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Chapter 1

Introduction

Research and development on the subject of phase-change optical recording
has become more and more important, especially since rewritable optical data
storage media have acquired a solid position in the consumer market. In this
report we present the results of a literature study concerning the (numerical)
modeling of phase-change optical recording. This literature study has been
performed as part of a PhD-research project which aims at robustly and
accurately modeling the writing and erasing of data in rewritable optical
disks.

The contents of this report can be outlined as follows. In Chapter 2 the
basics of phase-change optical recording are explained in detail. The main
goals of this chapter are to first of all try to provide a satisfying answer to
the question: ’Really, how does it work?’ and secondly make the reader
acquainted with the terminalogy.

Then, in Chapter 3, the modeling of the phase-change recording process is
considered. The optical, thermal and materials science aspects are discussed
successively. Specific attention is given to the modeling details concerning
(re)crystallization, a process which plays a significant role during the erasure
of data.

The writing of data can be modeled as a two-phase moving boundary
problem. Since only for a select number of this type of problems can be
solved analytically, numerical methods are the only alternative. In Chapter
4 a survey of numerical methods for phase-change problems is presented.
The level set and enthalpy approaches will be discussed in detail. Based
on a method comparison we give a recommendation to which method is
most suitable for solving the two-phase moving boundary problem related to
optical rewritable recording.



Chapter 2

An introduction to
phase-change recording

Since the introduction of the audio CD in 1983, optical storage media have
started to dominate the portable data storage market. In this chapter we will
consider the recordable version of the CD and its successors, in particular
the rewritable disks. The main advantage of these rewritable disks is that
data can be written and erased many times. This is achieved by using a so
called phase-change material, which by means of heating with a laser beam
can (locally) be changed very quickly from a crystalline to an amorphous
state, and vice versa. We will consider the various aspects of the phase-
change recording process in more detail in Sections 2.2-2.5. In the concluding
section of this chapter we will discuss some possibilities for capacity and speed
improvements and some known limitations and problems in high density
recording.

2.1 A brief history of optical recording

After the enormous success of the CD(-ROM), a growing consumer demand
for recordable optical storage media was eventually answered in 1990 with
the introduction of the CD-Recordable (CD-R). With its storage capacity of
650 Megabytes (MB), equal to that of the CD(-ROM), it enabled people to
make backup copies or to create their own data.

In 1997 the limitation of recording only once was overcome by the intro-
duction of the CD-rewritable (CD-RW), allowing rewriting up to a thousand
times. In the same year, a race between manufactures focused on larger data
capacity and transfer rates, initiated earlier by the forthcoming of high qual-
ity MPEG-2 encoded video material and the increased data traffic over the
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Figure 2.1: Setup for an optical system.

Internet, eventually resulted in the introduction of the digital versatile disk
(DVD). Its storage capacity of 4.7 Gigabytes (GB) and even 8.5 GB for the
dual layered version, in combination with a maximum data transfer rate of
11.2 megabits per second (Mb/s), easily fulfilled the newly imposed demands.
The possibility to play CD’s with the DVD-players and the rapidly growing
amount of film titles that became available, made that the popularity growth
of the DVD even surpassed that of the CD.

Besides the read-only DVD, the DVD+R, for single time recording, and
more recently the DVD+RW, for multiple writing, and the DVD random
access memory (DVD-RAM), have been introduced to the general public.

The latest medium in the race for storage capacity and speed among
(re)writable storage media, is the Blu-ray disk (BD) (the former digital video
recording disk (DVR) standard), developed within the framework of high-
definition television (HDTV) by Philips and Sony around 1999. A single
layer BD disk has a storage capacity of 23.5GB or 25GB, while the capacity
of the double layer version is aimed at a dazzling 47GB or 50GB. For instance
see [9], pp. 99-101.

2.2 The optical system

The various data storage disks mentioned in the previous section all have
in common that the reading, and if applicable writing, of data on the disk
is done optically. For both reading and writing, the same optical system is
used, but with different power levels of the laser beam.

In Figure 2.1 the setup of an optical head of an optical system is shown.
The optical head contains a laser diode, a collimating lens, a polarizing beam
splitter (PBS), a quarter wave plate, an objective lens and the detection sys-
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Figure 2.2: The NA of a lens is given by sin(6).

tem. The collimating lens is used to collimate the diverging linearly polarized
beam emitted by the laser diode. After passing through the PBS, the light in-
cident on the quarter wave plate is circularly polarized. Finally, the objective
lens focuses the beam on the optical disk.

The light that is reflected by the metallic layer of the disk is collimated by
the objective lens on its way back through the optical system. The quarter
wave plate then converts the dominantly circularly polarized reflected light
into a linear polarized beam such that the polarization is perpendicular to
that of the incident beam. The PBS finally redirects the reflected beam onto
the detection system. During the readout of data, the detection system can
determine whether a 'zero’ or a ’'one’ is read, based on a priori knowledge
about the differences between the reflected intensities when the spot is fo-
cused on a pit or a non pit (for pre-recorded disks), on a decomposed or intact
dye material (for write once media) or on the amorphous or crystalline state
of phase-change material (for rewritable media). See [9], pp. 101-102.

Read-only disks such as the CD(-ROM) and the DVD are pressed. The
pits (and non pits) that represent the binary data are positioned on a concen-
tric, outwards spiraling track. In order to correctly read from these optical
disks, the focused spot must be kept centered on this track. When the opti-
cal head moves away from the track’s center, an asymmetry in the reflected
field is induced. Whenever such an asymmetry is detected, the optical head
is guided such that the beam is again focused on the center of a track. This
procedure is called tracking.

In addition to the read-out of data, recordable and rewritable systems
use tracking during writing. But, in absence of reference points in sections of
the disk where no data has been recorded, tracking is not possible. To that
purpose, the surface of these disks contains a concentric, outwards spiraling
groove. Therefore, in radial direction, the disk is said to have a (periodic)
'land and groove’ structure.
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The dimensions of the grooves as well as the size of the amorphous regions
(marks) that represent the binary data, are in the order of the wavelength
of the incident light. The geometrical assumption that a parallel beam that
is incident on a positive lens converges into a single point, is then no longer
applicable. Due to diffraction by the finite aperture of the lens, the diameter
of a focused spot is given by [22]:

~
~

In formula (2.1), A is the wavelength of the incident light and NA is the
numerical aperture of the objective lens. The NA is the sine of the angle
between the outer ray and the principle axis of the objective lens. The focal
depth (or depth of focus) 0 of a spot, can be defined as the range (in image
space) over which the focused spot diameter remains below an arbitrary limit,
see Figure 2.2. In an imaging system the depth of focus would be the distance
(in object space) over which the system delivers a sharp image. The focal
depth is given by:

D (2.1)

A
NA?
An overview of the specific values of the optical and mechanical parameters

mentioned in this section is listed in Table 2.1 for the various optical recording

disks.

0~

(2.2)

2.3 The principle of phase-change recording

In systems for rewritable disks, the active layer of the optical disk is subject
to crystallographic changes upon heating by laser radiation [17]. By applying
short high-power laser pulses that melt the crystalline phase-change material

Table 2.1: An overview of several optical and mechanical properties of the
recordable and rewritable media. The values given for the track pitch (TP)
and the thickness of the recording stack (A) are average values. The specified
wavelengths are in air.

medium capacity | A NA D TP ) A
(GB] |fom]| [] | [om] | [om] | [om] | [nm]
CD(-R/-RW) 0.65 780 | 0.50 | 1560 | 1500 | 3120 | =~ 250

DVD(-R/+RW) | 47 | 650 | 0.65 | 1000 | 740 | ~ 1540 | ~ 250
BD 23.5/25 | 405 | 0.85 | ~ 470 | 320 | ~ 550 | ~ 150
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Figure 2.3: The write and erase process illustrated.

(temperature T > T,,.1¢), followed by quenching to temperatures below the
crystallization temperature 7,,,, amorphous marks are written, see Figure
2.3. In the context of optical recording the crystallization time can be defined
as the time required for an amorphous region to fully regain the crystalline
state. The quenching procedure prevents the nucleation and growth of the
crystalline phase during the cooling down (tcoor < teryst)-

Marks are erased by heating the amorphous material to a temperature be-
tween its melting temperature 7T}, and its crystallization temperature Tt
for a time t g,y during which the spot remains above the amorphous region.
In order to erase the complete mark, i.e. for the whole amorphous region to
regain the crystalline state, tg4,.; should be longer than the crystallization
time of the phase-change material (¢gyei > teryst). The crystallization time is
thus taken to be the time required to completely erase the mark. The speed
at which data can be written is therefore strongly dependent on the type of
material used in the active layer.

Two kinds of phase-change materials exist, namely nucleation dominated
and crystal growth-dominated. In the former, small crystalline nuclei inside
the amorphous mark start to grow until they impinge upon each other. In
the latter, the probability of the occurrence of crystal nuclei is low but crys-
tal growth is very fast. The crystallization of the amorphous mark is then
largely due to the inward growth of the boundary between the mark and the
crystalline surrounding.

The most commonly used phase-change materials are stoichiometric ShTe
alloys, in particular Ge-Sb-Te [44] and Ag-In-Sb-Te [26]. Due to relatively
high crystallization times (f-ys+ = 100-250 ns), Ag-In-Sb-Te alloys are mainly
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used in low speed applications such as CD-RW. The various compositions of
this alloy allow rewriting between a thousand and ten thousand times. For
applications in high-speed recording, such as DVD+RW, Ge-Sb-Te alloys are
used (Zeyst < 50 ns). The rewritability of these types of compositions ranges
between 10° and 10° times. Recently, doped eutectic' SbTe alloys have been
proposed for the Blu-ray disk system [4] and issues like their stability and
cyclability have been addressed [5].

The reading of written information is done by measuring intensity mod-
ulations of the light reflected by the disks. In order to be able to distinct
between both phases, the contrast between the reflectivity of the crystalline
and the amorphous state should be high.

2.4 The structure of a PC-disk

Optical rewritable disks can contain either one or two recording layers. For
single-layered phase-change disks the so-called recording stack usually con-
sists of four different layers. In Figure 2.4 the recording stack for a typical
Blu-ray disk has been illustrated. The recording stack configuration shown
in the figure is called an IPIM stack [17]. The various layers of the IPIM-
stack are sputtered on a pre-grooved substrate. On top of the substrate,
made of poly-carbonate or glass, is a dielectric Interference layer. On top of
this dielectric layer there are subsequently the Phase-change layer, another
dielectric Interference layer and a metallic Mirror layer.

The dielectric layers, generally a mixture of ZnS and SiO, and the metal-
lic layer, made of Al or Au, protect the phase-change layer from environmen-
tal influences. In addition, their thickness is chosen such that they optimize
the optical contrast between the crystalline and amorphous state. The di-
electric layer between the phase-change layer and the substrate is relatively
thick in order to protect the substrate from thermal damage during writing.
The dielectric layer between the phase-change layer and the metallic layer is
relatively thin such that sufficient heat can reach the metallic layer to make
quenching possible. During quenching the metallic layer acts as a heat sink
and is taken sufficiently thick for this purpose. Apart from the chemical
composition of the IPIM-layers and their thickness, the characteristics of the
interfaces are also of great importance. Chemical reactions between layers
could influence the performance of the disk. We refer to Table 2.1 for an
overview of the approximate thickness of the recording stack, denoted as A,
for the various recordable media.

La mixture of substances having a minimum melting point



2.4 The structure of a PC-disk

10

Cover layer

+- 100 pm
+- 150 nm

Figure 2.4: An illustration of the stack for the Blu-ray disk, with an IPIM
recording stack. The recording stack is placed relatively close to the disks
surface in order to preserve a small spot diameter. The thickness of the layers
are not to scale.

Besides the optical and thermal properties mentioned, the layers must
consist of materials of mechanically good quality to avoid or delay the ap-
pearance of defects, e.g. pinholes and micro-cracks. These defects are in-
duced by material flow and thermal deformation during repeated heating
and quenching.

Dual-layered stacks, which allow for an increase in data capacity, have
been proposed for the Blu-ray disk system [41]. The two recording stacks are
optically accessed from one side of the disk, see Figure 2.5. In order to ensure
that a sufficient amount of light can reach the second recording stack L1, there
is a practical requirement of 50% transparency for the first recording stack
LO. As a result, a conventional non-transparent metal layer can not be used
in LO. As a result of the omission of a metal layer in the first recording stack,
a slow cooling behavior is observed in L0. Several improvements have been
proposed to improve the thermal behavior of L0 stacks such as additional
transparent heat sinks [41] or thin semi-transparent metal layers, such as
silver alloys [1]. A drawback of these solutions is the decrease of sensitivity
of the stack with respect to write power.

It is not surprising that in dual-layered stacks, thermal interference be-
tween the recording stacks needs to be avoided. This is achieved by taking
the the so-called spacer layer, that separates both recording stacks, thick
enough. As a result, the thermal behavior of the two stacks can be studied
independently.
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Figure 2.5: Sketch of the dual-stack phase-change disk. LO is the first record-
ing stack, L2 is the deep recording stack. Both recording stacks are optically
accessed from the top side. The thickness of the different layers are not to
scale.

For both single-layered as dual-layered stacks other configurations have
been and are still researched. However, in this literature survey such stack
configurations will be kept out of consideration.

2.5 Recording strategies

Several methods have been proposed for writing data on rewritable disks. In
the early nineties, recording strategies such as "pulse position’ recording and
'mark edge’ recording have been studied. When "pulse position’ recording
is used, all amorphous marks have the same length. As a consequence, the
system can only read information out of the spaces between the written
marks.

With 'mark edge’ (or "pulse-width’) recording, the written marks vary in
length, which allows for information to be read from both the length of the
amorphous marks as well as the length of the crystalline spaces between the
marks. During the writing of each mark, the power of the spot is kept at a
constant high power level. A serious drawback of this strategy is that due
to accumulation of heat during melting the recorded mark tends to have a
teardrop shaped distortion.

In order to avoid the occurrence of this unwanted effect, 'multi pulse’
recording is used. With this recording technique each mark is formed by
a train of successive short high-power laser pulses generating overlapping
amorphous dots as shown in Figure 2.6. In between the pulses, the laser
power is set to a low level, so that after each laser pulse the molten material
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Figure 2.6: The direct overwrite strategy. The intensity of the high-power
laser is set to such a level that during the recording of new data, existing old
data is erased. During reading, modulations in the intensity of the reflected
light can be measured.

is quenched and the accumulation of heat is avoided. When no marks are
written the laser power is switched to an intensity level which is high enough
to crystallize the material and erase possible earlier written marks. Since this
method of multi-pulse recording enables the system to overwrite old marks
directly, it is called a direct overwrite (DOW) method.

The most commonly used schemes for writing the amorphous marks are
‘groove’ recording and ’'land-groove’ recording. In case of groove recording,
the marks are only written in the grooves of the disk. When the land-groove
scheme is used, the marks are also written in the lands. The distance between
adjacent grooves is called the groove pitch and the distance between adjacent
tracks is called the track pitch. Thus, for groove recording the track pitch
and groove pitch are equal, whereas in case of land-groove recording, the
groove pitch is twice the track pitch.

2.6 Some remarks on high density recording

As has been mentioned in Section 2.1, research and development in the field
of recordable and rewritable disks is concentrated on both the increase of
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data storage capacity as well as data transfer rates. An increase of capacity
(or bit density) can be realized by either reducing the track pitch, i.e. the
radial density, or using smaller mark lengths (linear density). The average
mark length depends on the wavelength X\ of the laser light and the numerical
aperture of the objective lens. By reducing the spot diameter D as defined by
(2.1), smaller marks can be written and detected, thus increasing the linear
density. A consequence of the reduced mark size is that the track pitch can
be scaled down as well.

To achieve a high radial density a narrow track pitch is preferred. It is
then very important to control the optical and thermal cross talk between
tracks. Optical cross talk occurs when during reading the laser light is also
reflected on adjacent tracks, causing distortions in the detected light intensity.
It has been shown that by tuning the groove depth optical cross-track cross
talk can be reduced to an acceptable level [33].

The occurrence of thermal cross-track cross talk during writing is a serious
problem since thermal diffusion from the central track and light absorption
in adjacent tracks can cause partial erasure of existing marks on the adja-
cent tracks. The temperature distribution has been shown to be dependent
not only on the geometry of the grooved structure and the configuration
of the recording stack, but also on the wavelength and polarization of the
light. Furthermore, differences have been observed between land and groove
recordings [36].

The choice of the recording scheme is another way of influencing a disks
radial density. When land-groove recording is used the radial density can be
increased, but the above mentioned cross talk phenomena then become an
issue more strongly.

Recording speed is limited by the (re)crystallization time of the active
material. During writing, pulse duration and intensity are to be taken such
that the crystalline material melts within a period of time shorter than the
crystallization time to prevent (complete) recrystallization. In addition, the
individual amorphous dots should be sufficiently near to form a mark. During
erasure, the spot should remain sufficiently long above an amorphous region
to keep it at a temperature above the crystallization temperature for at least
the crystallization time.

An increase of transfer rate can thus be realized by optimization of the
composition of the active material. The reduction of the bit length by de-
creasing the spot size also enables faster recording speeds since smaller marks
implicate shorter (re)crystallization times.



Chapter 3

The modeling of phase-change
recording

The processes of data recording and erasing for rewritable optical disks can
be described as a complex interaction of phenomena occurring in the fields
of optics, thermodynamics and materials science. Due to the complexity, the
direct modeling of these processes, i.e. as a whole, is impractical. There-
fore the assumption is made that each process can be modeled separately.
This subdivision will be explained in more detail in Section 3.1. In Sections
3.2-3.6 the subprocesses will be characterized and modeling aspects will be
considered.

3.1 An overview of the modeling process

Before we discuss the modeling of recording and erasing of data for rewritable
optical disks, let us first recall how these processes work. In optical record-
ing of rewritable disks, binary data is written by applying short high power
pulses with a laser beam that is focused on the PC-layer of the disk. As a
consequence of the heating, the PC-material melts and the crystalline struc-
ture of the material is broken down. After the laser is switched off, the
temperature rapidly drops from above the melting temperature to below the
crystallization temperature (quenching). The stack design and material prop-
erties are taken such that the duration of the cooling down is shorter than
the crystallization time of the PC material. Since no complete crystallization
took place, an amorphous solid region is formed. A train of amorphous dots
written shortly after another forms a mark.

The marks can be erased by applying the same focused laser beam, but
now continuously set at a lower power level than during recording. The power
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level is such that the temperature in the material rises above the material’s
crystallization temperature, but is kept below its melting temperature. Thus,
during erasing, the PC-material does not melt. If the amorphous region is
heated for a time period longer than the crystallization time, the amorphous
material crystallizes completely, resulting in a fully crystalline solid material.

From the descriptions above it is clear that the modeling of the recording
and erasing of data on rewritable optical disks, as a whole, is very compli-
cated, since these processes are largely complex. This complexity is mainly
due to the mutual dependencies of the various physical parameters involved.
For example the focused laser beam causes a (locally) high rise of tempera-
ture in the disk as a result of which both the optical as well as the thermal
parameters of the materials in the stack change. Another difficulty is that
these processes take place on a sub-micron scale. Furthermore, a possible
numerical model for these processes as a whole would inevitably lead to con-
siderable demands on processor time, working memory and storage space.

Taking the complexity of the processes of recording and erasing into con-
sideration, a plausible approach is to divide the general model into two parts.
Both the recording as well as the erasing of data are induced by the energy
contained in the incident light. Therefor, the first part will be the compu-
tation of the EM field distribution in the disk. From this EM field the light
absorption in the medium can be derived. Recently, a so-called Q%D optical
model has been modified and further developed by Brusche [7] to be applied
as part of a model of PC-recording. This optical model, that is used in
the computation of the absorbed energy distribution in an optical rewritable
disk, will be discussed briefly in the next section.

The second part is the modeling of the mark formation and mark erasure.
Although both the formation and erasure of marks are temperature driven
processes, they are essentially quite different, as will be explained later, and
they will therefor be considered separately.

When modeling the mark formation, various degrees of accuracy can be
sought for. An initial approach is to consider the formation of a mark as
a simple threshold value determined growth process. Or to put it in other
words, the size and shape of a mark are determined by whether the local rise
of temperature during a laser pulse exceeds a given threshold value or not.
The value used is in general taken to be (in relation to) the melting tem-
perature of the PC-material. To obtain the temperature distribution in a
3D region of interest of the disk, the heat diffusion equation is (numerically)
solved. It is assumed that the EM energy that is absorbed in the PC layer
and the metal layer of the disk is totally converted into heat. This absorbed
energy (per unit volume) then acts as the source term in the heat diffusion
equation. The optical model as mentioned above can for instance be used
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to compute the absorbed energy distribution. The computation of the tem-
perature distribution as described above has been successfully implemented
by Brusche [7]. In Section 3.3 this thermal model will be considered in more
detail.

A more accurate and robust approach is to treat the mark formation
process as a Stefan problem. A Stefan problem is a boundary value problem
with an additional boundary condition that describes the movement of the
interface in time. This extra condition is called the Stefan condition. For
the mark formation problem the governing equation is the heat diffusion
equation. The moving interface is the boundary between the fluid and solid
phases of the PC material. The writing of a mark can thus be described as a
two-phase Stefan problem. An interesting aspect of this formulation is that it
incorporates latent heat, i.e. the energy required for a phase transformation,
in a natural way. More details on the Stefan problem formulation will be
given in Section 3.5.

A variety of numerical techniques exists for solving moving boundary
problems. T'wo groups of methods can be distinguished: front-tracking meth-
ods and implicit methods. In the front-tracking methods the position of the
interface is computed explicitly in each time step. Implicit methods use an
alternative way of updating the interface position. A selection of numerical
methods for solving moving boundary problems will be discussed in Chapter
4.

The erasure of a mark is characterized by (re)crystallization, i.e. the tran-
sition from an amorphous state to a crystalline state. As has been mentioned
before, the crystallization process is also temperature driven. The tempera-
ture distribution required can for instance be obtained using the combined
optical and thermal model by Brusche [7]. The crystallization itself can be
described by a 3D nucleation and growth model. This model essentially en-
velopes a probability function, that predicts the jump of an atom from the
amorphous state to a so-called critical nucleus of the crystalline state, and
a function that describes the growth of the crystalline grain. Crystallization
and the crystallization model are further discussed in Section 3.6.

We conclude this section by remarking that recrystallization also occurs
at the mark boundary during writing. Taking this additional effect into
account in the modeling of the writing process would pose new challenges,
but is left out of consideration for the time being.
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3.2 The computation of the absorbed energy
distribution

Because the structure sizes of the medium are of the order of the wavelength
of the laser spot, optical properties, such as the polarization of the light,
cannot be neglected. As has been remarked in Section 2.2, a scalar model
for the scattering of the light that is incident on the disk, can then not be
used. A rigorous vector diffraction model based on Maxwell’s equations is
thus required.

Many vector diffraction models have been considered to derive the EM
field distribution in grooved multi-layered stacks. These methods have been
developed in the context of the optical readout of prerecorded DVD’s. We
refer to [28, 29, 31, 35, 36, 45] for some several examples.

Although the referenced models have lead to some interesting results,
we prefer a model published by Brok and Urbach [6] and later extended by
Brusche [7]. The model considered is based on the finite element method
(FEM). Besides the fact that a lot is known about its mathematical proper-
ties, the FEM has certain advantages over other methods. The main advan-
tage is that all kinds of geometries, such as bumped layers, can be simulated.
The shape of the interfaces is not restricted and kinks are permitted. Fur-
thermore, the presence of metals with negative real electric permittivity does
not cause any problem.

Similar to Yeh et al. [45], the diffraction model by Brok and Urbach [6]
for a 3D spot that is incident on a 2D periodic multi-layered recording stack,
is based on a plane wave expansion of the spot. But the sampling is done
such that the plane waves can be divided into sets that, for the given period
of the grating, consist of waves which are orders of each other. This reduces
the number of scattering problems that have to be solved considerably. The
superposition of the plane waves in each set yields a quasi-periodic incident
field whose interaction with the periodic grating can be computed by solv-
ing a single boundary value problem (BVP). This BVP is derived on a 2D
computational box which is one period wide and is called a unit cell. Instead
of approximative absorbing boundary conditions, exact radiation conditions
for the scattered near field are used. The solution of the BVP is computed
using FEM. The total EM field is obtained by coherently adding all scattered
fields relating to all quasi-periodic incident fields.

In Brusche [7] the above described scattering model has been successfully
extended to a 3D region of interest, i.e. to a region of the disk in which
the amount of light energy that is absorbed has to be known for further
temperature calculations. For further details, the reader is referred to the
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Figure 3.1: Sketch of the absorbed energy and temperature profile across the
interfaces of a BD disk.

article.

When the total EM field is obtained, the amount of light absorption in
the disk can be computed. It is assumed that in those layers of the recording
stack that are absorbing the EM energy is entirely converted into heat. The
rate () at which heat is generated per unit volume, due to the absorption of
light, is given by [21]:

Qr) = %weolm ()] |[E"H(r) 2, (3.1)

where Im [e(r)] denotes the imaginary part of the electric permittivity at
position r.

Figure 3.1 shows a sketch of a typical absorbed energy profile across the
interfaces of a BD stack. Note that the absorbed energy is a discontinuous
quantity and in the non-absorbing layers of the disk it is of course equal to
zero. Furthermore, in general almost all of the light energy is absorbed in the
PC layer and the maximum amount of energy is absorbed near the interface
between the PC layer and the first (and thickest) dielectric layer.

3.3 Direct computation of the temperature
distribution

When one is interested in modeling the writing of marks, it is often useful
to obtain a preliminary estimate of the mark shape and size. Such an esti-
mate can be acquired from a simple model, such as will be explained in the
next section, for which only the temperature distribution has to be known.
Furthermore, knowledge of the distribution of the temperature in a disk is
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Figure 3.2: The geometry of a grooved BD stack. The groove depth and
inclination angle have been exaggerated to make the differences between TE-
and TM-polarized spots more distinct.

required to model the erasing of written marks. Next, we will discuss a sim-
ple 3D thermal model for acquiring the temperature distribution in a region
of interest in a rewritable disk.

Let (z,y, z) be a Cartesian coordinate system that is parallel to the coor-
dinate system of the optical model from Section 3.2. The chosen coordinate
system moves with the disk at a speed v in the positive z-direction. The
rise of temperature above ambient, 7T'(r), due to the heating of the disk by
the spot between ¢ = 0 and t = t., is computed by solving the (3D) heat
diffusion equation:

pc%—j; — V- [kVT] = Q(z,y — vt, 2), (3.2)
where £ is the heat conductivity, pc is the specific heat and Q(z, y, z) is given
by (3.1). The heating does not necessarily have to be continuous at all times.
A pulse strategy can also be applied.

The material properties are taken to be constant in the different layers
of the PC-disk and are assumed to be independent of the temperature in
the temperature range of interest. The computational domain is taken to be
large enough such that putting 97//0n = 0 on the outer boundary 02 is a
realistic boundary condition.
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The thermal model described above is used by Brusche [7] in combination
with the optical model described in Section 3.2. This optical model has the
limitation that changes in the optical properties of the medium, and thus
in the absorbed energy distribution, cannot be taken into account in the 3D
thermal model, because these changes are three-dimensional. But the effect
of these changes on the light distribution in the stack, and in particular on
the absorbed energy, are in general small.

In similar work, Peng and Mansuripur [36] successfully combined an op-
tical and a thermal model to study thermal cross-track cross talk effects.

A sketch of a typical temperature profile across the interfaces of a rewritable

disk is shown in Figure 3.1. In contrary to the absorbed energy, the tem-
perature is continuous across the interfaces. A peak in the temperature is
observed where the absorbed energy reaches its maximum value.

3.4 A simple mark formation model

As is often the case when modeling complex processes, a simple model in
which various aspects of the process are left out of consideration, can lead to
insight in the process. In the case of mark formation modeling, much can be
learned about for instance the size and shape of a mark from an estimation.
Such an estimate does not necessarily need to take into account the effects
of the latent heat or recrystallization at the mark boundary.

The simple model discussed in this section could be called a threshold
value model and it requires the temperature distribution in the disk to be
known. The idea of the model is to assign all regions in the PC layer where
the temperature has exceeded the melting temperature of the PC material
to be amorphous. All others regions are taken to be crystalline. Hence, the
possible existence of a 'mushy zone’, i.e. a region in which the material is
neither fully amorphous nor fully crystalline, is not considered.

As an illustration we consider the temperature distribution in a grooved
BD stack as shown in Figure 3.2. The incident spot is taken to be Gaussian
and predominantly TM-polarized. Figure 3.3 shows the temperature distri-
bution after heating for 100 ns in a cross-section of the disk perpendicular
to the grooves and parallel to the optical axis as found by Brusche [7]. In
the figure an outline is shown of the estimated mark boundary in case the
melting temperature of the PC material is approximately 650 °C'. Note that
in this specific example small amorphous regions have formed on the adja-
cent lands. Based on this data it can be concluded that, when a land-groove
recording strategy is used, cross-track interference effects can be expected.

Obviously, an estimate as obtained using the above model can be expected
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Figure 3.3: An estimate of a mark for a grooved BD stack based on a simple
threshold value model.

to be quite inaccurate. Therefor, it is interesting to get an idea of how large
an influence the exclusion of latent heat in the model has on determining the
mark shape. To this end we compare the numerical values of the specific heat
of the PC material, see Table 3.1, and the latent heat of the solid-to-liquid
transition L = 418.9 J/ecm? as given in Ref. [8]. Since the specific heat
C ~ 1J/cm?/K, this means that the melting of 1em? is approximately equal
to heating up that same volume by 400/. This implicates that latent heat
might play a significant role in the mark formation process. Thus, a sizeable
difference between the mark boundary as obtained with the threshold value
model (i.e. without latent heat) and as acquired from solving a moving
boundary problem (i.e. including latent heat), is to be expected.

Table 3.1: Numerical values for the specific heat C' and heat conductivity x.
| | C [J/em?/K] | k [W/em/K] |

substrate 1.7 0.0022
PC (amorphous) 1.285 0.0017
PC (crystalline) 1.285 0.005
PC (liquid) 1.285 0.005
dielectric 2.005 0.006
metallic mirror 2.45 0.25
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Figure 3.4: The domain €2 with the moving boundary I'(¢).

3.5 A two-phase Stefan problem formulation

During the writing of a mark, the heating by the laser spot causes part of the
initially solid crystalline PC material to melt. When the time needed for the
temperature to drop below the crystallization temperature is much shorter
than the crystallization time, most atoms in the liquid PC material will not
recrystallize during solidification and a solid amorphous region, the mark, is
formed.

In the following we will assume that during the solidification no recrystal-
lization occurs. Consequently, the region that is considered to be amorphous
will be the same region as that which is liquefied during heating. Likewise,
the crystalline region is taken to correspond to the part of the material that
stayed solid.

A second assumption is the non-existence of a so-called 'mushy zone’ in
which the PC material is neither fully liquid nor solid. Thus, the interface
between the liquid and solid phase will be sharp. The simulation ends at
time ..

Let €2 be the domain in 3D Cartesian space occupied by the PC material
as depicted in Figure 3.4. As of a time t,,, to < t,, < t., £ is composed of
two disjunct sub-domains Q(t) and €2;(t), occupied by the solid and liquid
phases of the PC material, respectively. These sub-domains are separated
by a unknown surface I'(¢) to be determined. The fixed outer boundary is
denoted as 6€2.

In each of the sub-domains the temperature rise above ambient 7'(x,t)
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satisfies the heat diffusion equation (3.2):

pscs%{f’ﬂ =V (ksVT (2, 1)) + Q(x,t), VY e, tEeltyt], (3.3)
plcl%im =V . (kVT(x,t)) + Q(x,t), Ve e, tE/tnt], (3.4)

where we have omitted the speed v at which the spot moves over the disk.
The coefficients ps, pi, cs, ¢, ks, K1 are assumed constant, but may be different
in each phase.

On the unknown moving boundary I'(#) two conditions have to be satis-
fied. First, the temperature equals the known melting temperature:

T(T@)t)="Tn (3.5)

and second the temperature has to satisfy the Stefan condition:

"on

oL, - [ @T} (3.6)

where L is the latent heat, n is the (unit) normal vector on I' pointing from
Q(t) to Q4(t), and v, the normal velocity of the moving interface. By [¢] we
denote the jump in ¢ defined as:

4] = L oz, t) — L o(z, t) (3.7)
weﬂs(t) $€Ql(t)

3.6 Crystallization

The processes of amorphization of molten regions during quenching and the
crystallization of the amorphous state during erasing are very complicated.
In order to model these processes, knowledge of the crystallization kinetics
is of great importance.

Many of the existing descriptions of crystallization kinetics come from
thermodynamics. They are mainly based upon two theories: Johnson-Mehl-
Avrami-Kolmogorov (JMAK) theory and classical nucleation theory. In both
theories it is assumed that crystallization occurs either by the nucleation of
critical size particles and their subsequent growth within the untransformed
region, or by the growth of crystallites at the boundary between the untrans-
formed region and the surrounding crystalline matrix. With JMAK theory
the volume fraction of crystallized material can be computed in terms of
nucleation and growth rates. The classical nucleation theory allows for the
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calculation of the nucleation and growth rates, and the distribution of the
crystallite size.

According to Senkader et al. [38] both these approaches have inevitable
limitations, mostly since in optical recording nucleation and growth occur
within very short time scales. The authors remark that the nucleation in
a real system not only involves clusters of critical size. The progress of the
nucleation also depends on the interaction of the critical size nuclei with sub-
critical and supercritical sized clusters of molecules. Therefore, Senkader et
al. propose a model to compute the distribution of cluster sizes. For another
example of a dynamic theory, based on cluster concentrations, the reader is
referred to [43].

Despite the more realistic modeling that the dynamic models provide for
and the limitations of models based on either JMAK theory or the standard
theory of kinetics, we will in the following only consider the classical crystal-
lization model. A motivation for this choice is that the classical model gives
an explicit formula for the growth velocity.

Next, we will first give an outline of the general idea of the nucleation
and growth model by considering a very simplified, though illustrative, two
dimensional example, based on the implementation by Peng et al. [8]. After
the example we will subsequently discuss into detail the Gibbs free energy,
nucleation and growth. In the sections on nucleation and growth we will
mainly focus on the more general crystallization model as presented in [8].
A slightly simplified model assuming spherical nucleus growth [20, 40], will
also be considered.

3.6.1 A simplified example

The recrystallization of an amorphous region of a section of PC material of
unit thickness can for instance be modeled as follows. First the section of
interest is discretized into n X n unit control volumes. Each control volume
(or cell) can either be in the amorphous solid phase or the crystalline solid
phase.

Each step, for every amorphous control volume there is a statistical prob-
ability that atoms will cluster and form a stable crystalline nucleus. This
probability depends on temperature (averaged over the control volume) and
the status of the adjacent cells, see Figure 3.5. If none of the four closest
neighbors is crystalline, there is a probability P,(T) for a stable nucleus to
be formed and the amorphous cell to become crystalline. Otherwise, when
the amorphous cell has at least one crystalline neighbor, it has probability
P,(T) to become crystalline through growth of the crystalline surroundings.

In case P, is relatively large compared to P, the crystallization is called
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Figure 3.5: In the example of the simplified recrystallization model in the
text, the probability that a cell transforms from the crystalline to the amor-
phous state depends on the state of its nearest neighbors.

growth dominated. When P, is relatively larger than P,, the crystallization
is called nucleation dominated.

Figures 3.6 and 3.7 show results of a simulation of the recrystallization
of a mark, consisting of three overlapping amorphous dots, in case of growth
dominated crystallization and nucleation dominated crystallization, respec-
tively. For simplicity, in these simulations P, is assumed to be independent of
temperature and the probability P, has been replaced by a prescribed rate of
growth: in the growth dominated case every step an amorphous cell with at
least one crystalline neighbor becomes crystalline; for nucleation dominated
crystallization this happens every fifth step. We stress that the probabilities
and growth rate in this example have been chosen such that the difference be-
tween nucleation dominated and growth dominated crystallization is evident,
and are not related to any realistic situation.

Even though the example uses a very simplified model, it clearly shows
the distinct difference between nucleation dominated and growth dominated
recrystallization. Before we come to describe the crystallization process, it
is important to first understand the driving force behind this process, the

so-called Gibbs free energy. The following section contains fragments taken
from [24].

3.6.2 Gibbs free energy

Some reactions are spontaneous because they give off energy in the form of
heat (L < 0). Others are spontaneous because they lead to an increase in the
disorder of the system (AS > 0). Calculations of the change of enthalpy L
and the change of entropy AS can be used to probe the driving force behind
a particular reaction. In order to understand what happens when one of the
potential driving forces behind a chemical reaction is favorable and the other
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Figure 3.7: An example of nucleation dominant recrystallization. The amor-
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The nucleation probability P, for an amorphous control volume is < 0.005.
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control volumes.
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is not, one can consider the balance between these forces, known as the Gibbs
free energy. The Gibbs free energy G of a system at any moment in time is
defined as the enthalpy of the system minus the product of the temperature
times the entropy of the system: G = H —T'S.

The Gibbs free energy of the system is a state function because it is
defined in terms of thermodynamic properties that are state functions. The
change in the Gibbs free energy of the system that occurs during a reaction
is therefore equal to the change in the enthalpy of the system minus the
change in the product of the absolute temperature 7' times the entropy of
the system.

AG =L — A(TS) (3.8)

If the reaction is run at constant temperature, this equation can be writ-
ten as follows.

AG =L —TAS (3.9)

As we have seen, the enthalpy and entropy terms have different sign
conventions. The entropy term is therefore subtracted from the enthalpy
term when calculating AG for a reaction.

favorable ‘ unfavorable

L <0 L>0
AS >0 AS <0

Because of the way the free energy of the system is defined, AG is negative
for any reaction for which L is negative and AS is positive.

Reactions are classified as either exothermic (L < 0) or endothermic
(L > 0) on the basis of whether they give off or absorb heat. Reactions can
also be classified as exergonic (AG < 0) or endergonic (AG > 0) on the basis
of whether the free energy of the system decreases or increases during the
reaction.

The balance between the contributions from the enthalpy and entropy
terms to the free energy of a reaction depends on the temperature at which
the reaction is run. The equation used to define Gibbs free energy (3.9) sug-
gests that the entropy term will become more important as the temperature
increases. Since the entropy term is unfavorable, the reaction should become
less favorable as the temperature increases.

3.6.3 Nucleation

In the amorphous phase, there is a statistical probability that atoms will
momentarily form a crystalline cluster. These so-called embryos are potential
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Figure 3.8: The heat of formation AG; as a function of the radius r (for
spherical nuclei). For a potential cluster to become stable, i.e. to form
a crystalline nucleus, the net difference in Gibbs free energy between an
unstable and a stable cluster must exceed the energy barrier AG*.

nuclei for the crystallization process. Clusters that exceed some critical size
can reduce the system free energy only through further growth and hence
stable nuclei are capable of sustained existence. Sub-critical clusters decrease
the system free energy via shrinking in size and thus will tend to dissolve
back in to the parent phase [37]. The Gibbs free energy per volume of the
crystalline state is lower than that of the amorphous phase. The change of
Gibbs free energy AG,, or excess Gibbs free energy, corresponding to the
crystalline-to-amorphous transition is given by (3.9):

AG, = L —TAS (3.10)

In order for an embryo to transform into a stable nucleus, the so-called heat of

formation AGY, which is the net Gibbs free energy between a stable nucleus

and an embryo, has to exceed the activation energy AG*, or energy barrier.
For spherical nuclei of radius r, the heat of formation is given by [40]:

4 3
AG; = £(8) (Ay — VAG,) = f(6) (zm% - 7?; AGn) (3.11)
where V' is the volume and A the surface area of the nucleus, 7 is the interface
energy and f(0) is a function of contact angle . For homogeneous nucleation,
f(#) =1 and the energy barrier AG* is equal to the maximum of AG(r).
At the critical radius r* = 27/AG,, this maximum is reached:

. l6m A7
AGT= 3 AG?

f(0) (3.12)
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In case of inhomogeneous nucleation, i.e. in the presence of impurities, which
lower the interface energy, the critical free energy is reduced. Therefore,
f(0) < 1 for inhomogeneous nucleation.

Note that for large radii 7 the volume related term in equation (3.11) is
dominant, while for small clusters the surface term dominates. This is of
special importance when considering the effect of the thickness of the PC
layer on the crystallization behavior.

When arbitrarily shaped nuclei are considered the energy barrier is given
by:

~ 73
AG* = AAG%f(G) (3.13)

where A is related to the volume and surface area of the nucleus and is tem-
perature dependent. However, as has been remarked in [8], we will assume A
to be temperature independent, in which case its value may be determined
from the peak temperature Ty at which the rate of nucleation is at maximum.

The temperature dependence of the excess Gibbs free energy (3.10) may
be approximated by

L [1_£< _QM)} T<T
AGy =471 T Iz Tm & (3.14)
Ly =— T>T1T,

where L, and Lo are the latent heat of the solid-to-liquid transition and the

exothermic heat of the amorphous-to-crystalline transformation, respectively,

T, is the glass transition temperature and 7;, is the melting temperature.
The (time-independent) rate of nucleation I can be expressed as:

I = aexp(—f[E, +AGY]). (3.15)

Here, « is a frequency factor related to the atomic jumping frequency; 3 =
1/kgT, where kg is the Boltzmann constant; F,, is the activation energy
associated with the jump of an atom from the amorphous phase to the crit-
ical nucleus of the crystalline phase. For spherical nuclei, AG* is given by
equation (3.12). Otherwise, equation (3.13) applies.

The probability for an untransformed grid volume AV to become a crys-
talline nucleus during a time interval At is then given by

P, = IAtAV. (3.16)
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Figure 3.9: Approximation of the temperature dependence of the excess
Gibbs free energy AG,, as in (3.14). The numerical values as in Table 3.2
have been used.

3.6.4 Growth

Besides through nucleation, an amorphous region may become crystalline by
growing from an adjacent nucleus or from the boundary of the surrounding
crystalline regions. The growth velocity Vj of a crystallite is written as:

V:q = gaox eXp(_ﬁEm)[l - eXp(_ﬁAGn)]v (317)

where ¢ is a factor related to the growth mode; ay is the atomic jump
distance; and E,, is the activation energy associated with the diffusion of
atoms. In order to simulate lateral growth, [8] assume g to be proportional
to exp[—0.8/(1 —T'/T,,)].
The growth probability for an untransformed grid volume AV is then
given by
P, = V,AtAV. (3.18)

In case spherical grain growth is assumed the nucleus radius can be di-
rectly calculated from the growth velocity as

r(t) =Y V,At/g, (3.19)

t>T1

where 7 is the time at which this grain nucleated.

The numerical values of some of the quantities mentioned above are listed
in Table 3.2.
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AN

Figure 3.10: A spherical crystallite growing in the circumcenter of a mesh
triangle.

For the crystallization model as presented above, it is likely that a much
finer grid is used than that of the melting and solidification model. As long as
the crystallites are smaller than a grid cell of the coarser mesh, growth can be
modeled using the above described growth model. As soon as the crystallites
have grown beyond the grid size of the coarser mesh, the consecutive growth
can be modeled using a moving boundary method.

Remark: In case a FEM is used for computing the temperature distri-
bution, a possible method of including a recrystallization model on the same
mesh could be the following. Assume that in 2D a triangulation of the region
of interest has been performed. As control volumes (areas) for the recrys-
tallization model we then choose the triangles of the mesh. Each triangle
which is fully amorphous then has a probability P, that a stable nucleus will
form inside the triangle. When a nucleus has formed, we assume that it is
located in the circumcenter of the triangle, see Figure 3.10. The nucleus is
then assumed to grow at a speed ‘79. If the radius of the nucleus has become
larger than the circumradius, the triangle is considered to be fully crystalline.
Besides, since the nucleus has grown beyond the grid size of the mesh, it’s
consecutive growth can be modeled using a moving boundary method.
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Table 3.2: Numerical values of the kinetics parameters of a GeySbyTes alloy
as given in Reference [8].

‘ symbol ‘ value ‘ unit ‘
E,, 2.19 eV
E,, 2.23 eV
T, 616 °C
Tn 405 °C
T, 400 °C
Ly 418.9 | J/em?
Ly 218.5 | J/em?
a 4%x10% | st




Chapter 4

A survey of numerical methods

In this chapter we will present a survey of numerical methods for solving
melting and solidification problems. In particular we are interested in finding
a suitable numerical method to obtain the solution of the three-dimensional
two-phase Stefan problem as introduced in Section 3.5. Most of the methods
mentioned in this chapter have been developed in the more general context of
phase-change problems, and aim at describing the evolution of temperature
in time and either implicitly or explicitly keep track of one (or multiple)
interfaces between phases.

We will first consider an analytical method, known as Neumann’s method.
This is of particular interest since problems for which an analytical solution
exists, often appear in the literature in order to validate a numerical method.

Without attempting to be complete we will then briefly discuss a selection
of numerical methods, other than the level set or enthalpy based ones, in
Section 4.2. The main reason for including these methods in this survey
is that, although we initially aim at either applying a level set or enthalpy
based technique, knowledge of their benefits and drawbacks can prove useful
once we have chosen a suitable method for solving our Stefan problem.

Finally, we will focus on numerical methods that use either an enthalpy
or level set approach. The basic ideas behind methods based on an enthalpy
formulation and level set based methods, will be successively presented in
Sections 4.3 - 4.4. Both finite difference and (extended) finite element ap-
proaches will considered. In the conclusive section the benefits and drawbacks
of the discussed methods will be compared.
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4.1 Analytical methods

Analytical solutions exist for only a select number of phase-change problems.
Stefan [39] was the first to solve the simplest phase-change problem possible:
the one-dimensional one-phase problem in a semi-infinite region. By ’one-
phase’ we mean that, for a melting problem, only the liquid phase is ’active’
while the other phase stays at the melting temperature, and is 'in-active’.
Thus, to put it other words, only for the ’active’ phase the heat diffusion
equation has to be solved.
In the context of (1D) Stefan problems, a dimensionless number St given
by
C(Ty — T
7 )

often appears in the literature. This number, generally known as the Stefan
number, governs the rate of melting or solidification in a semi-infinite region.
In (4.1), C; is the heat capacity of the liquid, L is the latent heat of fusion
and T; and T, are the temperatures of the surroundings and the melting
point, respectively.

In the following we will consider Neumann’s method for a two-phase Ste-
fan problem. The problem description and most of the notation used are
adopted from [25].

St = (4.1)

4.1.1 Neumann’s method

In two-phase Stefan problems, both the liquid phase as well as the solid phase
are ’active’. If melting of a semi-infinite slab (0 < x < o0) is considered,
initially solid at a uniform temperature Ty < T,,, and a constant temperature
is imposed on the face x = 0, with assumptions of constant thermo-physical
properties, the problem can be mathematically expressed as follows:
Heat conduction in the liquid region:
oT; 0T,

Heat conduction in the solid region:

o, 0*T,
ot s 0x?

for I'(t) < x,t > 0. (4.3)

Interface temperature:

T(D(t),t) =T, fort > 0. (4.4)
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Stefan condition:

T aT, dar
— —K— = Lp— fi =TI(t),t ) 4.
s~ Kig 7 or x (t),t >0 (4.5)
Initial conditions:
T(x,0)=Ts, < T, for x > 0,T°(0) = 0. (4.6)
Boundary conditions:
T(0,t)=1T,>T, fort >0, (4.7)
T(x,t) =T, for x — 00,1 > 0. (4.8)

Here oy = k,;/C) and oy = k4/Cy denote the thermal diffusivity of the
liquid and the solid phase, respectively.
The exact solution to such a problem was obtained by Neumann in terms

of a similarity variable
x

) /ot
where the subscript p can be either [ for the liquid phase or s to indicate the

solid phase. The final Neumann’s solution can be written as:
Interface position:

(4.9)

A
T(t) = 2. (4.10)
m
Temperature in the liquid phase:
erf(m)
T(x,t) =T, — (1T} — T,,) ———. 4.11
(0,0) = T = (T = Tp) = (111)
Temperature in the solid phase:
fc(ns
T(x.t) = T, — (T, — T)—2tcns) (4.12)

erfc(A/ag /o)

The X in equations (4.10)-(4.12) is the solution of the transcendental
equation

St Sts\/0s
_ v W 413
exp(A?)erf(A)  /ajexp(au\2/ay) exfe(A/ay /o) vr “13)
where

(Tl - Tm)

sTm_Ts
Sty = - <l )

7 Sty = — 7 (4.14)

Neumann’s solution as presented above exists only for moving boundary
problems in the rectangular coordinate system. An exact solution for phase-
change problems in the cylindrical coordinate as well as several approximative

methods can be found in the literature, but we will not discuss them here.
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4.2 A brief overview of various numerical meth-
ods

The excellent paper by Hu and Argyropoulos [25] gives an elaborate review
of numerical methods for modeling solidification and melting problems (for
up until 1996). Because of the contents of this paper we will in this section
limit ourselves to briefly summarizing the paper’s third section on numerical
methods for solving the pure heat conduction equation with a phase-change
involved, so that detailed descriptions of the methods will be omitted. Except
for some additional references to more recent publications (later than 1996),
further references have also been omitted, as they can be found in the paper
by Hu et al. In particular we will put emphasis on the benefits and drawbacks
of the discussed methods. Unless stated otherwise, in the following it is
assumed that a 1D heat diffusion problem is considered, but remarks on
the extensibility to higher dimension will be made. Enthalpy and level set
methods will be discussed separately in later sections.

The first class of methods we will discuss are the fixed grid methods. In
a fixed grid method, the heat diffusion equation is for instance approximated
by finite difference replacements for the derivatives in order to compute the
values of the temperatures 7T}, at location x; = iAx and time ¢, = nAt on
a fixed grid in the (z,t) plane. It is assumed that at any time ¢,, the moving
boundary is located between two adjacent grid points.

Various approximations have been proposed for the Stefan conditions on
the moving boundary and the partial differential equation at the adjacent grid
points, such as Taylor expansion based interpolations or Lagrange interpola-
tions. Several efforts have been made to apply these and related techniques
in both two and three space dimensions.

Probably the most problematic aspect of the fixed grid methods is the
loss of accuracy associated with singularities, which can arise when the mov-
ing boundary is too near a grid point. The mathematical manipulations to
resolve this are considered to be very lengthy and complex indeed. Accord-
ing to Hu et al., the mayor advantage of the fixed grid methods is that these
methods can efficiently handle problems with multiple phase-fronts without
much difficulty. Altogether, the elaborateness of properly dealing with sin-
gularities, especially in higher dimension, makes that the fixed grid methods
might not be favorable for solving our Stefan problem.

Variable grid methods provide a solution for most of the drawbacks of
the fixed grid methods. The variable grids can be either interface-fitting or
dynamic. In interface-fitting grid methods (or variable time step methods)
a uniform spatial grid but a non-uniform time step are used. At each new
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time step the step size is chosen such that the moving boundary is located
on a grid point. In dynamic grid methods (or variable space grid methods)
the number of spatial intervals are kept constant and the spatial intervals are
adjusted in such a manner so that the moving boundary lies on a particular
grid point.

In [23] this technique is employed for two-dimensional two- and three
phase solidification problems. The method presented is capable of deal-
ing with freezing fronts that may have high curvatures. Christopher [12]
compares an interface-following scheme using either a first- or second-order
discretization with an enthalpy model (see 4.3). From the results of the
performed computations it is concluded that the interface following method
must use the second-order model for the moving interface to maintain the
accuracy for fast-moving interfaces. In contrary to the enthalpy method, the
interface following method cannot be used to model very complex shapes,
such as intersecting phase-change interfaces. The enthalpy method also ap-
pears to be the most accurate of the methods considered in the article.

Although the adaptive grid approaches deal with many of the drawbacks
of the fixed grid methods, the variable grid methods still mostly suffer from
their inherent complexity, in particular for higher dimensional cases.

4.3 Enthalpy methods

When compared to the previously described methods, the enthalpy meth-
ods we will discuss next can be considered to be the most versatile, con-
venient, adaptable and easily programmable numerical methods for phase-
change problems in 1, 2 or 3 space dimensions [2], Chapter 4.2. But, there
are still many problems for which even an enthalpy approach is not suitable.
Such is the case for instance for problems involving super-cooling, where
the instability of the interface must be studied. Finding a weak formula-
tion is then often impossible, due to the special interface conditions that
are imposed. Alternatively, such problems can be solved using a phase-field
approach (for instance see [16], Chapter 11, and references therein).

Before we come to explain the basics behind the enthalpy based methods
we will first recall the two-phase Stefan problem from Section 3.5. On a three-
dimensional domain €2 with fixed outer boundary {2 and moving boundary
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['(t), the two-phase Stefan problem is given by:

pc% =V (kVT(x,t)) + Q(x,t) Vr e Qist>0 (4.15a)

+pLv, = lmg—T] forx =T(t),t >0 (4.15b)
n

(T (x,0) = T} (x) Ve € Q19,6 >0 (4.15¢)

where we have set ty = 0, together with one or more of the following boundary

conditions on the complementary parts 6€2;,7 = 1,2,3 of the fixed outer
boundary 09 = U?Zl 08;:

1. A Dirichlet condition on 6€;:

T = Ty(x). (4.16)
2. A Neumann condition on 6{2y:

T x) = q(x), (4.17)

H(T)a—n( )

where n is the outward unit normal to the boundary surface, and g(x)
a given normal heat flux.

3. A radiation-type boundary condition on §{23:

or

R(T)a—n

(z) = a(T), (4.18)

where @(7') is a non-linear function of temperature.

4.3.1 General description

The most convenient starting point for deriving a numerical scheme for solv-
ing the Stefan problem above, is to consider the law of energy conservation
in the form of a primitive integral heat balance over arbitrary volumes and
time-intervals, as given by

t+At t+At t+AL

t/% V/HdV dt://—q-ndet+/‘//Qdth. (4.19)

t 6V t
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Here, H is the energy density (per unit volume), or enthalpy, and —q - n is
the heat flux into the volume V' across its boundary oV, n is the outgoing
normal to 6V and () is an internal heat source. The heat conduction equation
(4.15a) can be easily derived from (4.19), see for instance [2], Chapter 4.1.

The energy balance (4.19) is valid irrespectively of phase over the whole
domain considered, and even for jumps in H or q. Thus, it is more general
than the localized differential form

H, +divq = Q. (4.20)

According to the Gauss’ divergence theorem, the integral notation (4.19) and
the differential form (4.20) are equivalent for smooth H, q and Q. In case of a
phase-change problem, (4.20) can only be interpreted classically (point-wise)
in each phase separately, but then in addition a Stefan interface condition
(4.15b) is required, making front-tracking necessary.

Alternatively, (4.20) may be interpreted in a weak sense globally. The
numerical solution to the discretized form of equation (4.20) via the enthalpy
method, is found to approximate the weak solution (see for instance [2],
Chapter 4.4). It is for this reason that from this point onwards, as is common
in the literature, to consider (4.20).

In general, the enthalpy function H is defined as the integral of the heat
capacity with respect to temperature. For problems in which no phase-change
occurs, the enthalpy H is equal to the sensible heat, defined by:

T
H(T) = / pc(T)dT, (4.21)
Trey
where pc = C'is the volumetric heat capacity which depends on temperature,
and where T,.s is a reference temperature. For problems involving a phase-
change the enthalpy is defined as the sum of the sensible and the latent heat.
Since the type of material considered influences the form of the function
H(T), it is convenient to distinguish between two cases: the non-isothermal

(or mushy) phase-change, and the isothermal phase-change.

In case of isothermal phase-change, the enthalpy function has a jump-
discontinuity at the melting temperature 7}, and its temperature dependence
may be written as:

fTT ; pes(T)dT, for T < T,
H(T)=4 . (4.22)
J1 ped(TVAT + pL + [ pe(T)dT, for T > T,

The quantity pL, where L is the latent heat, is the energy that is required
for a phase transition from the solid to the liquid state. If for example we
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Figure 4.1: Sketches of the enthalpy versus temperature relations for isother-
mal phase-change (left) and mushy phase-change.

consider the case in which ¢, ¢; are constants and T,.; = 1), then (4.22)
becomes
pes(T —T,), T<T,
H = (4.23)
pe(T —T,,) + pL, T>T,

That is, solving for T,
T+ 2L for H <0, (solid)

pcs’

T=<X1T,, for 0 < H < pL, (mushy) (4.24)

T + 2228 for H > pL (liquid).

per

A more general form of phase-change, often appearing in industrial ap-
plications involving alloys, is that of mushy phase-change. In these problems
melting takes place over a finite interval [Ty, T;]. For non-isothermal cases
the enthalpy function (4.21) takes the form:

T
fTref pes(T)dT, for T' < T,
H(T) = { [i" ped(T)dT + [, p2dT, for T, <T<T, (4.25)
S pedTVT + pL + [ pei(T)dT, for T > T5.

In Figure 4.1 the enthalpy versus temperature relations in case of isothermal
and mushy phase-change have been sketched.
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The enthalpy formulation removes the necessity of carefully tracking the
moving interface and consequently standard numerical techniques can be
employed. Since in the enthalpy method the moving interface is not explicitly
tracked, but the front position may be recovered from the values of the
enthalpy a posteriori, the method may be characterized as a front-capturing
scheme.

The procedure of the enthalpy method is roughly the following. For
the sake of clarity, we assume that the parameters p,c and k are constants
for each phase and that an explicit time integration scheme is used. We
partition the domain €2 into a finite number of cells V; and apply energy
conservation, as in equation (4.19), to each control volume to obtain a discrete
heat balance. Given an initial state for which the specific heat, conductivity
and temperature (and thus the phase) are known, this discrete form is used to
update the enthalpy. The 'new’ states of phase are then found by the enthalpy
alone and the updated temperatures then follow from equation (4.24). The
specific heat and conductivity for the new state are then easily determined.

In the next two sections we will successively discuss finite volume schemes
and finite element approaches for solving the enthalpy equation. Since the
'standard’ finite volume discretization methods discussed in the following
can be extended to higher dimensions without much difficulty, we will re-
strict ourselves for clarity to one spatial dimension. For both finite volume
and finite element techniques we will first consider the general theory. We
conclude each section with a discussion of recently published articles on en-
thalpy methods.

4.3.2 Finite volume approaches

Consider a space-time grid as shown in Figure 4.2. The conductive flux across
a face located at z; 1 or x;, 1 of a control volume V; is given by

or
= —K—. 4.26
q B (4.26)
To obtain a numerical scheme we introduce the discrete approximations
H = H(zity), @Y = a1t +0AL), 0<60<1, (4.27)
2

in which we use the superscript notation for the flux defined as
¢ = (1 —0)¢" + 6™ (4.28)

so that we can write (4.20) as

n+0 _  _ni40
H' — [P B G-1 = %L

2

n+0 :
- =1,....M =0,1,... (4.2
Atn ALIZ’Z + Qz ) 1 ) ) ) n 07 ) ( 9)
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Figure 4.2: A control volume V; in a space-time grid.

The choice of the parameter 6 determines the type of time discretization.
For # = 0 we have the Euler forward scheme, for # = 1 the scheme is Euler
backward. The most common choice is 6 = %, which is the Crank-Nicholson
scheme.

In general, the interior flux ¢;_ 1 can be discretized by second order central
differences as T

G2 =—k, 1 —L =2 M, (4.30)
? 2T — T

which represents the amount of heat flowing from V;_; into V; across a unit
cross-sectional area per unit time. The discretization for g; 11 is similar. The
quantity ,_1, called the effective conductivity, is difficult to prescribe since
in general the conductivities k;_; and k; can be different. By means of the
so-called thermal resistance, given by

lAl'i_ lAl'Z
R =2 L2 (4.31)
2 Ki—1 K4
we can express the interior flux (4.30) as
i —Ti |
2

As a convenient indicator of the state of phase of a control volume, the
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liquid fraction defined as

0, if H <0 (solid).
AP = fg, if 0 < H* < pL (mushy). (4.33)
1, if pL < H! (liquid).

is often used. If 0 < A? < 1 the control volume is said to be mushy with
liquid volume A"Az; and solid volume (1 — A)Ax;. If the problem admits
a sharp interface, then according to [2], Chapter 4.2, the enthalpy scheme
ought to produce a single mushy node at each time step. If at time t" the
mushy node is the m-th node, then a good approximation of the interface
location I'™(t") is given by

=2, 1+ XAz, (4.34)

m

We emphasize once again that the interface location itself is not involved
in the computation at all, this being an essential advantage of the enthalpy
method.

In addition, the liquid fraction can be used in choosing the effective con-
ductivity k; of a mushy control volume, which can be quite difficult, especially
in two or three spatial dimensions. For example, in case of a sharp front, one
could choose 7' using the relation

1 AP 1— A7

— = =1,2,..., M. 4.35
/ﬂ',n /ﬂ',l(Tm) + K',S(Tm)’ ? Y ) Y ( )

2

Although many choices have been proposed in literature, the problems re-
mains to decide which choice is most relevant to the problem considered.

For temperature dependent conductivities the best approach is to intro-
duce the so-called Kirchoff temperature v defined as

fTTm Ks(T)dT for T < T,

T
= dr = 4.36
N /m w(r)dr fTTm Ky(T)dT for T > T,,. (4.36)

In particular, for constant k,, k; we have
k(T —T) it T < T,
u=<0 it T =1, (4.37)

k(T =Ty i T > T
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Then ¢ = —KT; = —ug, so the discrete flux is simply ¢; 1 = (w1 —u;)/Ax,
and the discretized enthalpy equation reduces to
HY— g ) — 20 ot
[ N

At " Q. (4.38)

In [2], Chapter 4.3, it is even emphasized that, when the conductivities of
the phases are unequal and they are functions of the temperature only and
not of the location, the Kirchoff transformation should be used. One of the
main reasons is that faster convergence can be obtained in case an implicit
scheme is used, and thus efficiency is increased.

Difficulties also arise in case the heat capacities are temperature depen-
dent. If ¢; = ¢s(T), ¢ = ¢(T) then in general we need to find 7' from an
equation of the form (4.21), for which a Newton-Raphson method may be
employed.

In case of 6 = 0 the fluxes are evaluated at the old time ¢" and it is
assumed that up to t"*! the process is driven by these fluxes. This time-
explicit scheme is very straight-forward, although there is one important
restriction that needs to be addressed. To ensure stability the time step has
to fulfill the well known Courant-Friedrichs-Lewy (CFL) condition, which in
case of the enthalpy equation is given by

1 (min Ax)?
A < LminAz)” (4.39)
2 maxa”
where min Ax = min Aux; and
i=1,2,..,M
T k(T
maxa” = max {Hz( Z>,K( ’)} (4.40)
i=1,2,..,M PC; pCi

The advantage of a time-explicit scheme mainly lies is its simplicity and the
ease with which is can be programmed.

For implicit schemes, where % < 0 < 1, there is no restriction to the choice
of time step in order to ensure stability. But, because of the definition of the
enthalpy as being dependent on temperature, we have a nonlinear system,
which can only be solved using an iterative method. In fact, H; as function
of T; is multi-valued when T; = T,,, since it may be any number between 0
and pL.

An often employed iterative method for linear systems is the Gauss-Seidel
iteration. A standard method to accelerate the convergence of the Gauss-
Seidel iteration is the successive over-relaxation (SOR) algorithm. Acceler-
ation is obtained by linear extrapolation using an over-relaxation variable
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w. In general, convergence of the SOR-method is obtained for 0 < w < 2.
In case of w = 1 the SOR method is exactly the Gauss-Seidel method and
acceleration is only achieved for 1 < w < 2. For phase-change problems, and
in particular the enthalpy problem as formulated above, which is highly non-
linear, Elliott and Ockendon have suggested a partial nonlinear SOR method
which uses relaxation only when there is no phase-change [18]. Although
both the standard and the Elliott-Ockendon SOR method are simple, writ-
ing out these schemes would be very elaborate and is therefore omitted. For
a detailed description of the methods the reader is referred to [2, 18]. Fur-
thermore, one could use the Newton-Raphson method which has the promise
of up to quadratic convergence, whereas the nonlinear SOR can achieve at
most linear convergence. Once again, we refer to 2], Chapter 4.3, for further
details.

Extensive tests of the performance of the mentioned implicit schemes have
been done of which the results are presented in [2], Chapter 4.3. The main
conclusions are that

1. The implicit schemes are more advantageous for slow phase-change
processes than for faster ones since for slow processes far larger time
steps can be used.

2. Employing (Elliott-Ockendon) SOR with 1 < w < 2 speeds up con-
vergence considerably, while performance is poor when Gauss-Seidel
iterations are used in solving the nonlinear system.

3. The Newton iteration scheme outperforms the SOR schemes, provided
that the time step is not chosen too large.

Whether an explicit or implicit scheme is to be used relates strongly to the
problem that is considered. Aspects that should be taken into consideration
are among others the physical time scale, and not unimportantly the intended
use. The larger the Stefan number (4.1), the faster the phase transition
process and hence the smaller the time step must be for reasonable accuracy,
which causes the implicit schemes to become less advantageous over the (time
step size restricted) explicit ones. The intended use imposes restrictions on
the choice of method in terms of computing effort, accuracy and ease of
implementation. Implicit methods can become computationally demanding,
especially when a higher order of accuracy is required. Besides, explicit
methods are far more easy to implement.

It should be noted that the abrupt change in H as described by (4.22)
gives rise to numerical difficulties. For instance, a naive discretization of the
enthalpy equation on a uniform grid is well known to predict non-physical
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features such as step-like movement of the phase boundary and spurious
temperature plateaus [14]. When applying the Newton-Raphson method to
solve the nonlinear system, determining the derivative of u = T'(H) in the
Jacobian of the system gives rise to conceptual problems as to the the mean-
ing and existence of this derivative, since the derivative experiences jumps
at H = 0 and H = pL [2], Chapter 4.3. Therefore, smoothing techniques
and spreading of the phase-change temperature across a temperature interval
need to be used, see for instance [15]. Smoothing can also be used to model
materials that change phase over a temperature range rather than at a spec-
ified temperature. Nedjar [34] remarks that when regularization is used, as
in [15], a possible deviation from the original problem may occur. Besides, it
has been reported that smoothing of the enthalpy function on a stationary
grid has to be done carefully, since the numerical results tend to become
inaccurate when the amount of smoothing is too large. The accuracy can
be improved by reducing the amount of smoothing, but this will eventually
cause the step-like movement of the moving interface to reappear [42].

"Recent literature’

Fixed-grid enthalpy methods in combination with finite volume/finite differ-
ence discretizations are still quite popular. For instance Esen and Kutluay
[19] have considered an enthalpy formulation to solve a one-dimensional one-
phase problem with a Neumann-type boundary condition. Because of the
many advantages, numerically speaking, the authors use a non-dimensional
enthalpy formulation, given by:
2

oF _ U (4.41)

ot Ox?
where E, U are the non-dimensional enthalpy and temperature, respectively,
to describe the heat flow. The (non-dimensional) temperature versus en-
thalpy relation within the liquid region is then given by

E—a FE>«
U= , (4.42)
0, 0<FE<a«

where « is the Stefan number.

In order to avoid the well-known drawbacks of the explicit scheme (lim-
ited time step) or an implicit difference replacement (solution of a nonlinear
system of algebraic equations), the odd-even Hopscotch algorithm is used.
This method combines explicit and implicit finite difference replacements at
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alternate mesh points in such a way that the overall scheme does not require
the solution of a system of algebraic equations and as such it is overall ex-
plicit. Besides, the method is unconditionally stable. For more details, see
[19].

The use of an enthalpy formulation is not restricted to fixed grids. Sev-
eral methods have been developed for (adaptive) moving meshes. In order
to incorporate the movement of the grid a semi-Lagrangian formulation is
considered of the form:

OH dxOH 0O%*u
5 dor ot (4.43)

where the Kirchoff transformation

T
o) = [ w0, (4.44)
Trey
is used in order to allow for a temperature dependency of the thermal con-
ductivity k. Mackenzie and Robertson [30] employ a technique based on
integrable monitor functions to generate appropriate grid point distributions
as well as smoothing of the enthalpy function in order to obtain accurate

results for the one-dimensional problems that they considered.

4.3.3 Finite element approaches

As has been remarked earlier, the enthalpy equation (4.20) is to be inter-
preted in a weak sense, due to the discontinuous derivatives of the enthalpy
function H. In case a variational formulation is considered, these derivatives
can be dealt with in a more natural way. The enthalpy problem on a domain
Q) is given by:

H(T) -V - (k(T)VT) = Q(1), (4.45)
subject to one or more of the following boundary conditions on the comple-
mentary parts 0€2;,7 = 1,2, 3 of the fixed outer boundary 62 = Ule 0€);:

1. A Dirichlet condition on 6€;:
T = Ty(x). (4.46)

2. A Neumann condition on 6{2y:

H(T)g—z(w) = q(z), (4.47)

where n is the outward unit normal to the boundary surface, and g(x)
a given normal heat flux.
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3. A radiation-type boundary condition on §{23:

A(T)g—z(w) =a(T), (4.48)

where @(7') is a non-linear function of temperature.

A variational formulation is obtained in a straightforward way. First we
define a set V of test functions ¥ satisfying homogeneous boundary conditions
on 6y by

V={VecH(Q)|¥=0o0n i} (4.49)

Next, we multiply equation (4.45) by an arbitrary test function ¥ € V,
integrate of the domain €2 and apply the Gauss divergence theorem, which
gives:

/Q U H,(T)dQ + /Q VU - (k(T)VT)dQ — /Q VQdQ
—/m \I/cj(T)dF—/ a(T)dl' = 0. Y

503

A finite difference scheme in time is used to resolve this problem numerically.
In [34] the backward-Euler scheme is used, which results in a nonlinear sys-
tem. To deal with the phase change, a relaxation of the increments of the
enthalpy function as function of the actual temperature increments is used.
The Galerkin finite element approximation is then applied to solve the re-
sulting system at each time step iteratively for the two unknown quantities
as two successive operations: first the temperature, which has to be treated
as a continuous field (T € H'(Q2)) on the nodal points, and secondly the
enthalpy, which has to be treated as a discontinuous one (H € L*(2)) on the
quadrature points.

The presented method can be applied to mushy as well as isothermal
problems. Although only one- and two dimensional examples are given in
the article, the method is also applicable for three-dimensional phase-change
problems.

Bhattacharya et al. [3] us a fixed-grid finite element based enthalpy for-
mulation for phase-change problems in one-dimensional slabs of pure mate-
rial. To deal with the isothermal phase-change, a superficial phase-change
region is assumed around the discontinuity at the melting point.

The governing equation considered is a source free, energy balance equa-

tion: OH 5 oT
E = % (K)eff%) s (451)
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where kepp = ¢k + (1 — @) ks s the effective thermal conductivity and ¢; is
the liquid volume fraction, which depends on the equilibrium phase diagram
of the specific material involved, and is a function of temperature at a given
position in the sample. Since ¢; is a step function in case of isothermal phase-
change, a superficial phase-change range of AT around 7, is assumed, within
which ¢; is assumed to vary linearly from 0 to 1. The following functional
form for ¢; is used:

0 T<T,

=9+ T, <T<Tp . (4.52)

Tr—T7
1 T>Tk
Here T; = T,,, — AT/2 is the initial melting point and Tp = T, + AT/2 is

the final melting point. The enthalpy function of the system is written as:

H(T) = p(1—¢) /T CydT + poy (/TI Cydr + L + /T C’ld7'> . (4.53)

T'ref Tref 17

Equation (4.51) is solved using the standard Galerkin finite element method

for the single unknown variable T: the enthalpy function is rewritten in
terms of the Galerkin approximation of the temperature using (4.53). For
the time-derivative 0H /0t the unconditionally stable finite difference based
Crank-Nicholson method is applied. The resulting system of nonlinear equa-
tions are solved at each time step using a Newton-Raphson procedure.

The position of the phase change front, X = I'(¢), is computed by first
locating the element which contains the melting point, 7;,. The exact posi-
tion of the front is then determined by interpolation of the basic functions
using the finite element expansion,

N
T =Y TidrX, (4.54)
k=1

where NN is the number of elements.

4.3.4 Enthalpy related methods

Several methods have been proposed in the literature that show similarities
with the enthalpy methods discussed in the previous sections. Most of these
enthalpy related methods are discussed by Hu et al. [25]. They are the ap-
parent capacity method, the effective capacity method, the heat integration
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method and the source based method. These methods apparently tend to
be quite inaccurate. The accuracy is in most cases strongly dependent on
the time step. The only exception concerning the accuracy issue is the effec-
tive capacity method, but unfortunately this method is very troublesome to
implement.

In a recent article, Chun and Park [13] present an enthalpy related fixed-
grid method which is implicit in time. To deal with the nodal points across
the solid-liquid interface a fictitious temperature concept is introduced. As-
suming that the density across the phases is constant, the governing equations
considered are:

5 kV (4.55)
oh oh

Lop = ko 22| _ g &2 4,

Up = Kg 071'8 K1 o |, (4.56)

Here, h is the sensible enthalpy (i.e. latent heat is not included in the en-
thalpy), n is the surface normal and v, is the velocity of the phase front.
Without loss of generality, the enthalpy at the melting temperature, h,,, is
set to zero. Using fictitious enthalpies positioned at a grid distance Az of
the location of the phase front X, the following numerical discretization is

derived: . . " .
B Ry G =200 o

N WL + S, (4.57)
where
L X"+ — X"
Si = i—xT for ’XnJrl - JZ'Z‘ < Al’, (458)
S; =0 for | X"t — 2 > Az, (4.59)
Xn+1 —

kih;  for h; > h,,,

¢; = : (4.61)
Ksh; for h; < hn,

and x; are the nodal points. The new position of the phase boundary is
obtained from:

JXM X (L= ORI 4 L] (1= B 1+ L] — B

= Rs —K

At Ax

(4.62)

Y
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where 0 < § = | X" — 2] < 1. Per time step, an iterative process is
performed in which first the position of the boundary is updated using (4.62)
and then equation (4.57) is solved until the phase boundary coordinate and
enthalpy values are converged (for some convergence criteria).

The authors remark that the presented method yields no oscillations of
the temperature and phase front, which are said to be commonly observed
with the typical enthalpy method. The solution is oscillation-free since the
phase boundary is treated as a line rather than a control volume. The method
can be extended to two dimensional problems without much difficulty.

4.3.5 Some examples

Example 1

In order to show the importance of including the latent heat in the mark
formation modeling, we consider the following artificial one-dimensional heat
problem on a domain of unit length. Arbitrary units are assumed for all
quantities involved. Initially, the temperature of the whole domain is equal
to Tp. On both ends x = 0,z = 1, a simple Dirichlet boundary condition
is imposed: T'(0) = T'(1) = Ty = 600. The melting temperature T,,, = 660,
latent heat L = 400, specific heat C' = 1 and conductivity £ = 0.001. Slightly
off center in the domain we have an internal heat source, of width equal to
half of the domain, at a uniform power level ) = 12. The heat source is
active during the whole simulation from ¢t = 0 to ¢t = 100.

For these fixed parameters we numerically solve both the heat diffusion
equation (3.2) (v = 0) and the enthalpy equation (4.20). We discretize
the heat diffusion equation using second order central differences for the
spatial derivative and the Euler forward scheme for the time integration.
The enthalpy equation is discretized as (4.29) using (4.30) for the fluxes,
which for constant x, independent of x, T, simply reduces to a second order
central difference scheme. By setting § = 0 we also have the Euler forward
scheme for the time discretization.

In Figure 4.3 results are shown for a uniform grid in space and time. The
number of nodes in x-direction N = 21. The number of time steps M = 7500.
From the figures it can be concluded that the due to the inclusion of latent
heat, the maximum temperature at ¢ = 100 is, visibly lower than in case
of plain heat conduction, as would be expected. Besides, the shape of the
temperature profile for both cases does not differ much.
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Figure 4.4: Spatial grid for a one-dimensional multi-layer consisting of a
plastic and a phase-change material (PCM).

Example 2

As a second example we consider the use of the enthalpy method for a multi-
layered slab. The problem described next has been taken from [2], Chapter
4.3, and involves a two-layered stack consisting of for instance a plastic and a
hydrated salt (the phase-change material (PCM)), but the multi-layer might
as well be the recording stack of an optical rewritable disk.

Let us consider a slab —L; < o < Ly consisting of plastic: —L; <2 <0
and the PCM: 0 < x < Ly. The region containing the plastic we subdivide
into M; subintervals: I_1,1_o,---,1_p; of lengths Ax_;,i=1,2,3,---, My,
and the region containing the PCM into M, subintervals: Iy, I, -+, I, of
lengths Az;,i = 1,2,3,---, M,. The discretization points z; are defined as
the midpoints of the intervals /; for j = —M;, —M; + 1,---,

—1,1,2,---, Ms. See Figure 4.4

By taking the enthalpy to be dependent on location as well as temper-
ature, the enthalpy method allows for treating the whole slab (i.e. plastic
plus PCM) as one region. Of course, different thermo-physical properties of
for the plastic, and the solid and liquid PCM should be used. The enthalpy
H(z,T) we define as:

fppcp(T —Tn), —Li <z <0,
pcs(T_Tm)a OSxSL% T<Tm
H(z,T) = (4.63)
[OapL]a OSxSL% T="T,
k,OL—i-,Ocl(T—Tm), 0<ax<Ly, T>T,

At position z = 0 we then have an ’interface’ moving at zero speed, and
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energy conservation across it will be ensured if the flux jump (by the Ste-
fan condition) is zero there. Hence, the temperature Ty at = 0 can be
determined form the equality of fluxes:

Ty — T4 T — Ty
Y = —R—— 4.64
IAZE_l/Q & AZEl/Q’ ( )
where k1 is k; or ks, depending on the phase of V. This yields
RT,+R.\T
i S R (4.65)
R4+ R

where R_; = Az_y/(2k_1), R = Ax1/(2ky), and the flux at 2 = 0 can be
expressed as qo = — (T} — T_1)/(R_1 + Ry), representing both ¢_1 and q1-

For the rest of the domain the enthalpy scheme is as descrlbed2 in Section
4.3.2. Thus, we update H; from the global conservation law

Aty

nt+l _ pntl n+f _ n+ S o
Hi* = i 2@ =), 5= =My =112 Mo, (466)
and update T”Jrl from
n+1
T + H J= _M17 : 7_1
Hn+1 ) ) 1
T + PCS’ ]:1727”'7M27 1fH]n <O
= (4.67)
Tm7 j:1,2,"',M2, lfOSHJn—HSpL
Hn+1 pL ) ) )
T+ . j=12, My, if H''>pL.

\

The updated surface temperature at position x = 0 can be computed via
(4.65):
R Tn+1 —|—R Tn+1
Tt =2 b (4.68)
R 1+ R1

4.4 Level set methods

In the enthalpy method discussed in the previous section, the introduction
of an enthalpy function that accounts for the latent heat absorption makes
that the Stefan condition (3.6)

+pLv, = {Hg—:} ) (4.69)
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on the moving interface does not have to be enforced explicitly and there-
fore the front is only tracked implicitly. As we have seen, the method can
be applied to both phase-change problems involving sharp fronts as well as
problems with melting trajectories or mushy zones.

For Stefan problems in which the moving interface is sharp, level set ap-
proaches have been proposed. In the level set approach, the interface is rep-
resented by a signed distance function. This function ¢(x,t), appropriately
called the level set function, is defined as:

(+ min ||x — || x €,
€l (1)

o(x,)=40 x€b, (4.70)

— min ||x — X|| x € Q.
xel'(t)

The location of the moving boundary I' is then equal to the zero level set of

o, i.e.
I'(t)={x€Q:o(x,t) =0}. (4.71)

The main idea of the level set method is to move ¢ with the correct speed,
Up, at the front and then to update the temperature, 7'(x,t), with the new
position of the front stored implicitly in ¢. When the new position of the
front is known, updating the temperature comes down to solving the heat
equation over the whole domain €2, where special care has to be taken near
the interface between the phases. We will return to this matter later.

The interface motion is governed by the conservation equation

¢+ F|Ve| =0 (4.72)

where F' is a speed function that is a continuous extension of v, off I' onto
all of 2. The construction of F' seems to be one of the most difficult aspects
of the level set method, mostly since F' highly depends on the phase-change
problem considered, in particular the front velocity v, and the number of
spatial dimensions. For detailed examples on how to construct the speed
function F' see for instance [10], [11], [27].

The level set function ¢ can also be used to define the outward pointing
normal n by

n=Vo¢/|V| (4.73)

and the interface curvature K by

K:V-n:V~(%) (4.74)
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4.4.1 Numerical approaches

After its first introduction in 1988, the level set theory has been extensively
developed, especially for finite difference methods, and has been employed
to solve many different problems considering a sharp moving front. More
recently, (extended/enriched) finite element methods (XFEM, [32]) are being
proposed. Furthermore, hybrid methods, combining both XFEM and finite
differences, have been developed [27].

An illustrative article on the application of a level set technique using
finite differences for solving Stefan problems, is that of Chen et al. [10]. In
order to capture the moving front on a fixed grid the method as described
by the authors can be outlined as follows:

1. Initialize T and ¢, so that ¢ is the signed distance from the interface.
2. Compute the extended velocity field F'.

3. Update ¢ using equation (4.72) for one time step. The new position
of the interface is then equal to the zero level set of ¢. Since the level
set function will cease to be an exact distance function, even after this
one time step, a re-initialization of ¢ as described in [10] can be used
to retain a distance function.

4. Away from the interface I' solve the heat diffusion equation for T
For grid points less than or equal to a step size away from the front,
appropriate numerical techniques are employed to approximate 7'.

5. Repeat steps 2 to 4 to get the next updated values of ¢ and T

The numerical solving of the heat equation as mentioned in step 4 is not
restricted to an implicit centered finite difference scheme, as proposed in the
article, but can be any suitable discretization scheme. For details on the
discretization of the velocity extension, discretization of the updating of the
level set function, etc. the reader is referred to [10].

If a variational approach is considered, standard fixed grid based Galerkin
approximations in which linear combinations of nodal shape functions are
used, result in a continuous interpolation of for the temperature field. Fur-
thermore, these approximation properties give rise to poor representations
of arbitrary discontinuities. Therefore, standard finite element approaches
require the employment of (adaptive) moving meshes and significant mesh
refinements in order to resolve difficulties concerning these discontinuities
and to properly deal with for instance moving heat sources.

The XFEM takes an alternative approach by extending the classical finite
element approximation [32]. Let I be the set of all nodes in the mesh and J
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(@ (b)

Figure 4.5: (a) The nodes that form a partition of unity for enrichment. (b)
The support of a single nodal shape function.

the set of nodes that form a so-called partition of unity for the enrichment
function ¢g(x), which we define as

J={jellwNT#0}, (4.75)

where w; is the support of a single nodal shape function.
Then, in the XFEM, the temperature is given by

T(x,t) = > di(X)Ti(t) + Y _ b (x)g(x). (4.76)
iel jeJ
Thus, only those nodes are enriched, for which the front I' crosses the support
w, as is illustrated in Figure 4.5. In practice, this means that for instance for
triangular elements with three nodes, the enriched elements have six degrees
of freedom, while the others have only three.

The key element of the XFEM is of course the enrichment function g(x).
Although in the case of phase-change problems, fairly little information is
known about the local solution, at minimum a discontinuity in the temper-
ature gradient normal to the interface can be expected. If we look at the
classical approximation for the gradient of the temperature, given by

VT(x) = ZTdisi(x), (4.77)

where the ¢; are the standard C°(£2) shape functions, the above only contains
jumps only across the element boundaries. This is exactly the motivation for
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applying (adaptive) moving mesh techniques to match element boundaries
to the phase interface.
In case of the XFEM approximation, the gradient is given by

VT(x) =Y TVei(x)+ Y bi(Ve;(x)g(x) + ¢;(x)Vg(x)). (4.78)

iel jeJ

Arbitrary jumps in the gradient can thus be represented by a suitable choice
of the function g(x).

As is clearly illustrated by Merle and Dolbow [32], the influence of g(x)
on the accuracy can be high. A generally suitable choice g(x) = H(||x—X||),
where H is the Heavyside function and X is the location of the moving front.
To incorporate the level set function ¢(x,t), Chessa et al. [11] use

where ¢;(t) are the nodal values of the level set field:
¢4(t) = d(x,1). (4.80)

The authors use a weak formulation to advect the level set field. Because the
weak form of the motion equation (4.72) is a first order hyperbolic equation,
stabilization is required to minimize oscillations in the numerical solution.

A far more complex construction of the partition of unity is studied by Ji
et al. [27]. The authors investigate the use of C*(£2) continuous functions on
a fixed rectangular grid. The enrichment of the finite element approximation
is obtained by means of a projection onto the finite element grid. For further
details on this hybrid method we refer to the article.

4.5 Method discussion and recommendation

The process of recording an amorphous mark during the writing of an optical
disk is a problem involving melting and solidification. As has been explained
in the previous Chapter, the formation of a mark can be modeled as a moving
boundary problem. Or more precisely, as a two-phase Stefan problem. In
this chapter a selection of numerical methods has been discussed to solve this
Stefan problem, where we have mainly put emphasis on enthalpy and level
set techniques.

We will now discuss the general benefits and drawbacks of the enthalpy
and level set methods. Based on this overview a recommendation will be
given concerning the most applicable numerical method to solve our melting
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problem. As a guideline we will use the following list of requirements, of
which most should be fulfilled by our method of choice.

List of requirements (in random order)

e Robust

e Simple

e Accurate

e Efficient

e Finite elements

e Three spatial dimensions

e Multidimensional (multiple separate fronts)
e Two or more phases

e Isothermal / non-isothermal (mushy)

e Equal and unequal thermal diffusivities etc.

The most important aspect with respect to the Stefan problem is of course
how a numerical method deals with the moving front. Except maybe for the
boundary conditions on the fixed boundaries, for all methods it holds that
away from the moving front, the numerical techniques are mostly standard,
since the problem is then reduced to solving the heat diffusion equation.

The enthalpy equation that arises from the enthalpy formulation, is quite
similar to the heat conduction equation. The position of the moving bound-
ary is implicitly incorporated in the enthalpy equation, and therefore no
active tracking of the location of the front is required. Unfortunately, after
discretizing the resulting system is highly nonlinear. Therefore, lineariza-
tions or advanced solvers for nonlinear systems have to be employed. The
location of the boundary is determined as part of a post-processing step for
which various techniques have been proposed with which fairly accurate re-
sults can be obtained. In general, the enthalpy methods perform best in case
of non-isothermal problems. In case of isothermal problems a smoothing of
the enthalpy equation is advisable in order to minimize oscillations. Due
to the implicit description of the moving front, multiple fronts, kinks and
the merging/separation of fronts can probably be dealt with, without much
difficulty.
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The explicit tracking of the moving front, such as with the level set
method, is in particular interesting for problems in which the interface be-
tween phases is sharp. The location of the interface is accurately described by
the zero level set of the level set function. Although the method essentially
seems to be fairly simple and robust, there is one mayor disadvantage with
respect to the level set function. In particular for phase-change problems,
the construction of an extension of the velocity field to the whole domain can
be very complicated, since only the velocity on the boundary itself is known.
These difficulties increase with the number of spatial dimensions. Inclusion of
the level set function as part of enhancement functions in XFEM or hybrid
techniques in which advection of the level set function is performed using
finite differences do not tackle this inherent difficulty.

Altogether it seems that the best approach for dealing with our melting
problem is an enthalpy technique. Highly favorable are the simplicity of the
governing equations (the Stefan condition is incorporated in the enthalpy
equation) and the relatively easy extendibility to three spatial dimensions.
Besides, positive aspects of the level set methods, such as being able to deal
with irregular interfaces and merging fronts, can also be obtained with an
enthalpy method. In particular the elaborate extension of the velocity field
as required by the level set method.



Chapter 5

Test problems

Without a means of validating a numerical model, the model would essen-
tially have no value. It is therefore that in this short chapter we will give
an overview of a few test problems for which either a Neumann/similarity
solution exists or for which strictly numerical results have been published.
Each problem will only be described in short. For parameter values and other
details we will refer to the appropriate articles.

One-dimensional two-phase melting/solidification problem

Consider a uniform finite half-space consisting of a solid material that is
initially at temperature 77 # T, see Figure 5.1 (a). At ¢ = 0 the temperature
at the left edge is raised/lowered to a constant temperature T,, # T,, which
causes the slab to melt /solidify. The top and bottom edges are insulated. The
exact solution to the corresponding uniform semi-infinite half-space melting
problem is given by Neumann’s solution, see Subsection 4.1.1.

Bhattacharya et al. [3] resolve this type of problem using a standard
Galerkin finite element method. In their enthalpy formulation the authors
assume a superficial phange change range of width AT around 7,,. A linear
enthalpy versus temperature relation is assumed in this range.

A similar problem is studied by Chun and Park [13]. They employ an en-
thalpy related fixed-grid finite-difference method. The authors compare their
results not only with the similarity solution, but also with several methods as
published by other authors. Results are presented for both equal or unequal
diffusivities.

Infinite corner solidification problem

A second example taken from [11] considers the corner of an infinite quarter-
space of fluid which has an initial temperature T}, > T,,, see Figure 5.1 (b).
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Figure 5.1: (a) A one-dimensional melting problem for a finite slab and (b)
an internal corner solidification problem with an interface shown for ¢t > ¢,.

At time t > ty a constant temperature T,, < T, is applied to the exterior
walls. This causes the quarter-space to solidify. In case the diffusivities of
both phases are equal, an analytical solution exists. For more details on the
similarity solution to this problem, we refer to [11].

Square solidification problem

This problem is essential the same as the previous example, except that in
this case we consider a finite square domain. Initially the square domain
consists of a material in the liquid state at the melting temperature. At
time ¢ = 0 the temperature at the fixed boundaries is lowered to T,, < T,,
which inititiate an inwards solidification process. In Figure 5.2 the problem
configuration is shown at a time ¢ > 0. A selection of references to authors
that have numerically solved this problem can be found in [11].

Unfortunately, so far no test problems containing an internal source have
been found in the literature.
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Figure 5.2: The problem configuration for the square solidification problem.
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