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abstract

The longitudinal and the transversal in-plane displacements of an inclined stretched
string are studied. At one end of the string a parametrical and transversal excitation
is applied and at the other end the string is kept fixed. By applying Kirchhoff’s
approach the coupled system of partial differential equations (PDEs) to describe the
in-plane displacements of the string is reduced to a single PDE. The effect of gravity
and of the external excitation on the in-plane displacements of the string are studied
in detail. Complicated internal resonances can occur when the excitation-frequency
is near an eigenfrequency of the linearized system. The existence and the stability
of time-periodic solutions are investigated.

1 Introduction

In recent years the spans of the cable-stayed bridges become longer and longer, for
instance the Akashi-Kaiko Bridge with three spans (960 m - 1991 m - 960 m) and
the planned bridge in the Messina Straits with three spans (960 m - 3300 m - 810
m). By increasing the span lengths of the bridges the stay cables can become more
prone to vibrations due to wind, rain, traffic, and so on. Hence, cable vibrations are
of great interest to engineers. Pinto da Costa et.al. [1] studied the oscillations of
the cable stays induced by periodic motions of the deck and/or towers. In [1] it has
been shown that reasonably small anchoraged amplitudes may lead to important
cable oscillations when conditions are met for lower-order classical or parametrical
resonance of the cables. Jones and Scanlan [2] studied the wind effects on cable-
supported bridges and provided an overview of the basic steps in the process of a
typical aerodynamic analysis and design. Other papers related to this subject can
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for instance be found in [3, 4, 5].
The non-linear responses of suspended cables to primary resonance excitations have
been studied by Arafat and Nayfeh [6]. Srinil et al. [7] analyzed numerically the
large-amplitude free vibrations of a suspended cable having a small sag-to-span ratio.
Many interesting results have been found. One of these results is that the cable
vibrations describe qualitatively multi-harmonic responses due to geometric non-
linearities in case the cable sag is significant. However, in both papers [6, 7], a
parametric resonance is not involved. On the other hand, in long-span cable-stayed
bridges the parametric excitation will be very probable due to the presence of many
low frequencies in the cable stays as has been shown in [1, 8, 9].
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Figure 1: The inclined string in the dynamic state with a parametrical and transver-
sal excitation at X̄ = L̄.

In a recent paper by Caswita and van der Burgh [10], a perfectly flexible elastic
stretched string which is fixed at one end and which is attached to a vibrating support
at the other hand was considered as a model. Gravity effects were neglected. This
model can be used as a starting point for the study of the dynamics of inclined cable-
stays connecting the bridge deck and a pylon of a cable-stayed bridge as for example
the Erasmus bridge in Rotterdam, The Netherlands. It follows from [1, 6, 11] that
gravity influences the equilibrium state of the string and the dynamics of the string
as well. Hence, the model that will be studied in this paper seems to be more
applicable to study the dynamics of cables in cable-stayed-bridge than the model as
given in [10]. The mathematical model for this system is given by (see [12]):

Uτ̄ τ̄ (X, τ̄ ) − E

ρ

∂

∂X

[

− 1 + ωo + ρXg sin(ϕ)
E

+ UX(X, τ̄ )
√

[

1 + ωo + ρXg sin(ϕ)
E

+ UX(X, τ̄ )
]2

+ V 2
X(X, τ̄ )

+
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UX(X, τ̄ )
]

= −ᾱ1Uτ̄ ,

Vτ̄ τ̄ (X, τ̄ ) − E

ρ

∂

∂X

[

− VX(X, τ̄ )
√

[

1 + ωo + ρXg sin(ϕ)
E

+ UX(X, τ̄ )
]2

+ V 2
X(X, τ̄ )

+

VX(X, τ̄ )
]

= −ᾱ2Vτ̄ − g cos(ϕ), (1.1)

with boundary conditions:

U(0, τ̄ ) = V (0, τ̄ ) = 0,

U(L, τ̄) = F̄1 sin(λ̄τ̄) , V (L, τ̄) = F̄2 sin(λ̄τ̄), (1.2)

where ωo = To

AE
, U and V are the displacements in X̄-direction and Ȳ -direction re-

spectively (see also Fig. 1), UX and VX are the derivatives of U(X, τ̄ ) and V (X, τ̄ )
with respect to X, where X is the coordinate along the string describing the un-
stretched position (see also [12]), where F̄1 and F̄2 are the amplitudes of the exter-
nal force applied at X̄ = L̄, and λ̄ is the excitation-frequency, where ᾱ1 and ᾱ2 are
positive damping coefficients (in 1

second
), and where the other symbols To, A, E, ρ,

g, and ϕ are defined in [12].
This paper is organized as follows. In section 2 it is assumed that the dimensionless
parameters ε = ρgL

E
and ωo = To

AE
satisfy the following relationship 0 < ε < ωo. By

using this assumption and by applying Kirchhoff’s approach the system of two PDEs
(1.1) can be reduced to a single PDE describing the dynamic state of the string. In
section 3 this single PDE is transformed into an infinite dimensional system of or-
dinary differential equations (ODEs). The averaging method is used to study this
system of ODEs. It will turn out that complicated internal resonances can occur
when the excitation frequency λ is near an eigenfrequency of the linearized system.
In section 4 these resonance-cases will be studied in detail, and the existence of sta-
ble periodic solutions will be discussed. Finally, in section 5 some conclusions will
be drawn and some remarks will be made.

2 Derivation of the dynamic state equation

In applications the oscillations of a string or cable are studied around its equilibrium
(static) state. Now it will be assumed that 0 < ε = ρgL

E
<< ωo = To

AE
. This implies

that the static state (Û (X), V̂ (X)) of (1.1) can be approximated up to O(ε̃2) (see:
[11, 12]) by:

Ûap(X) = −ρ2g2A2 cos2(ϕ)

12T 2
o

X(X − L)(2X − L),

V̂ap(X) =
ρgA cos(ϕ)

2To
X(X − L)

[

1 + ωo −
ρgA

6To
(4X + L) sin(ϕ)

]

, (2.1)

where ε̃ = ρgAL
To

= ε
ωo

is small compared to 1. It can readily be seen from (2.1) that

dÛap(X)

dX
= −1

2
(
dV̂ap(X)

dX
)2 +

1

2L

∫ L

0
(
dV̂ap(X)

dX
)2dX + O(ε̃3). (2.2)
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Now introduce the new variables Ū(X, τ̄ ) and V̄ (X, τ̄ ) by:

U(X, τ̄ ) = Û(X) + Ū(X, τ̄ ),

V (X, τ̄ ) = V̂ (X) + V̄ (X, τ̄ ), (2.3)

then UX = ÛX + ŪX , VX = V̂X + V̄X , UXX = ÛXX + ŪXX , VXX = V̂XX + V̄XX ,
Uτ̄ = Ūτ̄ , Vτ̄ = V̄τ̄ , Uτ̄ τ̄ = Ūτ̄ τ̄ , and Vτ̄ τ̄ = Ūτ̄ τ̄ . By substituting (2.3) into (1.1), and
after rescaling by

x =
(1 + ωo)X

L̄
, τ = τ̄

√

E

ρL̄2
, û(x) =

Û(X)

L̄
, v̂(x) =

V̂ (X)

L̄
, ū(x, τ) =

Ū(X, τ̄ )

L̄
, and v̄(x, τ) =

V̄ (X, τ̄ )

L̄
, (2.4)

one obtains that (1.1) becomes:

ūττ (x, τ) − (1 + ωo)
∂

∂x

[

− ω(x) + ûx + ūx
√

(ω(x) + ûx + ūx)2 + (v̂x + v̄x)2
+ (1 + ωo)(ûx +

ūx)
]

= −ᾱ1

√

ρL̄2

E
ūτ ,

v̄ττ (x, τ) − (1 + ωo)
∂

∂x

[

− v̂x + v̄x
√

(ω(x) + ûx + ūx)2 + (v̂x + v̄x)2
+ (1 + ωo)(v̂x +

v̄x)
]

= −ᾱ2

√

ρL̄2

E
v̄τ − ρgL̄ cos(ϕ)

E
, (2.5)

where ω(x) = 1+ ρgL
E(1+ωo)x sin(ϕ), and where the boundary conditions (1.2) become:

ū(0, τ) = v̄(0, τ) = 0,

ū(1, τ) =
F̄1

L̄
sin

(

λ̄

√

ρL̄2

E
τ
)

; v̄(1, τ) =
F̄2

L̄
sin

(

λ̄

√

ρL̄2

E
τ
)

. (2.6)

It follows from (2.2) that

ûx = −1

2
(1 + ωo)v̂

2
x +

1

2
(1 + ωo)

∫ 1

0
v̂2
xdx + O(ε̃3). (2.7)

System (2.5) represents the equations of motion around the equilibrium state (after
a rescaling of the variables).
It will now be assumed that |ux| and |vx| are small with respect to 1. System (2.5)
may then be approximated by the following system:

ūττ (x, τ) − (1 + ωo)
2ūxx(x, τ) = (1 + ωo)

∂

∂x

[ 1

ω2(x)

(

v̂xv̄x +
1

2
v̄2
x

)

−

1

ω3(x)

(

ûx(2v̂xv̄x + v̄2
x) + ūx(v̂x + v̄x)2

)

− 1

ω4(x)

(3

8
(4v̂3

xv̄x + 6v̂2
xv̄2

x + 4v̂xv̄3
x +
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v̄4
x) − 3

2
û2

x(2v̂xv̄x + v̄2
x) −

3

2
(2ûxūx + ū2

x)(v̂x + v̄x)2
)

+ h.o.t.
]

− ᾱ1

√

ρL̄2

E
ūτ ,

v̄ττ (x, τ) − (1 + ωo)
∂

∂x

[

(1 + ωo −
1

ω(x)
)v̄x

]

= (1 + ωo)
∂

∂x

[ 1

ω2(x)

(

ûxv̄x +

ūx(v̂x + v̄x)
)

+
1

ω3(x)

(1

2
(3v̂2

xv̄x + 3v̂v̄2
x + v̄3

x) − û2
xv̄x − (2ûxūx + ū2

x)(v̂x +

v̄x)
)

− 1

ω4(x)

(3

2
ûx(3v̂2

xv̄x + 3v̂xv̄2
x + v̄3

x) +
3

2
ūx(v̂x + v̄x)

3 − û3
xv̄x − (3û2

xūx +

3ûxū2
x + ū3

x)(v̂x + v̄x)
)

+ h.o.t.
]

− ᾱ2

√

ρL̄2

E
v̄τ , (2.8)

where h.o.t. stands for the terms of order six or higher in ûx, v̂x, ūx, and v̄x. Let
c2
1 = E

ρ
and c2

2 = Eωo

ρ
, and introduce the time-rescaling t = c2τ

c1

√

(1 + ωo). Then

c2
2 << c2

1, and ω(x) tends to 1 as ωo → 0. Hence, in a first order approximation the
first equation in (2.8) reduces to:

−ūxx(x, t) =
∂

∂x

[

v̂xv̄x +
1

2
v̄2
x − ûx(2v̂xv̄x + v̄2

x) − ūx(v̂x + v̄x)2 − 3

8
(4v̂3

xv̄x +

3

8
(4v̂3

xv̄x + 6v̂2
xv̄2

x + 4v̂xv̄3
x + v̄4

x) +
3

2
û2

x(2v̂xv̄x + v̄2
x) +

3

2
(2ûxūx +

ū2
x)(v̂x + v̄x)2

]

. (2.9)

If one considers additionally Kirchhoff’s approach that ū = O(v̄2) and v̄, v̂ are O(ωo),
then (2.9) can be reduced to (up to O(ωo)):

−ūxx =
∂

∂x
(v̂xv̄x +

1

2
v̄2
x). (2.10)

By integrating (2.10) with respect to x and then by using the boundary conditions
for ū(x, τ) one obtains

ūx(x, t) = −(v̂xv̄x +
1

2
v̄2
x) +

∫ 1

0
(v̂xv̄x +

1

2
v̄2
x)dx +

F̄1

L̄
sin

( λ̄L
√

(1 + ωo)

c2
t
)

. (2.11)

Up till now no assumptions have been made about the amplitudes F̄1 and F̄2 of
the external force applied at x = 1. It will be now assumed that F̄1

L̄
= O(ω2

o) and
F̄2

L̄
= O(ω2

o). Because 0 < ε << ωo, we can set ωo = ε̄ and ε = O(ε̄2). Substituting

v̂(x) = ε̄v̌(x), v̄(x, t) = ε̄ṽ(x, t), F̄1

L̄
= ε̄2F1,

F̄2

L̄
= ε̄2F2 into the second equation of

(2.8), by using (2.7), (2.11), and the boundary conditions for v̄(x, t), one obtains (up
to order ε̄2):

ṽtt(x, t) − ṽxx(x, t) = ε̄
[

(v̌xx + ṽxx)
(

∫ 1

0
(v̌xṽx +

1

2
ṽ2
x)dx + F1 sin(λt)

)

+

∂

∂x

(

[ω1x sin(ϕ) + p]ṽx

)

− αṽt

]

, 0 < x < 1, t > 0,

BC’s : ṽ(0, t) = 0, ṽ(1, t) = ε̄F2 sin(λt), (2.12)
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where ω1 = ρgA2LE
T 2

o
, λ = λ̄L

c2
, p = 1

2

∫ 1
0 v̌2

xdx = 1
24ω2

1 cos2(ϕ), and α =
ᾱ2Lc2

1

c3
2

. To

obtain a problem for ṽ with homogeneous boundary conditions, the following trans-
formation is introduced:

ṽ(x, t) = ε̄F2x sin(λt) + ϑ(x, t). (2.13)

Substitution of (2.13) into (2.12) (and by introducing initial conditions) yields (up
to O(ε̄2)):

ϑtt − ϑxx = ε̄
[

(v̌xx + ϑxx)
(

∫ 1

0
(v̌xϑx +

1

2
ϑ2

x)dx + F1 sin(λt)
)

+
∂

∂x

(

[p +

ω1x sin(ϕ)]ϑx

)

+ λ2F2x sin(λt) − αϑt

]

, 0 < x < 1, t > 0,

BC’s: ϑ(0, t) = ϑ(1, t) = 0, t > 0,

IC’s: ϑ(x, 0) = f(x), ϑt(x, 0) = g(x), 0 ≤ x ≤ 1. (2.14)

In this paper the functions f(x) and g(x) are assumed to be sufficiently smooth such
that a two times continuously differentiable solution for the initial-boundary value
problem (2.14) exists. The case ρgAL

To
≡ 0 has been studied in [10], that is, the case

without gravity. Now, the case ρgAL
To

= O(ε̄) will be analyzed by using the averaging
method.

3 A Perturbation method

The eigenfunctions of the Sturm-Liouville problem related to homogeneous, unper-
turbed problem (2.14) (i.e. ε̄ = 0) are ϑn(x) = q̃n sin(µnx), µn = nπ, and q̃n (for
n = 1, 2, 3, . . .) are constants. Based on the boundary conditions the exact solution
ϑ(x, t) of (2.14) can be written in the form of an eigenfunction-series, that is,

ϑ(x, t) =

∞
∑

n=1

qn(t) sin(µnx). (3.1)

By substituting (3.1) into the first equation of (2.14), by multiplying the so-obtained
equation with 2 sin(µkx), where k is any positive but fixed integer, and then by
integrating the outcome over x ∈ [0, 1], one obtains an infinite-dimensional system
for qk(t), k = 1, 2, 3, . . .:

q̈k(t) + µ2
kqk(t) = −ε̄

{[

µ2
kqk(t) − bk

][

∞
∑

m=1

(1

4
µ2

mq2
m(t) + amqm(t)

)

+ F1 sin(λt)
]

+µ2
k

(

p +
1

2
ω1 sin(ϕ)

)

qk(t) +

∞
∑

n6=k

[d(n,k) − c(n,k)]qn(t) + αq̇k(t) +

(−1)k 2λ2F2 sin(λt)

µk

}

, (3.2)
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where am, bk, c(n,k), and d(n,k) are defined in Appendix A. The overdot in (3.2)
indicates differentiation with respect to t. The series in the right-hand side of (3.2)
will be convergent for sufficiently smooth initial conditions (see also [13]).
The non-linear terms in (3.2) can lead to internal resonances. By considering the
excitation-frequency it can readily be seen that there are two sorts of values of
λ that can cause resonances. In fact these values are (in an O(ε̄) neighbourhood
of) µn and 2µs, where n and s are integers (with n odd). The case λ = µn + O(ε̄)
corresponds to a so-called transversal resonance, whereas λ = 2µs+O(ε̄) corresponds
to a so-called parametrical resonance. Therefore, to study the existence of periodic
solutions both cases should be considered. The following transformation (qk(t), q̇k(t))
→ (Ak(t), Bk(t)) is introduced:

qk(t) = Ak(t) sin(µkt) + Bk(t) cos(µkt),

q̇k(t) = µk[Ak(t) cos(µkt) − Bk(t) sin(µkt)]. (3.3)

By substituting (3.3) into (3.2) and then by solving the equations for Ȧk(t) and
Ḃk(t), yields

Ȧk(t) = −ε̄Gk(A,B;ϕ, ω1, λ, t) cos(µkt),

Ḃk(t) = ε̄Gk(A,B;ϕ, ω1, λ, t) sin(µkt), (3.4)

where A = (A1, A2, . . . , Ak, . . .), B = (B1, B2, . . . , Bk, . . .), and

Gk =
1

µk

{(

µ2
k[Ak sin(µkt) + Bk cos(µkt)] − bk

)[

∞
∑

m=1

(µ2
m

4
[Am sin(µmt) +

Bm cos(µmt)]2 + am[Am sin(µmt) + Bm cos(µmt)]
)

+ F1 sin(λt)
]

+ µ2
k(p +

1

2
ω1 sin(ϕ))[Ak sin(µkt) + Bk cos(µkt)] +

∞
∑

n6=k

[d(n,k) − c(n,k)][An sin(µnt) +

Bn cos(µnt)] + (−1)k 2λ2F2 sin(λt)

µk

+ αµk[Ak cos(µkt) − Bk sin(µkt)]
}

.

The terms in the right-hand side of (3.4) are periodic functions in t. Hence, the
functions Ak(t) and Bk(t) can be approximated by using the averaging method (see
for instance [14]). For λ 6= µn + O(ε̄) and λ 6= 2µs + O(ε̄) (the cases that cause no
resonances up to O(ε̄)), the averaged equations of (3.2) are:

˙̄Ak = −1

2
ε̄
[

αĀk + µkB̄k

(

∞
∑

m6=k

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

k(Ā
2
k + B̄2

k) + p +

1

2
ω1 sin(ϕ) +

2a2
k

µ2
k

)]

,

˙̄Bk = −1

2
ε̄
[

αB̄k − µkĀk

(

∞
∑

m6=k

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

k(Ā
2
k + B̄2

k) + p +

1

2
ω1 sin(ϕ) +

2a2
k

µ2
k

)]

, (3.5)
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where Āk and B̄k are the averaged approximations of Ak and Bk respectively. It
follows from (3.5) that for α > 0 Rk(t) = Ā2

k(t) + B̄2
k(t) = Rk(0)e

(−ε̄αt) → 0 as
t → ∞. Hence, if Āk(0) = 0 and B̄k(0) = 0 then Āk(t) = 0 and B̄k(t) = 0 for t > 0.
So, if there is no initial energy in the n-th mode then there will be no energy present
up to O(ε̄) on a time-scale of order ε̄−1. This shows that the truncation method can
be applied to those modes that have non-zero initial energy. When λ = µn + O(ε̄)
with n an odd fixed number, extra terms come in due to the internal resonances. In
this case the averaged equations for Ān and B̄n are:

˙̄An = −1

2
ε̄
[

αĀn + µnB̄n

(

∞
∑

m6=n

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

n(Ā2
n + B̄2

n) + p +

1

2
ω1 sin(ϕ) +

2a2
n

µ2
n

)]

,

˙̄Bn = −1

2
ε̄
[

αB̄n − µnĀn

(

∞
∑

m6=n

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

n(Ā2
n + B̄2

n) + p +

1

2
ω1 sin(ϕ) +

2a2
n

µ2
n

)

+
bnF1

µn
+ 2F2

]

, (3.6)

whereas the equations for Āk and B̄k, k 6= n are given by (3.5). From (3.5) and
(3.6) it can readily be seen that only the n-th mode exists (that is, will usually not
tend to zero) for a long time, while the other modes tend to zero as t → ∞. When
λ = µn + O(ε̄) = 2µs + O(ε̄), extra terms turn up in the equations for Ās, B̄s, and
B̄n. The averaged equations then become:

˙̄An = −1

2
ε̄
[

αĀn + µnB̄n

(

∞
∑

m6=n

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

n(Ā2
n + B̄2

n) + p +

1

2
ω1 sin(ϕ)

)]

,

˙̄Bn = −1

2
ε̄
[

αB̄n − µnĀn

(

∞
∑

m6=n

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

n(Ā2
n + B̄2

n) + p +

1

2
ω1 sin(ϕ)

)

− 2F2

]

,

˙̄As = −1

2
ε̄
[

(α +
1

2
µsF1)Ās + µsB̄s

(

∞
∑

m6=s

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

s(Ā
2
s +

B̄2
s ) + p +

1

2
ω1 sin(ϕ) +

2a2
s

µ2
s

)]

,

˙̄Bs = −1

2
ε̄
[

(α − 1

2
F1)µsB̄s − µsĀs

(

∞
∑

m6=s

1

8
µ2

m(Ā2
m + B̄2

m) +
3

16
µ2

s(Ā
2
s +

B̄2
s ) + p +

1

2
ω1 sin(ϕ) +

2a2
s

µ2
s

)]

, (3.7)
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whereas the equations for Āk and B̄k with k 6= n and k 6= 2s are given by (3.5). It
follows from (3.5) and (3.7) that the n-th and the s-th modes will not decay to zero
for t → ∞, while the other modes will tend to zero as t → ∞. Therefore, in the next
section only the modes that will exist for a long time will be studied.

4 The cases that cause resonances (λ = µn + O(ε̄))

As has been shown in section 3 resonances will occur when λ = µn + O(ε̄). In
section 4.1 the case λ = µn + ε̄η with n an odd, fixed number will be studied
in which η is a detuning parameter. In this case the transversal excitation only
excites the n-th mode while the parametrical excitation has no influence. In section
4.2 the case λ = µn + ε̄η with n an even, fixed number will be studied. Again η

is a detuning parameter. In this case both the transversal and the parametrical
excitation influence the interaction between the n-th mode and the s-th mode (with
n = 2s).

4.1 The case λ = µn + ε̄η, where n is an odd, fixed number

As has been mentioned in section 3: to study the long-time behaviour it is sufficient
to study only the n-th mode behaviour. By substituting qk(t) = 0 for all k 6= n into
(3.2) and then by setting λt = t̄, λ = µn + ε̄η, one finds the following second order
ordinary differential equation:

q′′n(t̄) + qn(t̄) = − ε̄

µn

{

αq′k(t̄) +
1

4
µ3

nq3
n(t̄)

3

2
anq2

n(t̄) +
[

µn(p +
1

2
ω1 sin(ϕ) +

F1 sin(t̄)) +
2a2

n

µn
− 2η

]

qn(t̄) − (2F2 +
bnF1

µn
) sin(t̄)

}

+ O(ε̄2), (4.1)

where the prime ( ′ )denotes differentiation with respect to t̄. By using a transfor-
mation similar to (3.3), the averaged equation of (4.1) up to order ε̄ is:

Ā′
n(t̄) = − ε̄

2µn

[

αĀn + B̄n

( 3

16
µ3

n(Ā2
n + B̄2

n) + µn(p +
1

2
ω1 sin(ϕ)) +

2a2
n

µn
− 2η

)]

,

B̄′
n(t̄) = − ε̄

2µn

[

αB̄n − Ān

( 3

16
µ3

n(Ā2
n + B̄2

n) + µn(p +
1

2
ω1 sin(ϕ)) +

2a2
n

µn
− 2η

)

+ (2F2 +
bnF1

µn
)
]

. (4.2)

After the rescalings Ān =
√

16α̃
3µ3

n
Ãn and B̄n =

√

16α̃
3µ3

n
B̃n (with α̃ = 1 for α = 0, and

α̃ = α for α > 0), the critical points of (4.2) satisfy:

α

α̃
Ãn + B̃n[Ã2

n + B̃2
n − Ω̄α] = 0,

α

α̃
B̃n − Ãn[Ã2

n + B̃2
n − Ω̄α] + F̄α = 0, (4.3)
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where Ω̄α = 1
α̃

[

2η − µn(p + 1
2ω1 sin(ϕ)) − 2a2

n

µn

]

and F̄α =
√

3µn

α̃3 (1
2µnF2 + 1

4bnF1).

It should be observed that Ω̄α and F̄α are arbitrary constants. However, it can be
shown (later) that the case F̄α < 0 gives the same results as the case F̄α > 0. First,
we consider α = 0 (the case without damping). It follows from (4.3) with F̄0 = 0 that

the critical points of (4.2) are the origin (0,0) and the points (
√

16
3µ3

n
Ãn,

√

16
3µ3

n
B̃n),

where Ãn and B̃n satisfy
Ã2

n + B̃2
n = Ω̄0. (4.4)

It can readily be seen from (4.4) that for Ω̄0 ≤ 0 the only critical point of (4.2) is the

origin (0,0). If F0 6= 0 then the critical points of (4.2) are located in (
√

16
3µ3

n
Ãn, 0),

where Ãn satisfies:
Ã3

n − Ω̄0Ãn − F̄0 = 0. (4.5)

Ω0 Ωα

(i) α = 0 (ii) α > 0

Figure 2: The two domains of critical points of (4.2); ∆0 = 1
4 F̄ 2

0 − 1
27 Ω̄3

0 and ∆α =
1

2916 (2Ω̄3
α + 18Ω̄α − 27F̄ 2

α)2 + 1
27 (1 − 1

3 Ω̄2
α)3.

We now consider the case with positive damping, that is, α > 0. If F̄α = 0 then
the only critical point of (4.2) is the origin (0,0) for all Ω̄α. Whereas for F̄α 6= 0

the critical points of (4.2) are (
√

16α̃
3µ3

n
Ãn,

√

16α̃
3µ3

n
B̃n), where Ãn = R̄n

F̄α

(

R̄n − Ω̄α

)

,

B̃n = − R̄n

F̄α
, and R̄n satisfies (see Appendix B.1):

R̃3
n + (1 − 1

3
Ω̄2

α)R̃n − 1

27
(27F̄ 2

α − 2Ω̄3
α − 18Ω̄α) = 0,

R̄n = R̃n +
2

3
Ω̄α, (4.6)
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where R̄n = Ã2
n + B̃2

n. The number of critical points of (4.2) for the case α = 0
and the case α > 0 follow from the number of real solutions of (4.4), (4.5), and
(4.6). The radicand ∆0 of (4.5) and the radicand ∆α of (4.6) are even functions
with respect to F̄0 and F̄α, respectively. This implies that the curves ∆0 = 0 and
∆α = 0 are symmetric to the Ω̄0-axis and the Ω̄α-axis, respectively. Hence, the
domains of critical points of (4.2) for both cases α = 0 and α > 0 are only given
for F̄α ≥ 0 (see Fig. 2). In Fig. 2 there are two domains: I-1 and II-3 with one or
three critical points, respectively. On the curves ∆0 = 0 and ∆α = 0 there are two
critical points. On the non-positive Ω̄0-axis there is one critical point (the origin),
and on the positive Ω̄0-axis there is an infinite number of critical points (see also
(4.4)), whereas on the Ω̄α-axis there is only one critical point. Here, II-3 means that
in this domain there exist three real critical points.

(i) Ω̄0 = 0.5 ; F̄0 = 0.5. (ii) Ω̄0 = 1.5 ; F̄0 =
√

2
2 . (iii) Ω̄0 = 2 ; F̄0 = 0.5.

(iv) Ω̄α = 2 ; F̄α = 2. (v) Ω̄α = 3.25 ; F̄α = 2.5. (vi) Ω̄α = 4 ; F̄α = 2.5.

Figure 3: Phase portraits of system (4.2) for different values of Ω̄α and F̄α, where
the horizontal and the vertical axis are the Ãn-axis and the B̃n-axis respectively. In
(i)-(iii): α = 0, and in (iv)-(vi): α > 0.

The stability of the critical points will be analyzed by using the linearization method.
Starting with the case α = 0, it can readily be shown that for F̄0 = 0 the origin (0, 0)
is a stable point for Ω̄0 6= 0 (in the sense Lyapunov), and that it is a degenerate

point for Ω̄0 = 0. The points (
√

16
3µ3

n
Ãn,

√

16
3µ3

n
B̃n) are degenerate points for Ω̄0 > 0.
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For F̄0 6= 0 the eigenvalues of the coefficient matrix of the linearized system of (4.2)

around the point (
√

16
3µ3

n
Ãn, 0) are ± ε̄

2µn

√

−E(Ãn), where E(Ãn) = (Ã2
n−Ω̄0)(3Ã

2
n−

Ω̄0) and Ãn satisfies (4.5). This implies that the point (
√

16
3µ3

n
Ãn, 0) will be unstable

if E(Ãn) < 0 and degenerate if E(Ãn) = 0. Whereas for E(Ãn) > 0 the stability of

the point (
√

16
3µ3

n
Ãn, 0) in the non-linear system (4.2) can not be determined from

the linearized system. It should be observed that for α = 0 (4.2) can be written as

dĀn(t̄)

dt̄
= − ε̄

2µn
B̄n(t̄)

( 3

16
µ3

n(Ā2
n(t̄) + B̄2

n(t̄)) − Ω̄0

)

,

d(Ā2
n(t̄) + B̄2

n(t̄))

dt̄
= − 2ε̄F̄0

µ2
n

√
3µn

B̄n(t̄). (4.7)

It follows from (4.7) that a Morse-function in a neighbourhood of the point (
√

16
3µ3

n
Ãn,

0) (by using a first integral) can be defined by:

H(Ān(t̄), B̄n(t̄)) =
3

32
µ3

n(Ā2
n(t̄) + B̄2

n(t̄))2 − Ω̄0(Ā
2
n(t̄) + B̄2

n(t̄)) −

8F̄0

µn

√
3µn

Ān(t̄). (4.8)

The expansion of (4.8) in a neighbourhood of the point (
√

16
3µ3

n
Ãn, 0) is given by

H(Ān(t̄), B̄n(t̄)) = H(

√

16

3µ3
n

Ãn, 0) + (3Ã2
n − Ω̄0)(Ān −

√

16

3µ3
n

Ãn)2 +

(Ã2
n − Ω̄0)B̄

2
n + h.o.t., (4.9)

where h.o.t. stands for the third or higher order terms in (Ān −
√

16
3µ3

n
Ãn) and

B̄n. It can readily be observed from (4.9) that in the non-linear system the point

(
√

16
3µ3

n
Ãn, 0) is a centre (stable in the sense of Lyapunov) for E(Ãn) > 0, and is a

saddle point (unstable) for E(Ãn) < 0. In domain I-1 in Fig. 2(i) (4.5) has one real

solution: x11 = (−1
2 F̄0 +

√
∆0)

1

3 − (1
2 F̄0 +

√
∆0)

1

3 and E(x11) > 0. This implies that
in domain I-1 in Fig. 2(i) system (4.4) has one stable point. On the curve ∆0 = 0

there are two solutions: x21 = 2
√

Ω̄0

3 and x22 = −
√

Ω̄0

3 . Substituting these solutions

into E(Ãn) yields E(x21) > 0 and E(x22) = 0. Thus, on this curve system (4.2) has
a centre (stable) and a degenerate point (unstable). In domain II-3: E(x31) > 0,

E(x33) > 0, while E(x32) < 0, where x3i = 2
√

Ω̄0

3 cos(Ψ0+2(i−1)π
3 ), for i = 1, 2, 3, and

Ψ0 = arccos( 3F̄0

2
√

3Ω̄0

). This implies that in domain II-3 system (4.2) has two stable

points and an unstable one. For the case α > 0 the results are similar to the case
α = 0. However, the stable points in this case are foci (asymptotically stable) and
the degenerate point (0,0) is stable. As illustration the behaviour of the solutions is
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Ωα

R

Fα

:  

:  

Stable

Unstable

α = 0

α > 0

5

4

3

2

1

0 1 2 4 53

n

(i) F̄α = 2 (ii) Ω̄α = 3

Figure 4: The amplitude response-curves R̄n = Ã2
n + B̃2

n are given as function of the
parameter Ω̄α (with F̄α = 2) and as function of F̄α (with Ω̄α = 3).

given in Fig. 3. This type of behaviour of solutions is well known (see also [15, 16]).

In Fig. 4 the amplitudes of the periodic solutions are plotted as function of F̄α and
Ω̄α. In this figure it can be seen that the damping coefficient reduces the ampli-
tudes of the periodic solutions. It should be noted that the parameter Ω̄α depends
on the detuning parameter of the excitation-frequency η, and on the gravitational
acceleration g. Looking at Fig. 2 and at Fig. 4 it can readily be seen that gravity
reduces the effect of the excitation-frequency. Another interesting result is that a
jump up from a small amplitude solution to a large amplitude solution may occur
for decreasing values of Ω̄α or for increasing values of F̄α.

4.2 The case α > 0 and λ = µn + ε̄η with n = 2s, where s is a positive,
fixed integer

In this case an interaction between the s-th mode and the n-th mode can be expected,
while the other modes tend to zero for α > 0. Hence, only the equations for k = n

and k = s will be considered to study the behaviour for long times. By substituting
qk(t) = 0 for k 6= n and k 6= s into (3.2), and by introducing t̄ = 1

2λt, the following
system of two coupled second order differential equations is obtained:

q′′s (t̄) + qs(t̄) = − ε̄

µs

{

αq′s(t̄) + (µsqs(t̄) −
bs

µs
)[µ2

sq
2
n(t̄) +

1

4
µ2

sq
2
s(t̄) + F1 sin(2t̄)] +

asqs(t̄) + [µs(p +
1

2
ω1 sin(ϕ) − η]qs(t̄) +

(d(n,s) − c(n,s))

µs
qn(t̄) +
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(−1)s8F2 sin(2t̄)
}

,

q′′n(t̄) + 4qn(t̄) = − ε̄

µs

{

αq′n(t̄) + 4µsqn(t̄)[µ2
sq

2
n(t̄) +

1

4
µ2

sq
2
s(t̄) + asqs(t̄) +

F1 sin(2t̄) + p +
1

2
ω1 sin(ϕ) − η

µs
] +

(d(s,n) − c(s,n))

µs
qs(t̄) + 4F2 sin(2t̄)

}

.

(4.10)

This system (4.10) actually describes a 1 : 2 resonance case. By using the trans-
formation (3.3) and by applying the averaging method, it follows that the averaged
system of (4.10) is given by:

Ā′
n = − ε̄

2µs

[

αĀn + B̄n(
3µ3

s

2
(Ā2

n + B̄2
n) +

µ3
s

4
(Ā2

s + B̄2
s ) + 2µs(p +

ω1

2
sin(ϕ)) −

2η)
]

,

B̄′
n = − ε̄

2µs

[

αB̄n − Ān(
3µ3

s

2
(Ā2

n + B̄2
n) +

µ3
s

4
(Ā2

s + B̄2
s ) + 2µs(p +

ω1

2
sin(ϕ)) −

2η) − 2F2

]

,

Ā′
s = − ε̃

2µs

[

(α +
1

2
µsF1)Ās + B̄s(

µ3
s

2
(Ā2

n + B̄2
n) +

3µ3
s

16
(Ā2

s + B̄2
s ) + µs(p +

ω1

2
sin(ϕ)) +

2a2
s

µs
− η)

]

,

B̄′
s = − ε̄

2µs

[

(α − 1

2
µsF1)B̄s − Ās(

µ3
s

2
(Ā2

n + B̄2
n) +

3µ3
s

16
(Ā2

s + B̄2
s ) + µs(p +

ω1

2
sin(ϕ)) +

2a2
s

µs
− η)

]

, (4.11)

where Ān, B̄n, Ās, and B̄s are the averaged approximations of An, Bn, As, and

Bs respectively. By introducing the rescaling Ān =
√

F̃1

µ2
s
Ãn, B̄n =

√

F̃1

µ2
s
B̃n, Ās =

√

8F̃1

µ2
s

Ãs, and B̄s =
√

8F̃1

µ2
s

B̃s it follows that the critical points of (4.11) satisfy:

ᾱÃn + B̃n[3(Ã2
n + B̃2

n) + 4(Ã2
s + B̃2

s ) − 2K̄ ] = 0,

ᾱB̃n − Ãn[3(Ã2
n + B̃2

n) + 4(Ã2
s + B̃2

s ) − 2K̄ ] − M̄ = 0,

(ᾱ + σ)Ãs + B̃s[Ã
2
n + B̃2

n + 3(Ã2
s + B̃2

s ) + β̄s − K̄] = 0,

(ᾱ − σ)B̃s − Ãs[Ã
2
n + B̃2

n + 3(Ã2
s + B̃2

s ) + β̄s − K̄] = 0, (4.12)

where ᾱ = 2α

µsF̃1

, β̄s = 4a2
s

µ2
sF̃1

, K̄ = 2
µsF̃1

(η − µs(p + 1
2ω1 sin(ϕ)), M̄ = 4F2

F̃1

√
F̃1

, and

σ = F1

F̃1

(with F̃1 = 1 for F1 = 0, and F̃1 = |F1| for F1 6= 0). By considering the

values of σ it should be observed that the solutions of (4.12) for σ = −1 can be
determined from those for σ = 1. This can be seen as follows: let {Ã+

n , B̃+
n , Ã+

s , B̃+
s }

and {Ã−
n , B̃−

n , Ã−
s , B̃−

s } be solutions of (4.12) for σ = 1 and σ = −1, respectively. Due
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to the symmetry of (4.12) these solutions satisfy the relations Ã−
n = Ã+

n , B̃−
n = B̃+

n ,
Ã−

s = −B̃+
s , and B̃−

s = Ã+
s . Moreover, the stability of those points is exactly the

same. For σ = 0 it follows from the third and the fourth equation of (4.12) with
ᾱ 6= 0 that the only solutions for Ãs and B̃s are Ãs = B̃s = 0. This implies that
for σ = 0 the only periodic solution consists of one mode as studied in the previous
subsection. Hence, only the case σ = 1 has to be considered. System (4.12) then
contains four parameters: ᾱ, β̄s, K̄, and M̄ . The dependence of the critical points on
these parameters will be investigated. Clearly, the number of critical points of (4.11)
is equal to the number of real solutions of (4.12). The number and the stability of
the critical points of system (4.11) for a fixed, positive value of ᾱ will now be studied.
For ᾱ > 1 it follows from the two last equations in (4.12) that there are no non-
trivial solutions for Ãs and B̃s. This also implies (because of the damping) that
Ās(t̄) and B̄s(t̄) tend to zero as t̄ → ∞. As a consequence the interaction between
the n-th mode and the s-th mode does not occur. This implies that for α̃ > 1 the
behaviour of the solutions of (4.11) can be described as has been described in section
4.1. Hence, in the further analysis only the case 0 < ᾱ ≤ 1 will be considered. It
follows from the first two equations in (4.12) that for M̄ = 0 the only solutions Ãn

and B̃n of (4.12) are Ãn = B̃n = 0. This implies that the periodic solution of (4.11)
only consists of one (parametrically excited) mode. It can also readily be deduced
from the first two equations in (4.12) that if for M̄ 6= 0 a solution of (4.12) exists
then B̃n 6= 0. In this case, that is, for 0 < ᾱ ≤ 1 and M̄ 6= 0 one can expect a
periodic solution consisting of two modes. It should be observed that Ãs = B̃s = 0
is a solution of (4.12). In order to have non-trivial solutions for Ãs and B̃s one of
the following conditions should be satisfied:

(a) (Ã2
n + B̃2

n) + 3(Ã2
s + B̃2

s ) + β̄s − K̄ = −
√

1 − ᾱ2,

(b) (Ã2
n + B̃2

n) + 3(Ã2
s + B̃2

s ) + β̄s − K̄ =
√

1 − ᾱ2. (4.13)

These conditions follow directly from the last two equations in (4.12). By sub-

stituting (4.13)(a) into the third equation of (4.12) one obtains Ãs =
√

1−ᾱ
1+ᾱ

B̃s,

and similarly by substituting (4.13)(b) into the third equation of (4.12) gives Ãs =

−
√

1−ᾱ
1+ᾱ

B̃s. Therefore, for the critical points of (4.11) with 0 < α̃ ≤ 1 the following

types can be distinguished:

CP-type 1 : (Ās, B̄s, Ān, B̄n) = (0, 0,

√

F1

µ2
s

Ãn,

√

F1

µ2
s

B̃n),

CP-type 2 : (Ās, B̄s, Ān, B̄n) = (

√

8F1(1 − ᾱ)

µ2
s(1 + ᾱ)

B̃s,

√

8F1

µ2
s

B̃s,

√

F1

µ2
s

Ãn,

√

F1

µ2
s

B̃n),

CP-type 3 : (Ās, B̄s, Ān, B̄n) = (−
√

8F1(1 − ᾱ)

µ2
s(1 + ᾱ)

B̃s,

√

8F1

µ2
s

B̃s,

√

F1

µ2
s

Ãn,
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√

F1

µ2
s

B̃n). (4.14)

When ᾱ = 1 it is obvious from (4.14) that the Ās components of the CP-type 2 and
the CP-type 3 are zero. In what follows the dependence of the critical points on the
parameters will be analyzed. Starting with the CP-type 1, the solutions of (4.11)

with Ãs = B̃s = 0 are Ãn = B̃n = 0 for M̄ = 0, while for M̄ 6= 0 Ãn = − R̄n(3R̄n−2K̄)
M̄

and B̃n = ᾱR̄n

M̄
, with R̄n = X + 4

9K̄, where X satisfies (see Appendix B.2):

X3 + κ0X + δ0 = 0,

κ0 = − 1

27
(4K̄2 − 3ᾱ2),

δ0 = − 1

27
(3M̄2 − 4K̄

27
[4K̄2 + 9ᾱ2]). (4.15)

In a similar way, the critical points of type 2 and of type 3 can be found by
substituting (4.13)(a) and (4.13)(b) into the first two equations in (4.12) respec-
tively. After some calculations (see Appendix B.2), one obtains Ãn = B̃n = 0 and

B̃2
s = 1+ᾱ

6 (K̄ − β̄s +(−1)j
√

1 − ᾱ2) for M̄ = 0, while for M̄ 6= 0 Ãn = − R̄n(5R̄n−2K̄j)

3M̄

and B̃n = ᾱR̄n

M̄
, with R̃n = Yj + 4

15K̄j where Yj , j = 1, 2, satisfies:

Y 3
j + κjYj + δj = 0,

Cond2+j(Yj) = Yj +
23

15
β̄s − 11K̄ − (−1)j 23

15

√

(1 − ᾱ2) < 0,

R̃s = Ã2
s + B̃2

s = −1

3
Cond2+j(Yj), (4.16)

with κj = − 1
75(4K̄2

j − 27ᾱ2), δj = − 1
75

(

27M̄2 − 4K̄j

45 [4K̄2
j + 81ᾱ2]

)

, and K̄j =

K̄ + 2β̄s + (−1)(1+j)2
√

(1 − ᾱ2). In (4.16) the parameter j = 1 and the parameter
j = 2 correspond to the CP-type 2 and the CP-type 3, respectively. An overview of
the number of critical points is given in Table 1 and can be restricted to the case
M̄ ≥ 0 due to the symmetry in (4.12). By using (4.15) and (4.16) the different
domains in the (K̄, M̄ )-plane are given for fixed values of β̄s and ᾱ in Figs. 5-10.
By increasing the damping the size of the domains (in which critical points of type
2 and 3 exist) decreases. When one increases the damping coefficient from ᾱ = 0.25
to ᾱ = 0.90 then the motion indeed will change for fixed K̄, M̄ , and β̄s values as
can be seen by comparing Figs. 5-10. The number of critical points of the types 1
to 3 in the domains as given in the Figs. 5-10 are presented in Table 1.
In Fig. 11 the stability response-curves of the transversal and of the parametrical
modes are presented as function of K̄. Looking at this figure one sees that the
critical points of type 2 are always unstable. This result is the same as in the case
without gravity (see also [10]). From Fig. 11 it can be deduced that stable motion
can consist of transversally and parametrically excited modes. A remarkable result
is the presence of jump phenomena in Fig. 11. These phenomena are due to the non-
linearities and the excitations. To explain this one starts with ᾱ = 0.90, β̄s = 0, M̄ =



IN PLANE HARMONIC RESPONSE OF AN INCLINED STRING 17

5

1

−1
0

1

2

3

4

0 2 3 4

M

K

Cond  (     )=0z 14

Cond  (      )=0y3

Cond  (     )=0

Cond  (     )=0

Cond  (      )=0

Cond  (      )=0

y

y

y

y

3

3

3

33

31

32

1

1

I

∆   =0

∆   =0

0 3

IV
V

II

III

VIII

IV

VII

VI

1

IX

V

6

∆   =0

∆   =01

XI

2

X

Figure 5: The bifurcation diagram of the critical points of system (4.11) for ᾱ = 0.25
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2, and a small value for K̄ such that the starting point is in domain I in Fig. 8. At
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the point Q1 in Fig. 11(i) one smoothly leaves (for increasing K̄ values) the CP-type
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1 to the CP-type 3 because the parametric excitation comes in as has been shown
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Table 1: The number of critical points of (4.11) as described in the Figs. 5-10.

Domain The number of critical points

CP-type 1 CP-type 2 CP-type 3 Total

I 1 0 0 1
II 1 0 1 2
III 1 1 1 3
IV 3 0 1 4
V 3 1 1 5
VI 1 1 3 5
VII 1 3 1 5
VIII 3 2 1 6
IX 3 3 1 7
X 1 3 3 7
XI 3 3 3 9
XII 1 0 3 4
XIII 3 0 3 6
XIV 3 1 3 7
XV 3 2 3 8
XVI 3 0 0 3
XVII 3 1 0 4
XVIII 3 2 0 5
XIX 3 1 2 6
XX 3 2 2 7

in Fig. 11(ii). By increasing K̄ one arrives at Q8 and a jump from the CP-type 3 to
itself occurs followed by a sudden decrease in amplitude of the transversally excited
mode (R̄n) and by an increase in the amplitude of the parametrically excited mode
(R̄s). By reversing the procedure, again a jump phenomenon occurs at Q5, where
now the amplitude of the transversally excited mode increases, while simultaneously
the amplitude of the parametrically excited mode decreases. An other possible
phenomenon occurs at Q2, where for decreasing values of K̄ a jump occurs from the
CP-type 1 to the CP-type 3. This phenomenon is followed by an increase in the
amplitudes of the transversal and of the parametrical modes. It is also of interest
to know the effect of β̄s (which depends on the static state due to gravity and the
mode interactions). By taking β̄s = 1 the stability response-curve is different from
the case β̄s = 0 (β̄s = 0 corresponds to g = 0 or s is an even number). This can be
seen by comparing the upper and the lower figures in Fig. 11. For instance, part of
the curve Q̄6Q̄7 of the lower CP-type 3 curve as indicated in Fig. 11(iii) becomes
unstable. The critical point of type 3 for β̄s = 0 describes the motion consisting of
two even modes, while the critical point of type 3 for β̄s 6= 0 describes the motion
consisting of an odd and an even mode. Hence, by considering β̄s as function of s the
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Figure 11: The stability response-curves R̄n = Ã2
n + B̃2

n and R̄s = Ã2
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s of system
(4.11) for α̃ = 0.90 and M̄ = 2. The dashed line represents an unstable solution and
the solid line represents a stable solution.

instability of part of the Q̄6Q̄7 curve in Fig. 11(iii) is due to an interaction between
an odd and an even mode.
The influence of gravity can be studied by varying the values of β̄s or K̄ with η̄ kept
fixed. It can readily be seen from the Figures 5 to 11 that gravity reduces the domain
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of existence of string-motion consisting of two (parametric and transversal) modes.
This implies that the existence of parametrically excited mode is reduced due to
the presence of gravity. Moreover, in case of internal resonances occurring between
an odd parametrically excited mode (s an odd number) and an even transversally
excited mode the stability of this non-planar motion with small amplitudes becomes
unstable due to gravity.

5 Conclusions and remarks

In this paper a mathematical model to describe the in-plane vibrations of an inclined
stretched string has been derived. This model consists of a system of two coupled
partial differential equations (PDEs) representing the longitudinal and the transver-
sal displacement of the string. By using Kirchhoff’s approach the model equations
can be reduced to a single PDE representing the transversal displacement. In [10] a
model has been studied by neglecting the effect of gravity. This is possible whenever
the force due to gravity is very small compared to the pretension in the string. In
this paper it is assumed that the effects due to gravity are small, but can not be
neglected.
In this paper the influence of the parameters on the existence (and stability) of time-
periodic solutions has been investigated. There are two values of the excitation-
frequency that cause resonances, i.e. λ = µ(2s−1) + O(ε̄) and λ = µ2s + O(ε̄),
where µ(2s−1) and µ2s are eigenfrequencies of the linearized model-problem. When
λ = µ(2s−1) + O(ε̄) the periodic solution consists of only one mode which is the
transversally excited mode. While when λ = µ2s + O(ε̄) the periodic solutions can
consist of transversally and parametrically excited modes. The domain of existence
of all types of periodic solutions and their stability are given. Moreover, a number of
jump-phenomena are found with saddle-node bifurcations as underlying mechanism.
These phenomena occur not only from semi-trivial to non-trivial solutions, but also
from non-trivial solutions to itself.
The gravitational force influences not only the static state, but also the dynamic
state. When gravity is ignored (see also [10]) the ultimate periodic string-motion
can not consist of an odd mode (s an odd number) and an even mode. However, in
contrast to the case without gravity the interaction between an odd mode and an
even mode may occur when gravity is not neglected.

Appendix

A. Modal expansion

By substituting (3.1) into (2.14), and then by multiplying the so-obtained equation
with 2 sin(µkx), where k is a fixed, arbitrary integer, one obtains:

∞
∑

n=1

(q̈n + µ2
nqn)2 sin(µnx) sin(µkx) = ε̄

{[

∞
∑

m=1

(
1

4
µ2

mq2
m + amqm) +
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F1 sin(λt)
][

v̌xx(x) −
∞
∑

n=1

µ2
nqn sin(µnx)

]

2 sin(µkx) −
∞
∑

n=1

2µ2
nqn[p +

ω1x sin(ϕ)] sin(µnx) sin(µkx) +

∞
∑

n=1

2ω1 sin(ϕ)µnqn(t) cos(µnx) sin(µkx)

+2λ2F2 sin(λt)x sin(µkx) −
∞

∑

n=1

2αq̇n(t) sin(µnx) sin(µkx)
}

, (A.1)

where:

am =

∫ 1

0
µmv̌x(x) cos(µmx)dx =











O(ε̄) , for m is even,

−2ω1 cos(ϕ)
µm

+ O(ε̄) , for m is odd.

By integrating (A.1) over x ∈ [0, 1] the following infinite-dimensional system of non-
linear ordinary differential equations for qk(t) is found:

q̈k + µ2
kqk = −ε̄

{[

∞
∑

m=1

(1

4
µ2

mq2
m + amqm

)

+ F1 sin(λt)
][

µ2
kqk − bk

]

+

∞
∑

n=1

(d(n,k) − c(n,k))qn + (−1)k 2λ2F2 sin(λt)

µk
+ αq̇k

}

, (A.2)

where:

bk =

∫ 1

0
2v̌xx sin(µkx)dx =

{

O(ε̄) , for k is even,
4ω1 cos(ϕ)

µk
+ O(ε̄) , for k is odd,

c(n,k) =

∫ 1

0
2ω1 sin(ϕ)µn cos(µnx) sin(µkx)dx

=

{

0 , for (n + k) is even,

−4ω1µnµk sin(ϕ)
(µ2

n−µ2

k
)

, for (n + k) is odd,

d(n,k) =

∫ 1

0
2µ2

n(p + ω1x sin(ϕ)) sin(µnx) sin(µkx)dx

=











µ2
k(p + 1

2ω1 sin(ϕ)) , for n = k,
0 , for (n + k), n 6= k, is even,

− 8ω1µ3
nµk sin(ϕ)

(µn+µk)2(µn−µk)2
, for (n + k) is odd.

Note that in case (n + k) is odd, d(n,k) − c(n,k) = −4ω1µkµn(µ2
n+µ2

k
) sin(ϕ)

(µ2
n−µ2

k
)2

.

B. Critical points

B.1. The case λ = µn + ε̄η, where n is an odd, fixed number

For α = 0 it can readily be seen that the solutions of (4.3) satisfy (4.4) for F̄0 = 0
and (4.5) for F̄0 6= 0. Now the case α > 0 is considered. For F̄α = 0 it can easily
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be shown that the only solution of (4.4) is Ãn = B̃n = 0. For F̄α 6= 0 it should be
observed that B̃n can not be zero. This implies that (4.3) can be written as:

F̄αB̃n = −(Ã2
n + B̃2

n),

F̄αÃn = (Ã2
n + B̃2

n)(Ã2
n + B̃2

n − Ω̄α). (B.1)

By squaring both sides of (B.1), and then by adding the so-obtained equations, one
obtains

R̄3
n − 2Ω̄αR̄2

n + (1 + Ω̄2
α)R̄n − F̄ 2

α = 0, (B.2)

where R̄n = Ã2
n + B̃2

n. By introducing a new variable R̄n = R̃n + 2
3 Ω̄α the first

equation in (4.6) follows from (B.2).

B.2. The case λ = µn + ε̄η with n = 2s, where s is a positive, fixed integer

In this section the case with σ = 1, 0 < ᾱ ≤ 1, and M̄ 6= 0 is only considered.
Because M̄ 6= 0 it follows from the first two equations in (4.12) that B̃n is not
equal to zero. It should be observed that Ãs = B̃s = 0 is a solution of (4.12). By
substituting Ãs = B̃s = 0 into the first two equations in (4.12) yields (after a simple
reformulation of (4.12)):

M̄B̃n = ᾱ(Ã2
n + B̃2

n),

M̄Ãn = −(Ã2
n + B̃2

n)(3(Ã2
n + B̃2

n) − 2K̄). (B.3)

In a similar way as to obtain (B.2) but now by using (B.3) and the variable R̄n =
X + 4

9K̄ one obtains (2.13). The non-trivial solutions for Ãs and B̃s satisfy Ãs =

(−1)(1+j)
√

1−ᾱ
1−ᾱ

B̃s, j = 1, 2, under the conditions (4.13). By substituting these

solutions into (4.12) yields

M̄B̃n = ᾱ(Ã2
n + B̃2

n),

M̄Ãn = −1

3
(Ã2

n + B̃2
n)(5(Ã2

n + B̃2
n) − 2K̄j), (B.4)

where K̄j = K̄ + 2β̄s + (−1)(1+j)2
√

1 − ᾱ2. By introducing the variable R̄n =
Yj + 4

15K̄j system (4.16) can readily be found from (B.4) and (4.13).
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