) N(h=0)

dt ~ | v —c in other cases

The relevant quantity thenis P{ h > u } .

Kosten defines the stochastic vector F(u, t), of which the components F};(u, t)
represent the probabilities that the level h is below the value u, and the sys-
tem is in the state S:

Fi(u,t) =P{ Sk N (h <u) attimet }

It can easily be derived, that F satisfies the following linear system of par-
tial differential equations:

oF oF

If the system becomes stationary after some time, the differential equation
turns over to an ordinary differential equation:

(T - cI)‘fi—F = MF(u) 3)

U

whereT is the diagonal m x m matrix of which the diagonal entries are the
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filling rates j:

v 0 0 - 0
0 v 0 -+ 0

= 0 0 v -+ 0 4)
0 0 0 -

Not all values of the depletion rate c are of interest. If, for instance ¢ > ~yy, for
all states, the buffer simply doesn’t fill at all, and no overflow can occur. On
the other hand, if the mean filling rate exceeds the depletion rate, the level
h will increase permanently, so in every practical application the system
certainly will arrive in a permanent state of overflow after a finite time.
These considerations lead to the definition of an “interval of relevance” for
the depletion rate.

Definition 1 (Interval of relevance) Let p,, = lim; . p(t), where p(t) is a
solution of (1); let 1 denote the all-ones vector in R™, and let ymax = max yy. The
interval of relevance for the depletion rate c is the interval

where the -y, are assumed to be in increasing order.

The left point of R is the stability bound, the right point is the triviality
bound.

If the stationary state equation is solved formally, the spectrum of the ma-
trix (T — cI) "' M plays a key-role. The following questions are answered in
this paper !

1. Kosten’s consistency conjecture.

Let@y, s, ..., d,, be the eigenvectors of (' — cI) "' M, corresponding to the
eigenvalues A\, A2, ..., A\, and write the formal solution to (3 ) as

F(u) =) apppe™"
k=1

Then, since F'(u) has to be bounded as u — oo, the coefficients a;, must be
zero if the corresponding eigenvalues \j are in the strict right half of the

!These were brought under the authors attention by L. Kosten. The answers were con-
jectured by him, on the basis of experience with some classic buffer models with known
analytic solution.



complex plane. On the other hand, the matrix M, and therefore also the
matrix (I' — ¢I)~!'M, has an eigenvalue zero, corresponding to the eigen-
vector p*°, i.e. the probability distribution of the states as the Markov pro-
cess has become stationary. This information serves for determination of
the corresponding coefficient a;. Finally, if the value of some ; exceeds c,
the level cannot be zero (except of course for a single point in time), hence
F;(0) = P{(h <0)AS;} = 0in that case. In order to be able to deter-
mine the remaining coefficients ay, i.e. the coefficients, corresponding to
eigenvalues in the strict left half of the complex plane, we only can use
these boundary conditions, therefore the number of these “left” eigenval-
ues should equal the number of filling rates exceeding c .

This will be proved in this paper.

2. Kosten’s dominancy conjecture.

Denoting by F'(u) the overall probability P{ h < u } (disregarding the state
of the buffersystem), then

F(u) =) Fp(u) = 1"F(u)
k=1

The behaviour of F(u) at large values of v is mainly determined by the
rightmost eigenvalues in the strict left half of the complex plane.

L.Kosten expected the existence of a “dominant” eigenvalue, i.e. one single
eigenvalue in this halfplane, closest to the origin of the complex plane. The
existence of this “left dominant eigenvalue” will be proved.

3. Kosten’s monotonicity conjecture.

Finally, from experience with models as described in [1], it might be ex-
pected that at high depletion rate, the mean filling rate will be low. This
should be expressed by the behaviour if the left dominant eigenvalue as
function of c. Kosten conjectured that this eigenvalue decreases monotoni-
cally as a function of c.

Also this statement will be proved.

2 Barrier matrices

The key operations in the analysis of Kostens conjectures depend on the
simplicity of some critical eigenvalue p, and the positivity of the corre-
sponding eigenvector.



In the case of the simple eigenvalue problem Mz = Az, where M is as
defined in ( 2), the critical eigenvalue ;¢ = 0, and the corresponding eigen-
vector and left eigenvector are more or less given. In order to prove the
existence of a ‘left dominant eigenvalue’, more information about the exis-
tence of positive eigenvectors is required. This information can be found in
the Perron-Frobenius theory on irreducible non-negative matrices. We start
with some definitions.

Definition 2 A matrix A is non-negative (resp. positive) if the entries satisfy
ag,; > 0 (resp. ar; > 0). A non-negative (positive) matrix is denoted by A > O
(resp. A > O). Similarly A > B means A — B > O, etc.

Definition 3 A square matrix A is reducible if a permutation matrix P exists
such that P~ AP can be partitioned as follows

14p_ ([ Brr Brr
P AP—< O Brn

where By, and Brp are square matrices.
An irreducible matrix is a matrix that is not reducible.

An alternative definition of reducibility is connected with eigenvalue prob-
lems: A matrix is reducible if and only if it has a proper “Cartesian” invari-
ant subspace, that is an invariant subspace, generated by a proper subset
of (Cartesian) basis-vectors. Another alternative definition can be based on
an important property, stated as a lemma:

Lemma 1 Let A be an irreducible (m x m) -matrix, then for any proper subset K
of I, = {1,2,...,m}, there exist k € K,and | € I,,, \ K, such that aj,; # 0.

Proof: Suppose K C I, exist such thatay; =0, Vk € K, VI e [,\ K.
Choosing any permutation matrix that places the members of K before those of
I, \ K, a zero left-down off-diagonal block is obtained in the partioning of the
matrix P~ 'AP (]

From this “definition”, it is seen directly that reducibility of a matrix only
depends on its off-diagonal part.

The following theorem is the famous theorem of Frobenius, stated before in
a weaker form by Perron:

Theorem 1 (Perron-Frobenius) Let A be an irreducible non-negative square
matrix, then



o A has a positive eigenvalue \* equal to the spectral radius of A.
o The corresponding eigenvector * is positive.

o The eigenvalue \* increases when any entry of A increases.

o The eigenvalue \* is simple

In the present analysis, we have no special interest in the fact that the spec-
tral radius of a matrix is actualized by a simple eigenvalue. We use the
Perron Frobenius theorem because this eigenvalue is ‘dominant’ in another
sense than the usual, namely the property that all other eigenvalues have
smaller real parts.. Therefore we redefine the terminology in this paper.

Definition 4 (Dominant eigenvalue.) An eigenvalue y of a matrix A is dom-
inant if

1. wisreal,
2. R(N) < pforall X # pu.

In relation to this definition of ‘dominant’, we’ll investigate an slight exten-
sion of the class of irreducible non-negative matrices:

Definition 5 (Barrier matrix) A B-matrix is a square irreducible matrix, with
non-negative off-diagonal entries:

ag; >0, k#1

(In the name “ B-matrix, B is for Barrier).
The following lemma is almost trivial:

Lemma 2 Let A be a B-matrix, then

(a) A has a unique, simple, dominant eigenvalue (3, corresponding to a positive
eigenvector u.

Au=[fu, u>0
Az =X ) NA#[) AN (x#0) =R\ <p
(b) A has no other positive eigenvectors:

Az =Xz) AN (2 > 0) = AN=p)N(zx=o0ou)



We'll call the dominant eigenvalue [ the Barrier value of the matrix.

Proof: To prove part (a), let ax ;, be the minimal diagonal entry of A: ax 1 < ay,
1=1,2,...,n,then B = A—ay, il is an irreducible non-negative matrix. According
to the Perron-Frobenius theorem, B has a simple eigenvalue \*, satisfying: Bu =
Mu, with u > 0, and such that for all other eigenvalues |A| < A*. Let A be any
other eigenvalue, then

A = |M[cos() + isin(¢)]

If |A| = A*, then ¢ # 0 mod 2, since otherwise A* weren’t simple. Hence cos(p) < 1
in that case, and therefore R(\) = A* cos(p) < A*.
If |A] < A*, then of course R(A) = |A| cos(p) < |A| < A*. So for all A # A*:

R(A) < A

Since the eigenvalues of A are obtained by shifting the eigenvalues of B by ay, 1, to
the right, the matrix A has a dominant eigenvalue 5 = A* + ay, 1.

To prove part (b), let £ > 0 be some positive eigenvector: Az = Az. From the
definition follows that AT is a B-matrix as well, and hence, a positive vector w
exists such that w” A = fw”. Since w”u > 0, it follows

wlAz = pw 'z = 'z — ) =0 =z =ou

d

Lemma 3 (Separation lemma) Let A be an m x m B-matrix, let D be a non-
singular diagonal matrix, and let the numbers oy, be defined by

akk

=, k=12,... 6
dk’ » = ?m ()

Ok

Assume the generalized eigenproblem Ax = ADwx has a solution with strictly
positive eigenvector u, with corresponding eigenvalue f,
then yu is real, and satisfies the following inequalities:

oL < pu < o; wheneverd, > 0and d; <0 (7)
Moreover, let the eigenvalues of the problem be ordered as

R(A1) <RA2) <--- <R(Am) (8)
and let s denote the number of o’s to the left of i, then

8?()‘s) S H S §R()\s+1) (9)



Proof: Write the equation Au = pDwu in components:

(pndy — agr)ur = Zaklul E=1,2,...,m
I£k

Since A is a B-matrix, its off-diagonal entries are non negative. Since u; > 0 for
all /, the righthand side is non negative. If it were zero for some k, then aj; = 0,
for all [ # k, which would imply the matrix to be reducible. Hence pdy — agr, > 0
for all £, so the following inequalities must be satisfied:

w > ok, dr >0

w < ok, dip <0 (10)

which is equivalent to ( 7).
For the proof of ( 9), we use Gershgorin’s theorem on the matrices A(r), with
T € [0, 1], defined by

kiU

akkzak, ,’&kl:T—, fOI'l?ék'
drug

The matrix A(1) is similar to D~' A, and therefore the eigenvalues of A(1) are the
same as the eigenvalues of the generalized eigenvalue problem Az = ADzx.
According to Gershgorins theorem, the eigenvalues of A(7) are in the union of the

circles C, with centre in oy, and radius r, = ), 2k |k (7)]- Soif Ais an eigenvalue,
then for some k

(ndy, — agk)uk

E :l k AklU]
= |T 7£ T
dkuk

diug,

= T|p—ox| (11)

According to these inequalities, the Gershgorin circles are either completely to the
right or completely to the left of the line ®(z) = p in the complex plane, at least as
long as 7 < 1. If 7 = 1, all circles contain the point z = p.

Let a < minoy, < maxoy < b, then of course a < u < b. Now define the circular
discs Cr, and Cr by

CL:C(a7,u'_a)7 CR:C(I%b—M)

Then Cp, and Cr are respectively to the left and to the right of the line R(z) = p.
They have the point z = p in common. Now for all 7 € [0, 1), the circles |z — o] <
| — 0| are proper subsets of either C'r, or Ck.

The matrices A(7) are continuous functions of 7, therefore also the eigenvalues be-
have continuously 2. For 7 = 0, the eigenvalues are in the centres of the Gershgorin
circles. As long as 7 < 1, no eigenvalue can be on the boundaries of Cr, and Ck.
hence the number of eigenvalues that are inside C, doesn’t change. If 7 tends to 1,

2An elementary proof can be done with Rouché’s theorem



interior eigenvalues in C';, can possibly move to the boundary, but cannot move to
the interior of the Cg, and vice versa.

C'p contains the oy, values to the left of i, that are s values. Hence for 7 < 1, there
are precisely s eigenvalues in C. If 7 = 1, one or more eigenvalues may be on the
common boundary of the circles. Hence: R(A\;) < p, k=1,2,...,s.

Similarly m — s eigenvalues arein Cg, and R(A\y) > p, k =s+1,s+2,...,m, from
which (9) follows |

Definition 6 A real eigenvalue pu of the generalized eigenvalue problem Ax =
AD is called a separator if the corresponding eigenvector is strictly positive.

The existence of a separator value like 1 in this lemma, is not a trivial ques-
tion. It is necessary that for all pairs [k, [] the following inequalities hold

il < %, whenever d;, > 0 > d; (12)
dp, 4

This relates the ordering between the entries dj, of the matrix D and the
numbers o, = agy/di. For instance if D has positive as well as negative
entries, whereas A has only positive diagonal entries, then ( 12) cannot be
valid, and no positive eigenvector exists. If all diagonal entries of A are
negative, which is the case if A is as described in ( 2), then the inequalities
(12) hold automatically. In this case u = p*° is a positive vector as used in
the lemma. Since Au = 0 = 0Dw, the value ;1 = 0 is a separator.

The existence, as well as the important properties of separating eigenvalues
are analysed by tracking down the barrier values of a suitable family of
barrier matrices.

Definition 7 (Barrier function) Let A be an m x m B-matrix, and let D be a
real diagonal matrix. All matrices A(t) defined by

A(t)=A—-7D, 7€R (13)

are B-matrices, and therefore each A(7) has a barrier value 3(r).
The function 3 is the Barrier function for the matrix pair { A, D}.

Lemma 4 (Convexity lemma) Let A be an m x m B-matrix, let D be a real
diagonal matrix, and let (3 be the barrier function corresponding to { A, D}. Then

1. The separators of Ax = ADx are the zeros of 3.

2. B(7) is a convex function.



Proof: Consider the family A(7) of B-matrices defined by ( 13). Let 7y be a zero of
the barrier function §(7) for the pair {A, D}, let u > 0 be a positive eigenvector,
corresponding to (1), then

A(o)u = B(19)u = 0 = Au = 19Du

So a zero of 5(7), is a separator for Ax = ADx.
On the other hand, if  is a separator, then (A —pD)u = 0 for some strictly positive
u, so apparently zero is the barrier value for A — uD.

Therefore the separators are the zeros of 3(T).

Next we'll prove the convexity of the function 3 in 3 steps.

1. Points of intersection with straight line. We consider the larger family of
matrices

A(r) = A(T) = (p+qn)I (14)

For each real p, ¢, and 7, this is a B-matrix, and since it differs from A(7) by a real
multiple of the unit matrix, also the eigenvalues are shifted eigenvalues of A(7).
Hence

B(r) = pB(r) — (p+aqr) (15)

where 3 can be interpreted as the barrier function for the matrix pair { A — pI, D +
qI'}. Hence zeros of 5 are separators for the problem [A —pI — A\(D +¢I)]x = 0. If
D and q are such that D + ¢I is not singular, then according to lemma 3 we have
for each zero i of 3

R(As) < < R(Asq1)

where s is the number of positive diagonal elements of D — ¢I.

Now [ itself is an eigenvalue, so either ;i = A; or i = As41. There can be no
eigenvalue strictly between R(\;) and $(As4+1). Therefore the number of zeros of
B is maximal 2. It follows that the equation 5(7) = p + ¢7 has at most two real
solutions.

We may not apply lemma 3 in the case that the diagonal matrix D + ¢I happens
to be singular. This is not a real problem, as will be shown now. Let ¢ change con-
tinuously and let it pass a critical value —dy. The matrix A changes continuously
too, and so do the barrier value, being a simple eigenvalue. Therefore also the
number of zeros of the barrier function changes continuously, and the existence
of more than 2 distinct zeros could occur only in an isolated situation. But a truly
isolated situation cannot happen, since, by changing p, we could lift the graph of 3
in such way that the isolated third zero would change in a finite (nonzero) number

of ordinary simple zeros 3,

31f d, — +0, one of the eigenvalues of Ax = AD=z will be close to axx/dx, i.e. will run
to tsign(awk) * co. This eigenvalue is far away from the separator values.
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2. Behaviour for || — oo. Next consider the asymptotic behaviour of the
function § for 7 — %oo. The eigenvalues of A(7)/7 tend to the numbers —d;, — g¢.
Therefore, the eigenvalues of A(7) behave asymptotically as —7(dy, + ¢), for k =

1,2,...,m. The barrier value §(7) is then close to the rightmost of these numbers,
SO

>\ | —7(dmax +q), T — —00

plr) ~ { —7(dmin + q), T — +00 (16)

Let u(7) and w(7) be eigenvector, respectively left eigenvector of A(7), corre-
sponding to the barrier value 3(7):

~ ~ T ~ ~

[A(T) = B(r]u(r) =0, w (7)[A(r) - B(7)I] =0

ifferentiation the expression w T) — ~T u with respect to 7 then yields
Differentiation the expression @’ (A B(rI h resp hen yield

J— . -, @’ (D + ql)u
(A () - Frfa =0 — Fr) - -2

This being a Rayleigh quotient for the diagonal matrix D, we find for all 7:

—dmax — ¢ < 51(7') < —dmin — ¢ 17)

According to ( 16), we have

. > _ —dmin — ¢
Tgrjr:looﬁ (T) o { —dmax —q (18)
3. Convexity relation. Leta < b < ¢, and let y(7) = p + ¢7 be the first de-
gree interpolation polynomial for 3(7): Then 8(7) = §(7) — p — ¢r is the error of
interpolation. Now f(a) = §(b) = 0, and according to Rolle’s theorem, for some
& € [a,b] we have §/(§) = 0. Using this in the inequalities ( 17), we get

—dmax — ¢ < 0 < —dmin — ¢

Suppose the equality sign holds in the right inequality, i.e. —dpin — ¢ = 0, then
(17) implies that for all 7, 3'(7) < 0, and consequently /3 is a monotonically non-
increasing function. From B(a) = B(b) = 0 then follows 3(7) = 0, V7 € [a,b]. We
already know this isn’t possible, hence —dpin — ¢ > 0.

From ( 16) then follows 3(7) > 0 if 7 — occ. Since a and b are the only zeros of 3,
this implies 3(c) > 0.

Now using the explicit formula for 3(c), this can be expressed as:

~ c—a

) = Ble) - Bla) - T—

[6(b) = B(a)] >0

11



which is equivalent to

c—b b—a
B) < =2 Bla) + ——2A(c)
This holds for each triple with a < b < ¢, hence § is a convex function. O

We next analyse the multiplicity of the separating eigenvalues.

Lemma 5 Let A be a B-matrix, let D be a diagonal matrix and . be a separator
for Ax = ADx. Then y is simple if and only if p is a simple zero of the barrier
function B(t) for {A, D}

Proof: Letu and w be respectively positive eigenvector and left eigenvector cor-
responding to p. Assume x # 0 is another eigenvector, so

(A—uD)x =0

Then z is also an (ordinary) eigenvector of A — uD, corresponding to the barrier
value 3(u) = 0 of this matrix. Since barrier eigenvalues are simple, this can only
be true if & = au for some .

So the geometric multiplicity of a separator is 1. However, the separator eigen-
value could be defective, causing the algebraic multiplicity to be higher.

Assume p is defective, then x # 0 exists such that (A — uD)x = Dwu, where
(A — puD)u = 0. Necessary and sufficient for the eigenvalue p to be defective is
the condition that Dwu is in the column space of A — pD. This is equivalent to the
condition that Du is perpendicular to the left nullspace of A — uD.

Du | z, Yz € Null( AT — uD)

Now Null(A” — ;1D) is spanned by left eigen vector w, hence y is defective if and
only if w” Du = 0.

Differentiating the identity w” (7)(A — 7D — 8(7)I)u(r) = 0 with respect to 7, we
get

T
T , _ iy w Du
w' (D+p (N Hu=0= g'(1) = T
Hence p is defective if and only if 3'(x) = 0. This proves the lemma 0

3 Kosten’s conjectures

First we analyse the relevance of irreducibility for an infinitisimal genera-
tors for a Markov proces.
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Lemma 6 Let M be a a matrix as described in ( 2). Then the Markov pro-
cess p'(t) = Mp(t) has a unique positive stationary solution p*>, satisfying
17p> = 1, if and only if the matrix M is irreducible.

Proof: The “if part” is an immediate consequence of lemma 2, since M is a B-
matrix whenever it is irreducible. So any positive solution  must be a multiple of
p>, at eigenvalue y = 0. The requirement 17z = 1 then uniquely selects p™ itself.
To prove the “only if part”, suppose M were reducible, then for some permutation
matrix P

_ B B
PMP — LL LR)
( O B

Partitioning the stationary solution p> and the vector 1 similarly:

- - 1
plpe—( PL > Pl= ( L >
P ( PR 1
The equations Mp>® = 0 and 17 M = 07 then read as

Byypy, + Birpr = 01, Bgrrpr = Or
1{Bi =0{, 1{Bg+1gBgg =03}

Hence, both By and Bgp are singular. So a nonzero vector qp, exists such that
Bi11.41, = 0. Define g by

then ¢ is a different nonzero solution to Mp = 0. Hence, we can choose nonzero
numbers « and (3 for which p = ap™ + (¢ is a different positive stationary solu-
tion for the Markov process, satisfying 175 = 1. This being a contradiction, we
conclude M is irreducible. O

We now can prove the three conjectures stated in the introduction.

Theorem 2 Let M, T be as described in ( 2) and ( 4), and such that p'(t) =
M p(t) has a unique stationary solution p™ with 1Tp> = 1.
Let the interval of relevance be defined as in ( 5):

R = (1'Tp™ , ~Ymax)

Then M is a B-matrix, and for the generalized eigenproblem Mz = A\(I' — cl)x
the following statements hold as long as c in the interval of relevance:

1. The number of eigenvalues in the left halfplane equals the number of v; > c.
(Kosten'’s consistency conjecture)
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2. The rightmost eigenvalue in the left halfplane is simple, and there is a strictly
positive corresponding eigenvector. (Kosten’s dominancy conjecture)

3. The left dominant eigenvalue is a monotonically decreasing function of c.
(Kosten’s monotonicity conjecture).

Proof:

The matrix M is irreducible according to lemma 6, and because M}, ; > 0, when-
ever k # |, M is a B-matrix. Let D =T — cI, then 1 = 0 is a separator value
corresponding to the positive eivenvector u = p*>. A strictly positive left eigen-
vector is w = 1.

Let the eigenvalues of D' M be ‘ordered’ according to increasing real parts, then
the separation lemma 3, states

R(As) <0< R(As41)

where s denotes the number of negative values for My /dy.

The diagonal elements My, are stricly negative, otherwise M would have a zero
row, contradicting its irreducibility. Therefore s equals the number of positive ele-
ments of D, that is the number of filling rates exceeding the depletion rate:

7m27m712"'27m73+1>C>7m752"'251

Where {7} are the filling rates in increasing order.

We must determine wether the eigenvalue 0 belongs to the ‘left’ family or to the
right. Now c is in the interval of relevance, i.e. 1'Tp> < ¢ < ~Ym, and hence
1" Dp™ < 0. Let 8(7) be the barrier value of [M — 7D]u = 3(7)u, then according
to the convexity lemma 4, We have 5(0) = 0, and

_1"Dp™

= 1"Dp>® >0
lTp°°

#'(0) =

Therefore 3(7) is strictly increasing in a neighbourhood of 7 = 0, so 3(7) < 0 for
some 7 < 0.
On the other hand we have dmax = d;, = ¥ — ¢ > 0, implying

lim (1) = +o0

T——00

Therefore (1) must have another zero 1 < 0, and according to the separation
lemma

)\s:,u<0:>\s+1

This implies the consistency conjecture as well as the dominancy conjecture.

Finally the monotonicity conjecture. Since the separator values are simple for val-
ues of ¢ in the interval of relevance, they are continuously differentiable functions

14



of c. Let uw and w be respectively a positive eigenvector and a positive left eigen-
vector:

(M — uD)u =0, w?’(M —uD)=0"
With D =T — cI, the left separator is a function of c. Differentiate the identity
wT (M — p(c)D(c))u = 0 with respect to ¢, we get the identity

Ty _ /() = wiu __ plo)
w p(e)D+ p(c)u =0 = p'(c) = p(c) wl Du 3 ()

Since both #'(u(c)) and p(c) are negative, it follows p/(¢) < 0. This is the mono-
tonicity statement. U
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Figure 1: Graphical construction of separator values.

10

Curve: B(), forc=y
Lines: YO = (v, 0T
gl ... Dash-Dot lines: .. asymptotes for {(t)

B(D)

Example. In the above illustration, the barrier function Bis plotted for a
random 5 x 5 matrix, satisfying ( 2), and a diagonal matrix D =T — ymaxI,
where ymax is the triviality bound of the interval of relevance.

The straight lines that are plotted, have slopes 4 that can be interpreted
as Ymax — ¢. The abcissa of the intersecttion points are the left dominant
eigenvalues corresponding to the c-values.

The asymptotic behaviour of 3 for |7| large is plotted in a dash-dot pattern,
according to the formula

B(T) = —7ds + ass

where d; are the minimum and maximum values respectively for the en-
tries of D =T — ~yaxd

The calculations were carried out in Matlab, and it will not be difficult to
extend the (small) program for more realistic purposes.

“Take the anisotropy of the picture into account!
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