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Abstract

In this paper a model of the dynamics of a stretched string is derived. The sag of the string
due to gravity is neglected. The string is suspended between a fixed support and a vibrating
support. Due to the vibrating support the oscillation of the string in vertical direction is
influenced by a parametrical excitation. The parametric term originates from a longitudinal
vibration caused by an elastic elongation and then influences the transversal vibrations in-
and out-of-plane. The study will be focused on the existence and stability of time-periodic
solutions in transversal direction. The stability is analyzed by using a linearisation method.
In addition the different types of periodic motions of the string will be determined.

1 Introduction

The vibrations of stretched strings have been investigated by many researchers, because a
variety of physical systems can be described by stretched strings, e.g., the stay cable of a
cable-stayed-bridge, an overhead power transmission line, and so on. Most of the studies
of oscillations of stretched strings has mainly focused on the transverse displacements. The
earliest experiment was successfully done by Melde in [1]. He observed that the string can
oscillate transversally with an amplitude of about 4% of the length of string, although the
excitation force is purely longitudinal. A number of papers corresponding to this subject
has been published, for instance in [2, 3, 4].
The oscillations of the strings can be caused by many factors [5, 6]. Lilien and Pinto
da Costa [7] studied the vibrations caused by a purely parametrical excitation of inclined
cables of a cable-stayed-bridge. Pinto da Costa et al. [8] also studied the steady-state
response of inclined cables when the ratio between the excitation frequency and the first
natural frequency of the cables is close to two. The dominant phenomenon in that case is
a parametric excitation. Corresponding to this case it has been shown in [9] that the mode
generated by a parametric excitation may easily have amplitudes ten times larger than the
amplitudes of the transversally excited modes.

∗Lecturer in Jurusan MIPA Universitas Lampung, Indonesia, on leave as a PhD researcher at the Delft
University of Technology, The Netherlands.
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In [9, 8, 7] the vibrations of the strings are only studied in the plane. On the other hand if
the frequency of excitation falls in a certain resonance range, the string movement in the
plane becomes unstable, and leads to out of plane vibrations ( see also [10, 12, 11, 13]). An
experiment to show this phenomenon has been done by Matsumoto et al. [14].
In a recent paper by Zhao et al. [15] the in- and out-of-plane excitation of an inclined elastic
cable is investigated (without considering the primary parametric excitation in longitudinal
direction). Lee and Renshaw [16] studied the stability of parametrically excited systems
using a spectral collocation method. In this paper, the model of an stretched string motion
will be derived by neglecting the sag of the string due to gravity. The periodic solutions
will be studied by using the averaging method, whereas their stability will be studied by
linearizing the averaged equations.

l

X = lX=0

f(  )τ

Figure 1: The dynamic state of the string suspended between a fixed support at x = 0 and a
vibrating support at x = l.

2 The derivation of the model equation

We consider a perfectly flexible, elastic, unstretched string with length l < 1. Let (X,0,0) be
the coordinate of each material point P of the string with X ∈ [0, l]. The string is stretched
uniformly so that the stretched length is 1. In the stretched state the point P will have the
coordinates ((1 + ωo)X ,0,0), where ωo = 1

l − 1 is the initial strain. Denote the dynamic
displacement of the point P by U(X ,τ̄)i, V (X , τ̄)j and W (X , τ̄)k, where i, j and k are the
unit vectors along the axes of the Cartesian coordinate system and τ̄ is time. U and V are
the displacements in horizontal and vertical direction, respectively, whereas W represents
the displacement perpendicular to the picture as indicated in Fig. 1. So the vector position
R(X, τ̄) of the point P in the dynamic state can be written as:

R(X, τ̄) = [(1+ ωo)X +U(X , τ̄)]i+V (X , τ̄)j+W (X , τ̄)k. (2.1)
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The relative strain per unit length of the stretched string is:

| ∂
∂X

R(X, τ̄) | −1 =
√

[(1+ ωo)+UX ]2 +V 2
X +W 2

X −1, (2.2)

where UX , VX , and WX represent the derivative of U(X ,τ̄), V (X , τ̄), and W (X , τ̄) with re-
spect to X, respectively. Introduce the new coordinate x by:

x = (1+ ωo)X , (2.3)

implying that x ∈ [0,1] and set U(X ,τ̄) = U( x
(1+ωo)

, τ̄) = ũ(x, τ̄), V (X , τ̄) = V ( x
(1+ωo)

, τ̄) =
ṽ(x, τ̄), and W (X , τ̄) =W ( x

(1+ωo)
, τ̄) = w̃(x, τ̄), then the relative strain r(x,τ̄) per unit length

becomes:

r(x, τ̄) = (1+ ωo)
√

1+(2ũx + ũ2
x + ṽ2

x + w̃2
x)−1. (2.4)

The kinetic and the potential energy densities of the system are given by:

K =
1
2

ρ(ũ2
τ̄ + ṽ2

τ̄ + w̃2
τ̄) and P =

1
2

Er2(x, τ̄), (2.5)

respectively, where ρ is the mass of the string per unit length and E is Young’s modulus.
By assuming that | ũx |, | ṽx |, and | w̃x | are small with respect to 1, the potential energy
may be approximated by its Taylor expansion P6 up to terms of the sixth degree:

P6 =
1
2

E
[
ω2

o +2ωo(1+ ωo)ũx +(1+ ωo)2ũ2
x + ωo(1+ ωo)(ṽ2

x + w̃2
x)+ ũx(1+ ωo)(ṽ2

x +

w̃2
x)− (1+ ωo)ũ2

x(ṽ
2
x + w̃2

x)+
1
4
(1+ ωo)(ṽ2

x + w̃2
x)

2 − 3
4

ũx(1+ ωo)(ṽ2
x + w̃2

x)
2 +

(1+ ωo)ũ3
x(ṽ

2
x + w̃2

x)+
3
2
(1+ ωo)ũ2

x(ṽ
2
x + w̃2

x)
2 − (1+ ωo)ũ4

x(ṽ
2
x + w̃2

x)−
1
8
(1+

ωo)(ṽ2
x + w̃2

x)
3
]
. (2.6)

The Lagrangian density D = K−P6 is used in a variational principle [17] to obtain the
following equations of motion:

ρũτ̄τ̄ −E(1+ ωo)2ũxx =
1
2

E(1+ ωo)
∂
∂x

[
(ṽ2

x + w̃2
x)−2ũx(ṽ2

x + w̃2
x)−

3
4
(ṽ2

x + w̃2
x)

2 +

3ũ2
x(ṽ

2
x + w̃2

x)+3ũx(ṽ2
x + w̃2

x)
2 −4ũ3

x(ṽ
2
x + w̃2

x)
]
,

ρṽτ̄τ̄ −Eωo(1+ ωo)ṽxx =
1
2

E(1+ ωo)
∂
∂x

[
2ũxṽx −2ũ2

x ṽx + ṽx(ṽ2
x + w̃2

x)−3ũxṽx(ṽ2
x +

w̃2
x)+2ũ3

x ṽx +6ũ2
x ṽx(ṽ2

x + w̃2
x)−2ũ4

x ṽx − 3
4

ṽx(ṽ2
x + w̃2

x)
2
]
,

ρw̃τ̄τ̄ −Eωo(1+ ωo)w̃xx =
1
2

E(1+ ωo)
∂
∂x

[
2ũxw̃x −2ũ2

xw̃x + w̃x(ṽ2
x + w̃2

x)−3(ṽ2
x +

w̃2
x)ũxw̃x +2ũ3

xw̃x +6ũ2
xw̃x(ṽ2

x + w̃2
x)−2ũ4

xw̃x − 3
4

w̃x(ṽ2
x + w̃2

x)
2
]
. (2.7)

Replace now τ̄ by τ√
1+ωo

and then set E
ρ = c2

1 and Eωo
ρ = c2

2. By taking the damping forces
(proportional to the velocity) into account, the model problem (2.7) becomes:

ũττ − c2
1(1+ ωo)ũxx = −α̃ũτ +

1
2

c2
1

∂
∂x

[
(ṽ2

x + w̃2
x)−2ũx(ṽ2

x + w̃2
x)−

3
4
(ṽ2

x + w̃2
x)

2 +
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3ũ2
x(ṽ

2
x + w̃2

x)+3ũx(ṽ2
x + w̃2

x)
2 −4ũ3

x(ṽ
2
x + w̃2

x)
]
,

ṽττ − c2
2ṽxx = −α̃1ṽτ + c2

1
∂
∂x

[
ũxṽx − ũ2

x ṽx +
1
2

ṽx(ṽ2
x + w̃2

x)−
3
2

ũxṽx(ṽ2
x + w̃2

x)+ ũ3
x ṽx +

3ũ2
x ṽx(ṽ2

x + w̃2
x)− ũ4

x ṽx − 3
8

ṽx(ṽ2
x + w̃2

x)
2
]
,

w̃ττ − c2
2w̃xx = −α̃2w̃τ + c2

1
∂
∂x

[
ũxw̃x − ũ2

xw̃x +
1
2

w̃x(ṽ2
x + w̃2

x)+ ũ3
xw̃x − 3

2
ũxw̃x(ṽ2

x +

w̃2
x)+3ũ2

xw̃x(ṽ2
x + w̃2

x)− ũ4
xw̃x − 3

8
w̃x(ṽ2

x + w̃2
x)

2
]
, (2.8)

where 0 < x < 1, τ > 0, α̃, α̃1, and α̃2 are nonnegative damping parameters. The following
boundary conditions are considered:

ũ(0,τ) = ṽ(0,τ) = w̃(0,τ) = 0,

ũ(1,τ) = f(τ), and ṽ(1,τ) = w̃(1,τ) = 0, (2.9)

where f(τ) is a periodic function. Note that the string is fixed at x = 0 and that at x = 1
there is a time varying forcing in the x-direction implying a parametrical (or longitudinal)

forcing. By assuming c2
2 << c2

1 and by setting ωo = c2
2

c2
1

= ε (small) and c2τ = t̄, system

(2.8), after dividing by c2
1, becomes:

εũt̄t̄ − (1+ ε)ũxx = −ε
α̃
c2

ũt̄ +
1
2

∂
∂x

[
(ṽ2

x + w̃2
x)−2ũx(ṽ2

x + w̃2
x)−

3
4
(ṽ2

x + w̃2
x)

2 +3(ṽ2
x +

w̃2
x)ũ

2
x +3ũx(ṽ2

x + w̃2
x)

2 −4ũ3
x(ṽ

2
x + w̃2

x)
]
,

εṽt̄t̄ − εṽxx = −ε
α̃1

c2
ṽt̄ +

∂
∂x

[
ũxṽx − ũ2

x ṽx +
1
2

ṽx(ṽ2
x + w̃2

x)−
3
2

ũxṽx(ṽ2
x + w̃2

x)+ ũ3
x ṽx +

3ũ2
x ṽx(ṽ2

x + w̃2
x)− ũ4

x ṽx − 3
8

ṽx(ṽ2
x + w̃2

x)
2
]
,

εw̃t̄t̄ − εw̃xx = −ε
α̃2

c2
w̃t̄ +

∂
∂x

[
ũxw̃x − ũ2

xw̃x +
1
2

w̃x(ṽ2
x + w̃2

x)−
3
2

ũxw̃x(ṽ2
x + w̃2

x)+ ũ3
xw̃x

+3ũ2
xw̃x(ṽ2

x + w̃2
x)− ũ4

xw̃x − 3
8

w̃x(ṽ2
x + w̃2

x)
2
]
. (2.10)

In a first order approximation, that is, for ε → 0 the first equation of (2.10) reduces to:

−ũxx =
1
2

∂
∂x

[
(ṽ2

x + w̃2
x)−2ũx(ṽ2

x + w̃2
x)−

3
4
(ṽ2

x + w̃2
x)

2 +3ũ2
x(ṽ

2
x + w̃2

x)+

3ũx(ṽ2
x + w̃2

x)
2 −4ũ3

x(ṽ
2
x + w̃2

x)
]
. (2.11)

If one assumes additionally that the transversal vibrations ṽ and w̃ are of O(ε) it follows
from (2.11) that ũ(x,t̄) = O(ε2). This implies that one only keeps the term 1

2
∂
∂x(ṽ

2
x + w̃2

x) in
the right hand side of (2.11) and the others can be neglected in a first order approximation:

−ũxx =
1
2

∂
∂x

(ṽ2
x + w̃2

x). (2.12)

After integration of (2.12) with respect to x and by using the boundary conditions (2.9) for
ũ the following expression for ũx can be derived:

ũx = −1
2
(ṽ2

x + w̃2
x)+ f(t̄)+

1
2

Z 1

0
(ṽ2

x + w̃2
x)dx. (2.13)



On the planar and whirling motion of a stretched string 5

By using the new time variable t̄ and by substituting (2.13) into the second and third equa-
tions of (2.10) (and by introducing initial conditions), the following model equations are
obtained (up to O(ε)):

vt̄t̄(x, t̄)− vxx(x, t̄) = εvxx(x, t̄)
[1

2

Z 1

0
(v2

x(x, t̄)+w2
x(x, t̄))dx+ f (t̄)

]
− εα1vt̄(x, t̄),

0 < x < 1; t̄ > 0,

wt̄t̄(x, t̄)−wxx(x, t̄) = εwxx(x, t̄)
[1

2

Z 1

0
(v2

x(x, t̄)+w2
x(x, t̄))dx+ f (t̄)

]
− εα2wt̄(x, t̄),

0 < x < 1; t̄ > 0,

IC’s: v(x,0) = v̄0(x),w(x,0) = w̄0(x),vt̄(x,0) = v̄1(x),wt̄(x,0) = w̄1(x),
BC’s: v(0, t̄) = w(0, t̄) = 0, v(1, t̄) = w(1, t̄) = 0, (2.14)

where v, w, f, α1, and α2 are respectively defined by : ṽ = εv, w̃ = εw, f = ε2 f , α̃1
c2

= εα1,
α̃2
c2

= εα2. The function f (t̄) and the parameters α1 and α2 are ε-independent. Additionally
it will be assumed that f (t̄) = F sin(λt̄), in which without lost of generality λ and F are
taken positive constants.

3 Discretization of the model equation

By considering the boundary conditions (2.14), the solutions v(x,̄t) and w(x, t̄) of (2.14)
can be expanded in eigenfunction-series:

v(x, t̄) =
∞

∑
n=1

vn(t̄)sin(µnx) and w(x, t̄) =
∞

∑
n=1

wn(t̄)sin(µnx), (3.1)

where µn = nπ, n = 1,2,3, . . . . By substituting (3.1) into (2.14) and by using the or-
thogonality properties of the eigenfunctions, one obtains the following infinite dimensional
system for vn(t̄) and wn(t̄):

v̈n(t̄)+µ2
nvn(t̄) = −ε

[
α1v̇n(t̄)+µ2

nvn(t̄)
(1

4

∞

∑
k=1

µ2
k(v

2
k(t̄)+w2

k(t̄))+F sin(λt̄)
)]

,

ẅn(t̄)+µ2
nwn(t̄) = −ε

[
α2ẇn(t̄)+µ2

nwn(t̄)
(1

4

∞

∑
k=1

µ2
k(v

2
k(t̄)+w2

k(t̄))+F sin(λt̄)
)]

,

vn(0) = 2
Z 1

0
v̄0(x)sin(nπx)dx, v̇n(0) = 2

Z 1

0
v̄1(x)sin(nπx),

wn(0) = 2
Z 1

0
w̄0(x)sin(nπx)dx, ẇn(0) = 2

Z 1

0
w̄1(x)sin(nπx), (3.2)

where n = 1,2,3, . . . and the dot represents differentiation with respect to t. Considering
the values of λ, there are two possibilities:

(i) λ �= 2µs + O(ε) for all s; then the parametric forcing term does not influence the O(1)
approximations of the solutions on a time-scale of order ε−1, and no O(1) time vary-
ing motion will occur due to parametric excitation.

(ii) λ = 2µs + O(ε) for an integer s; then the parametric term is important in the equation
for the s-th mode. This possibility implies that an O(1) periodic solution can be
expected due to parametric excitation.
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In what follows the case λ near 2µs will be studied. This value implies that the external
force will excite the s-th mode (in- and out-of-plane) but not the other modes. The infinite
dimensional system (3.2) is now truncated to only the s-th modes. This can be justified
in the following sense. It can be shown rigorously (see [9]) that all other modes initially
present will vanish exponentially up to O(ε). This means that except for the s-th modes (in-
plane and out-of-plane), the modes which are not present initially will not become larger
than O(ε). The interaction of the s-th modes in-plane and out-of-plane is described by:

v̈s +µ2
s vs = −ε

[
α1v̇s +µ2

s vs

(1
4

µ2
s (v

2
s +w2

s )+F sin(λt̄)
)]

,

ẅs +µ2
s ws = −ε

[
α2ẇs +µ2

s ws

(1
4

µ2
s (v

2
s +w2

s)+F sin(λt̄)
)]

. (3.3)

By setting λt̄ = 2t, where λ = 2(sπ+εη) and η = O(1), system (3.3) becomes (up to order
O(ε)):

w′′
s (t)+ws(t) = − ε

µs

[
α2w′

s(t)+ws(t)(γs(v2
s (t)+w2

s (t))+2βs sin(2t)−2η)
]
,

v′′s (t)+ vs(t) = − ε
µs

[
α1v′s(t)+ vs(t)(γs(v2

s (t)+w2
s(t))+2βs sin(2t)−2η)

]
, (3.4)

where γs = µ3
s
4 , βs = µs

2 F , and a prime represents differentiation with respect to t.

4 On the of periodic solutions of system (3.4)

In system (3.4) the excitation term 2βs sin(2t) describes a parametric resonance and will
lead to an O(1) amplitude response in the system. Moreover, an O(1) interaction between
the in-plane and out-of-plane modes will occur. From a practical point of view system
(3.4) may represent the motion of a stretched string (stay cable) due to a pure parametric
excitation.

Introduce the transformations (vs(t), v̇s(t)) → (As(t), Bs(t)) and (ws(t), ẇs(t)) →
(Cs(t), Ds(t)):

vs(t) = As(t)sin(t)+Bs(t)cos(t), ws(t) = Cs(t)sin(t)+Ds(t)cos(t),
v̇s(t) = As(t)cos(t)−Bs(t)sin(t), ẇs(t) = Cs(t)cos(t)−Ds(t)sin(t). (4.1)

System (3.4) then becomes after averaging:

˙̄As(t) = −ε̄
(
(ᾱ1 + β̄)Ās + B̄s

[1
4
(3(Ā2

s + B̄2
s)+ (C̄2

s + D̄2
s ))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)D̄s

)
,

˙̄Bs(t) = −ε̄
(
(ᾱ1 − β̄)B̄s − Ās

[1
4
(3(Ā2

s + B̄2
s)+ (C̄2

s + D̄2
s ))−2η̄

]
− 1

2
(ĀsC̄s + B̄sD̄s)C̄s

)
,

˙̄Cs(t) = −ε̄
(
(ᾱ2 + β̄)C̄s + D̄s

[1
4
((Ā2

s + B̄2
s)+3(C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)B̄s

)
,

˙̄Ds(t) = −ε̄
(
(ᾱ2 − β̄)D̄s −C̄s

[1
4
((Ā2

s + B̄2
s)+3(C̄2

s + D̄2
1))−2η̄

]
− 1

2
(ĀsC̄s + B̄sD̄s)Ās

)
,

(4.2)

where ε̄ = γs
2µs

ε, β̄ = βs
γs

, ᾱ1 = α1
γs

, ᾱ2 = α2
γs

, and η̄ = η
γs

, and where Ās(t), B̄s(t), C̄s(t), and

D̄s(t) are the averaged approximations of As(t), Bs(t), Cs(t), and Ds(t), respectively. It
should be observed that for β̄ < 0 a simple transformation (Ās := B̄s, B̄s := −Ās, C̄s := D̄s,
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and D̄s := −C̄s) leads again to system (4.2) for β̄ ≥ 0. Hence, the analysis can be restricted
to the case β̄ ≥ 0. From system (4.2) it can readily be deduced that

d
dt

(ĀsD̄s(t)− B̄sC̄s(t)) = −ε̄(ᾱ1 + ᾱ2)(ĀsD̄s(t)− B̄sC̄s(t)), (4.3)

implying that a first integral of system (4.2) is given by:

G(Ās, B̄s,C̄s,D̄s) = (ĀsD̄s(t)− B̄sC̄s(t))eε̄(ᾱ1+ᾱ2)t . (4.4)

By using the transformation (4.1) it can easily be shown that (4.4) is a first integral of
the original system (3.3). In what follows the critical points of system (4.2) and their
dependence on the parameters ᾱ1, ᾱ2, η̄, and β̄ will be investigated. These critical points
correspond to periodic solutions of system (3.4). Depending on the values ofᾱ1 and ᾱ2 the
following two cases will be studied: ᾱ1 = ᾱ2 = 0 (no damping) and ᾱ1, ᾱ2 > 0 (positive
damping).

4.1 The case without damping: ᾱ1 = ᾱ2 = 0

The critical points of (4.2) with ᾱ1 = ᾱ2 = 0 satisfy the following algebraic system:

β̄Ās + B̄s

[1
4
(3(Ā2

s + B̄2
s)+ (C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)D̄s = 0,

β̄B̄s + Ās

[1
4
(3(Ā2

s + B̄2
s)+ (C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)C̄s = 0,

β̄C̄s + D̄s

[1
4
((Ā2

s + B̄2
s)+3(C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)B̄s = 0,

β̄D̄s +C̄s

[1
4
((Ā2

s + B̄2
s)+3(C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)Ās = 0. (4.5)

Obviously, Ās = B̄s = C̄s = D̄s = 0 is a solution of (4.5). The non-zero solutions of (4.5) can
be classified as semi-trivial (that is, Ās = B̄s = 0 or C̄s = D̄s = 0) or as non-trivial (that is,
Ās �= 0 or B̄s �= 0 and C̄s �= 0 or D̄s �= 0). After some calculations (see Appendix 5.1) it will
turn out that four types of critical points of (4.2) withᾱ1 = ᾱ2 = 0 can be distinguished:

CP-type 1: (Ās, B̄s,C̄s,D̄s) = (0,0,0,0),
CP-type 2: (Ās, B̄s,C̄s,D̄s) = (−B̃s, B̃s,−D̃s,D̃s),
CP-type 3: (Ās, B̄s,C̄s,D̄s) = (B̃s, B̃s,D̃s,D̃s),
CP-type 4: (Ās, B̄s,C̄s,D̄s) = (Ãs, B̃s,C̃s,D̃s), where (ÃsB̃s +C̃sD̃s) < 0

and ÃsD̃s − B̃sD̃s �= 0. (4.6)

The second and third type of critical points describe semi-trivial (B̃s = 0 or D̃s = 0) and
non-trivial (B̃s �= 0 and D̃s �= 0) solutions, respectively, and these solutions describe a pla-
nar motion of the string. Whereas the fourth type describes non-trivial solutions. These
solutions describe a non-planar (whirling) motion of the string.
The critical point of type 1 exists for all values of the parameters, but its stability depends
on the parameter values. In what follows a (η̄, β̄)-diagram will be constructed which gives
an overview of all possible critical points. Starting withĀs = −B̄s and C̄s = −D̄s it follows
after some calculations (see also Appendix 5.1) that a critical point of type 2 satisfies:

B̃2
s + D̃2

s =
2
3
(2η̄+ β̄),

Cond1 = (2η̄ + β̄) > 0. (4.7)
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The curve defined by Cond1 = (2η̄ + β̄) = 0 divides the (η̄, β̄)-plane into two domains in
which the CP-type 2 exists or not. When one looks separately at the case Ās = B̄s and
C̄s = D̄s a critical point of type 3 satisfies (see Appendix 5.1):

B̃2
s + D̃2

s =
2
3
(2η̄− β̄),

Cond2 = (2η̄− β̄) > 0. (4.8)

By setting Cond2 = 0 one obtains a curve on which critical points of type 3 can be found.
It follows from (A.7)-(A.11) (see Appendix 5.1) that a critical point of type 4 satisfies:

Ã2
s +C̃2

s = B̃2
s + D̃2

s = 2η̄,

ÃsB̃s +C̃sD̃s = −2β̄,

Cond3 = η̄− β̄ > 0. (4.9)

The resulting boundary curves and domains on or in which the different types of critical
points can be found, are presented in Fig. 2. The types of critical points and their stability
in different domains and on different boundary curves are given in Table 1.

Figure 2: Four domains with real solutions of type 1 - 4 of system (4.5) in the (̄η, β̄)-plane
for ᾱ1 = ᾱ2 = 0.

Looking at (4.7), (4.8), or (4.9) one sees that for fixed parameter values the number of
critical points of type 2 - 4 (when existing) is infinite, and these critical points can be con-
sidered as curves in a four dimensional space, namely the curves S, U, and L, respectively.
The characteristics of the curves S and U are similar, while the characteristics of the curve
L are different from the others. The characteristics of the curve S are: the projection of this
curve on the (Ās, B̄s) ((C̄s,D̄s)) -plane is a straight line passing through the point (0,0) with
gradient -1, while the projections on the (Ās,C̄s) ((B̄s,D̄s) and (Ās,D̄s) ((B̄s,C̄s))-plane are

circles with radius ρ+
o , where ρ+

o =
√

2
3(2η̄ + β̄). The characteristics of the curve L are:

the projection of this curve on the (Ās, B̄s) ((C̄s,D̄s)) -plane is an ellipse, projection on the
(Ās,C̄s) ((B̄s,D̄s)) -plane is a circle, and projection on the (Ās,D̄s) ((B̄s,C̄s)) -plane leads to
two ellipses. This is illustrated in Fig. 3.
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Table 1: The critical points of system (4.2) and their stability forᾱ1 = ᾱ2 = 0. The stability
is determined by using the linearisation method.

Domains/ number of location of the behaviour
curves critical points critical points in system (4.2)

I and OO1 1 (0,0,0,0) stable (′′4d-center′′)

II and OO2 2 (0,0,0,0) unstable (′′4d-saddle′′)
(−B̃s, B̃s,−D̃s, B̃s) stable (degenerate)

III and OO3 3 (0,0,0,0) stable (′′4d-center′′)
(−B̃s, B̃s,−D̃s,D̃s) stable (degenerate)

(B̃s, B̃s,D̃s,D̃s) unstable (degenerate)

IV 4 (0,0,0,0) stable (′′4d-center′′)
(−B̃s, B̃s,−D̃s,D̃s) unstable (degenerate)

(B̃s, B̃s,D̃s,D̃s) unstable (degenerate)
(Ãs, B̃s,C̃s,D̃s) stable (degenerate)
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−
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+
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+
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(a) (b) (c)

Figure 3: Projection of the curves S, U, and L for ᾱ1 = ᾱ2 = 0 and η̄ > β̄ on: (a) the (Ās, B̄s)
((C̄s,D̄s)) -plane; (b) the (Ās,C̄s) ((B̄s,D̄s)) -plane; (c) the (Ās,D̄s) ((B̄s,C̄s)) -plane (with

ρ−
o =

√
2
3(2η̄− β̄) and ρ̄o =

√
2η̄). The solid and dashed line represent stable and unstable

solutions, respectively.

Now we define the hyperplane GE by using the first integral (4.4), where ᾱ1 = ᾱ2 = 0, as
follows:

GE = {(Ās, B̄s,C̄s,D̄s) : |G(Ās, B̄s,C̄s,D̄s)| = E,E ≥ 0}. (4.10)

It follows from (4.4) that the solutions of (4.2) satisfyĀs(t)D̄s(t)−B̄s(t)C̄s(t)= Ās(0)D̄s(0)−
B̄s(0)C̄s)(0). This shows that the hyperplane GE is an invariant for (4.2) with ᾱ1 = ᾱ2 = 0,
for all E. The critical points of type 1 belong to the hyperplane G0. It also follows from
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(4.6) - (4.9) that the critical points of type 2 and 3 are in the hyperplane G0, while the

critical points of type 4 are in the hyperplane GĒ with Ē = 2
√

η̄2 − β̄2. Hence, the other

hyperplanes GE with E �= 0 and E �= Ē have no singular points when ᾱ1 = ᾱ2 = 0. How-
ever, in these hyperplanes the solutions of (4.2) are bounded, because the hyperplanes GE

with E �= 0 and E �= Ē are invariant for (4.2) with ᾱ1 = ᾱ2 = 0.
In the (Ās, B̄s,C̄s,D̄s)-space the critical point of type 3 is unstable forη̄ > 1

2 β̄ and the critical
point of type 4 is stable (in the sense of Lyapunov) for η̄ > β̄, whereas the critical point of
type 2 is stable for −1

2 β̄ < η̄ ≤ β̄ and unstable for η̄ > β̄. It shows that for η̄ > β̄ there is
a solution of (4.2) with initial conditions in a neighbourhood of the critical point of type 2
which goes away from that point. In the hyperplane G0 the critical points of type 2 and 3
are degenerate points. Therefore, to study the behaviour of these points and the origin, we
introduce the hyperplane Hk:

Hk =

⎧⎪⎪⎨
⎪⎪⎩

{
(Ās, B̄s,C̄s,D̄s) ∈ G0 | Ās = kC̄s and B̄s = kD̄s

}
with k ∈ R,

{
(Ās, B̄s,C̄s,D̄s) ∈ G0 |C̄s = 0 and D̄s = 0

}
for k = ±∞.

(4.11)

It is clear that the hyperplane Hk is an invariant of (4.2) for ᾱ1 = ᾱ2 = 0. Also, one sees
that the union and the intersection of Hk are

[
k

Hk = G0 and
\
k

Hk = O(0,0,0,0),

respectively. The intersection points of the hyperplane Hk with the curve S are the points
S±k (±kρ+

k ,∓kρ+
k ,±ρ+

k ,∓ρ+
k ), where:

ρ+
k =

ρ+
o

1+ k2

√
(1+ k2). (4.12)

Whereas the intersection points of the hyperplane Hk with the curve U are the points
U±

k (±kρ−
k ,∓kρ−

k ,±ρ−
k ,∓ρ−

k ), where:

ρ−
k =

ρ−
o

1+ k2

√
(1+ k2). (4.13)

In the hyperplane Hk the critical point O(0,0,0,0) is unstable in domain II in Fig. 2 and
stable in the other domains. The points S±k are stable (centers in the hyperplane Hk), while
the points U±

k are unstable (saddle points in the hyperplane Hk).
The values of η̄ and β̄ as function of s (the mode number determined by the excitation-
frequency) are strictly monotone decreasing. It follows from the first equation of (4.7)
that large amplitudes of a periodic solution of type 2 is most likely for a low frequency
of the excitation. Moreover, it follows from (4.9) that also large whirling motion can only
occur in the low frequency case. Therefore the effect of parametric excitation will be most
significant to the system for low frequencies as also mentioned in [7]. As illustration some
values for the parameters η̄ and β̄ will be taken.
In Fig. 4 the response curves r1 =

√
Ã2

s + B̃2
s are plotted as function of η̄ for a fixed β̄-

value. In this figure the response curves for the critical points of type 2 and of type 3 are
given for k = 1 (that is, H1), so that a similar figure for the response curves r2 =

√
C̃2

s + D̃2
s

is found. It should remarked that for other values of k similar results are obtained. In the
H1-plane each point on the curve type 2 represents two centers, whereas on the curve type
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Figure 4: The stability response-curves r1 =
√

Ã2
s + B̃2

s with respect to η̄ for system (4.2)
with ᾱ1 = ᾱ2 = 0 and β̄ = 1.25: The curves for CP-type 2 and 3 represent response-curves
in Hk for k = 1 and the curves for CP-type 4 with k2 = −2k1, where k1 = Ãs

C̃s
and k2 = B̃s

D̃s
,

represent response-curves of periodic solutions with all of the components non-zero.

3 each point represents two saddle points. The bifurcations (for increasing values ofη̄) of
the critical points of (4.2) in the hyperplane H1 will now be considered. For η̄ ≤ η̄1 only
the trivial critical point exists, and it is stable (center). When η̄ passes η̄1 this solution
bifurcates into two stable critical points of type 2 and an unstable trivial critical point.
Finally when η̄ passes η̄2 the trivial critical point again bifurcates into two unstable critical
points of type 3 and a stable critical point. As illustration these results and the behaviour
of the solutions are given in Fig. 5.
In Fig. 6 the response curves r1 are given as function of β̄ for a fixed value of η̄. This figure
clearly indicates that the whirling motion can only occur for relatively small excitation
amplitudes (that is, β̄ < η̄). Hence, for larger amplitudes the string is always moving in
the plane. One can also see that for increasing excitation amplitudes the amplitudes of the
periodic solutions become larger.
In Fig. 7 the types of motions of a stretched string as modeled by system (4.2) are described.
These motions can be planar or non-planar (whirling) motions. In this figure the analytic
solutions are compared with the numerical results as obtained by using a Runge-Kutta
method. One can see that both results are very close to each other. Fig. 7(b) and Fig.
7(c) describe the planar motions corresponding to the critical points of type 2 and 3 in the
hyperplane H1 and H−1, respectively. If the motions correspond to the critical points of
type 3 then these motions are always unstable. Whereas the planar motions corresponding
to the critical points of type 2 are stable for −1

2 β̄ < η̄ ≤ β̄ and unstable for η̄ > β̄ (see Table
1). The instability of planar motion type 2 gives way to a whirling motion, that is, the string
begins to whirl like a jump rope as presented in Fig. 7(d) and 7(g). These whirling motions
are a consequence of the equal frequency of the motions in both planes, while the phase of
them is different. Thus, the motion is composed of two modes which are strongly coupled.
Fig. 7(d) and Fig. 7(e) describe the whirling motions corresponding to the type 4 in case
ĀsB̄s = 0. The inclination of the motion curve depends on the phase difference φ = φv−φw,
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Figure 6: The stability response-curves r1 =
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Ã2
s + B̃2

s of system (4.2) with respect to β̄
for ᾱ1 = ᾱ2 = 0 and η̄ = 0.75: the curves of CP-type 2 and 3 represent response-curves
in H1, and the curves of CP-type 4 with k2 = −2k1, where k1 = Ãs
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and k2 = B̃s

D̃s
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response curves of the periodic solutions in case all of the components are non-zero.
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Figure 7: The types of stable motion of the string for ᾱ1 = ᾱ2 = 0, η̄ = 1.6014, and
β̄ = 1.2159. The first three figures describe planar motions, while the other figures describe
whirling (non-planar) motions.

where φv and φw are the phase of the in-plane and out-of-plane motion, respectively. Similar
results can be obtained for the other cases.

4.2 The case with (positive) damping: ᾱ1, ᾱ2 > 0

The critical points of system (4.2) with ᾱ1, ᾱ2 > 0 satisfy the following algebraic equations:

(β̄+ ᾱ1)Ās + B̄s

[1
4
(3(Ā2

s + B̄2
s)+ (C̄2

s + D̄2
s ))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)D̄s = 0,

(β̄− ᾱ1)B̄s + Ās

[1
4
(3(Ā2

s + B̄2
s)+ (C̄2

s + D̄2
s ))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)C̄s = 0,

(β̄+ ᾱ2)C̄s + D̄s

[1
4
((Ā2

s + B̄2
s)+3(C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)B̄s = 0,

(β̄− ᾱ2)D̄s +C̄s

[1
4
((Ā2

s + B̄2
s)+3(C̄2

s + D̄2
s))−2η̄

]
+

1
2
(ĀsC̄s + B̄sD̄s)Ās = 0.

(4.14)

From system (4.14) one can derive the following equation:

(ᾱ1 + β̄)Ā2
s +(ᾱ2 + β̄)C̄2

s +(ᾱ1 − β̄)B̄2
s +(ᾱ2 − β̄)D̄2

s = 0. (4.15)

Obviously, for ᾱ1, ᾱ2 > β̄ system (4.14) only has the trivial solution as a solution, that
is, the origin O(0,0,0,0), and this is a stable solution. Moreover, for ᾱ1 = ᾱ2 = β̄ the
components Ās and C̄s of the semi-trivial and non-trivial solutions of (4.14) are zero. So,
in that case the critical points of (4.2) are in the (B̄s,D̄s)−plane. These points exist for
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η̄ > 0 and are unstable (degenerate) solutions, while the origin is a stable solution. In this
subsection the study will be divided into two cases: ᾱ1 = ᾱ2 and ᾱ1 �= ᾱ2.

4.2.1 The case ᾱ1 = ᾱ2 = α

In this case it follows from (4.4) that the solutions of system (4.2) satisfy (Ās(t)D̄s(t)−
B̄s(t)C̄s(t)) → 0 as t → ∞. Therefore, for given initial conditions in the hyperplane GE , for
arbitrary E , the solutions of (4.2) move into the hyperplane G0 as t tends to infinity. This
means that the critical points of (4.2) can only be found in the hyperplane G0. Moreover,
the stability of the critical points in the (Ās, B̄s,C̄s,D̄s)-space is exactly the same as in the
hyperplane G0.
Clearly, the origin O(0,0,0,0) is always a critical point of (4.2). The critical points of (4.2)
can be classified as follows (see Appendix 5.2 for the calculations):

type 1 : (Ās, B̄s,C̄s,D̄s) = (0,0,0,0),

type 2 : (Ās, B̄s,C̄s,D̄s) = (−
√

β̄−α
β̄+ α

B̃s, B̃s,−
√

β̄−α
β̄+ α

D̃s,D̃s),

type 3 : (Ās, B̄s,C̄s,D̄s) = (

√
β̄−α
β̄+ α

B̃s, B̃s,

√
β̄−α
β̄+ α

D̃s,D̃s). (4.16)

The critical points of type 2 and 3 describe semi-trivial and non-trivial periodic solutions.
As mentioned above for β̄ = α the critical points of type 2 and 3 are in the (B̄s,D̄s)-plane.
It follows from (A.18) and (A.19) that the components B̃s and D̃s of the critical points of
type 2 satisfy:

B̃2
s + D̃2

s =
2(β̄ + α)

3β̄s
(2η̄ +

√
β̄2 −α2),

Cond4 = (2η̄+
√

β̄2 −α2) > 0, (4.17)

whereas the components of the critical points of type 3 forB̃s and D̃s satisfy:

B̃2
s + D̃2

s = 2
β̄+ α

3β̄
(2η̄−

√
β̄2 −α2),

Cond5 = (2η̄−
√

β̄2−α2) > 0. (4.18)

Comparing this case to the case without damping one sees that the presence of positive
damping leads to the disappearance of the critical points of type 4. Therefore, in this
case the whirling motion does not occur. In the other words, the string only moves in a
hyperplane.
For ᾱ1 = ᾱ2 = α an overview of the existence and the stability of the critical points of type
2 and 3 for system (4.2) is given in Fig. 8. In this figure six domains can be distinguished.
The type of critical points and their stability in the different domains and on the boundary
curves are completely given in Table 2.
Looking at (4.17) and (4.18) one can see that for given η̄, β̄, and α such that 2η̄ > β̄ ≥ α,
system (4.2) has an infinite number of critical points of type 2 and 3. The collection of
these points can be described by two curves, namely Sα and Uα, in the four dimensional
(Ās, B̄s,C̄s,D̄s)-space. For β̄ > α, the projection of the curves Sα and Uα are exactly same
as the projection of the curves S and U in the case without damping, respectively. However,
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Figure 8: The six domains describing the critical points of system (4.2) in the (̄η, β̄)-plane
for ᾱ1 = ᾱ2 = α.

the stability on these curves Sα and S is quite different for η̄ > β̄. Now we let β̄ vary while
α is kept fixed. If β̄ decreases to α then the curve Sα tends to the curve Uα and when β̄
is equal to α these curves coincide. The projection of the resulting curve to the (Ās, B̄s)
(or (C̄s,D̄s)) -plane and the (B̄s,D̄s)- plane are a segment of a line and a circle with radius

ρα =
√

8
3 η̄, respectively, as has been shown in Fig. 9. If β̄ decreases such that β̄ < α, then

the curve Uα disappears.

(a) (b)

Figure 9: Projection of the curves Sα (= Uα) for ᾱ1 = ᾱ2 = β̄ and η̄ > 0 to: (a) the (Ās, B̄s)
(or (C̄s,D̄s))-plane ; (b) the (B̄s,D̄s)− plane. The dashed line represents unstable solution.

The hyperplanes Hk, for all k, defined by (4.11) are still invariants of system (4.2) for
ᾱ1 = ᾱ2. Therefore, one can study the stability of the critical points in these planes. The
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Table 2: The critical points of system (4.2) and their stability in the hyperplane G0 for ᾱ1 =

ᾱ2 = α and β̃α =
√

β̄−α
β̄+α . The stability is determined by using the linearisation method.

Domains/ number of location of the behaviour in the
curves critical points critical points hyperplane G0

I, IV 1 (0,0,0,0) stable (focus)

II, OP1, OP5 1 (0,0,0,0) stable (node)

III 2 (0,0,0,0) unstable (saddle)
(−β̃αB̃s, B̃s,−β̃αD̃s,D̃s) stable (degenerate)

V, P5P6 3 (0,0,0,0) stable node
(−β̃αB̃s, B̃s,−β̃αD̃s,D̃s) stable (degenerate)

(β̃αB̃s, B̃s, β̃αD̃s,D̃s) unstable

VI 3 (0,0,0,0) stable focus
(−β̃αB̃s, B̃s,−β̃αD̃s,D̃s) stable (degenerate)

(β̃αB̃s, B̃s, β̃αD̃s,D̃s) unstable

P2P3 1 (0,0,0,0) stable (degenerate)

P2P5 2 (0,0,0,0) stable node
(0, B̃s,0,D̃s) unstable (degenerate)

P2P4 2 (0,0,0,0) unstable (degenerate)
(−β̃αB̃s, B̃s,−β̃αD̃s,D̃s) stable (degenerate)

P5P7 2 (0,0,0,0) stable focus
(0, B̃s,0,D̃s) unstable (degenerate)

intersection between the hyperplane Hk with the curves Sα and Uα are:

S±(α,k)

(
± kβ̃αρ+

(α,k),∓kρ+
(α,k),±β̃αρ+

(α,k),∓ρ+
(α,k)

)
, for real k,

S±(α,k)

(
± β̃αρ+

(α,k),∓ρ+
(α,k),0,0

)
, for k = ±∞, (4.19)

and

U±
(α,k)

(
± kβ̃αρ−

(α,k),∓kρ−
(α,k),±β̃αρ−

(α,k),∓ρ−
(α,k)

)
, for real k,

U±
(α,k)(±β̃αρ−

(α,k),∓ρ−
(α,k),0,0

)
, for k = ±∞, (4.20)
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respectively, where:

ρ±
(α,k) =

⎧⎪⎨
⎪⎩

ρ±
α

1+k2

√
(1+ k2) ; 0 ≤ k < ∞,

ρ±
α ; k = ±∞,

(4.21)

with ρ±
α =

√
2(β̄+α)

3β̄ (2η̄±
√

β̄2 −α2). In the hyperplane Hk the points S±(α,k) are asymptot-

ically stable while the points U±
(α,k) are unstable (saddle points).

:  Stable

:  Unstable
:  Stable

:  Unstable

(a) β̄ = 1.25 (b) β̄ = 0.75

Figure 10: The stability response-curves r1 =
√

Ã2
s + B̃2

s of system (4.2) as function of η̄
in the hyperplane Hk for k = 1, with α = 0.75.

The response curves of the periodic solutions r1 as function of η̄ in the hyperplane H1 are
given in Fig. 10. Let us suppose that η̄ increases while β̄s and α are kept fixed such that
β̄s > α. This process is represented by the line through the points −η̄2, −η̄1, η̄1, and η̄2 in
Fig. 10(a). Starting with η̄ < −η̄1 only the CP-type 1 (trivial solution) exists, and it is a
stable focus for η̄ < −η̄2 and a stable node for −η̄2 ≤ η̄ < −η̄1. Between −η̄1 and η̄1 the
CP-type 1 is unstable and two stable critical points of type 2 come in. Beyond the pointη̄1

an unstable critical point of type 3 occurs while the CP-type 1 is again a stable solution and
the critical points of type 2 are also stable. An illustration of the behaviour of the solutions
in the hyperplane H1 (of course the same results are obtained for the other hyperplanes) is
given in Fig. 11 for several values of η̄.
Now let us consider the case that η̄ is varied and α = β̄ (see also Fig. 10(b)). In this case
the characteristics of the solutions differ from the case β̄ > α. It can be seen clearly that
the critical point of type 1 is always a stable solution, while the critical points of type 2 are
unstable solutions. Hence the damping is responsible for the stabilization of the trivial so-
lution. Moreover, the value α = β̄ is a critical (minimum) value of the damping parameter
such that there is eventually no oscillation in the string. The behaviour of the solutions is
shown in Fig. 12 for several values of η̄. In this figure the critical points U±

(α,1) are saddle-

nodes. It can readily be seen that by increasing the values of β̄ from α the points U±
(α,1)

bifurcate into two stable critical points S±(α,1) and two unstable critical points U±
(α,1) as has

been shown in Fig. 11.
If an experiment is done for which the excitation frequency λ is held fixed, but is near a
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Figure 11: Behaviour of the solutions near the critical points of system (4.2) in the hyper-
plane Hk for k = 1, α = 0.75, and β̄ = 1.25. The horizontal and vertical axis are the Ās (or
C̄s) -axis and the B̄s (or D̄s) -axis, respectively.

resonance frequency, while the excitation amplitude β̄ is varied slowly, a jump phenomena
from the trivial solution to the periodic solution of type 2 in the plane can be observed.
Suppose that the experiment is started at β̄ < β̄1 as indicated in Fig. 13. As β̄ increases to
β̄3, the amplitude of the periodic solution in the hyperplane H1 is still zero. This means
there is no motion in the reference plane H1. When β̄ passes β̄3 a jump upward takes
place from the point β̄3 to the point β̄′

3, with an accompanying increase of r1, after which
r1 increases slowly for increasing β̄. If this process is reversed, r1 decreases slowly as β̄
decreases from the point β̄′

4 to the point β̄′
3. As β̄ decreases further a jump downward from

the point β̄′
1 to the point β̄1 takes places, with an accompanying decrease in r1, after which

r1 is zero for decreasing β̄. So it can be concluded that for increasing values ofβ̄ the trivial
solution becomes unstable. This implies that the string is always moving for large enough
excitation amplitudes.
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Figure 12: Behaviour of the solutions near the critical points of system (4.2) in the hyper-
plane Hk for k = 1 and α = β̄ = 0.75. The horizontal and the vertical axis are the Ās (or C̄s)
-axis and the B̄s (or D̄s) -axis, respectively.

:  Stable 

:  Unstable

Figure 13: The stability response-curves r1 =
√

Ā2
s + B̄2

s of system (4.2) as function of β̄ in
the hyperplane Hk for k = 1, α = 0.75, and η = 0.75.

4.2.2 The case α1 �= α2

In this case (4.4) is still a first integral of system (4.2). Therefore the critical points of
system (4.2) are only in the hyperplane G0. Moreover, the stability of the critical points of
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system (4.2) in the (Ās, B̄s,C̄s,D̄s)-space is the same as in G0. By using a similar procedure
as in Appendix 5.2 the types of critical points of system (4.2) are:

type 1 : (Ās,D̄s,C̄s,D̄s) = O(0,0,0,0),

type 2 : (Ās,D̄s,C̄s,D̄s) =
(
± (2− i)

√
β̄− ᾱ1

β̄+ ᾱ1
ρ+

ᾱ1
,∓(2− i)ρ+

ᾱ1
,±(i−1)

√
β̄− ᾱ2

β̄+ ᾱ2
ρ+

ᾱ2
,

∓(i−1)ρ+
ᾱ2

)
,

type 3 : (Ās,D̄s,C̄s,D̄s) =
(
± (2− i)

√
β̄− ᾱ1

β̄+ ᾱ1
ρ−

ᾱ1
,±(2− i)ρ−

ᾱ1
,±(i−1)

√
β̄− ᾱ2

β̄+ ᾱ2
ρ−

ᾱ2
,

±(i−1)ρ−
ᾱ2

)
, (4.22)

where i = 1 or 2. In this case the critical points of type 2 and of type 3 only represent semi-
trivial solutions and the existence of them follows from the conditions 4 and 5 in (4.17) and
(4.18). This shows that the difference in damping values of ᾱ1 and ᾱ2 causes the singular
points of system (4.2) to be in the planes H∞ and H0. These planes are still invariants of
system (4.2). Moreover, it turns out the in-plane and out-of-plane periodic solutions do
not interact, and that the damping in both planes influences the stability of the periodic
solutions.

Figure 14: The stability diagram of the critical points of system (4.2) in the (̄η, β̄)-plane
for ᾱ1 < ᾱ2.

We assume, without loss of generality, that the values of ᾱ1 and ᾱ2 satisfy 0 < ᾱ1 < ᾱ2.
The critical points in the plane H0, of course, can be expected to appear after increasing
the excitation amplitude such that β̄ > ᾱ2. The stability diagram of the periodic solutions
in the hyperplane G0 is given in Fig. 14. In this figure nine domains are defined in which
the behaviour of the periodic solutions can be different. The curves in Fig. 14 are found in
a similar way as for the case ᾱ1 = ᾱ2. We note that the existence of the critical points in
the planes H0 and H∞ are independent of ᾱ1 and ᾱ2, respectively. However, the behaviour
of the solutions depends on ᾱ1 and ᾱ2.
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Let us now analyze in more detail how the behaviour of solutions changes in the (̄η, β̄)-
plane by considering Fig. 14. If (η̄, β̄) lies in the domain I, there is only one critical point
of type 1 which is a stable focus. For (η̄, β̄) on the curves OQ1 and OQ4 or in the domain
II, there is still one critical point of type 1 but now it is a stable node. For (̄η, β̄) in domain
III two new solutions of type 2 in H∞ occur and these are stable, while the critical point of
type 1 now becomes unstable. For the other domains and curves an overview of the number
of critical points and their stability is given in Table 3.

Table 3: The critical points of system (4.2) and their stability in the (Ās, B̄s,C̄s,D̄s)-space

for 0 < ᾱ1 < ᾱ2 and β̃αi =
√

β̄−ᾱi

β̄+ᾱi
,i = 1 or 2. The stability is determined by using the

linearisation method.

Domains/ number of location of the behaviour in the
curves critical points critical points hyperplane G0

I 1 (0,0,0,0) stable focus

II, OQ1, and OQ4 1 (0,0,0,0) stable node

III 3 (0,0,0,0) unstable
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

IV 5 (0, 0, 0, 0) unstable
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(0,0,±β̃ᾱ2 ρ+
ᾱ2

,∓ρ+
ᾱ2

) unstable

V and Q4Q10 5 (0,0,0,0) stable 4d-node
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(±β̃ᾱ1ρ−
ᾱ1

,±ρ−
ᾱ1

,0,0) unstable

VI 5 (0, 0, 0, 0) stable 4d-focus
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(±β̃ᾱ1ρ−
ᾱ1

,±ρ−
ᾱ1

,0,0) unstable

VII 7 (0, 0, 0, 0) unstable
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(0,0,±β̃ᾱ2 ρ+
ᾱ2

,∓ρ+
ᾱ2

) unstable
(0,0,±β̃ᾱ2 ρ−

ᾱ2
,±ρ−

ᾱ2
) unstable

VIII and Q10Q13 9 (0,0,0,0) stable 4d-node
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(±β̃ᾱ1ρ−
ᾱ1

,±ρ−
ᾱ1

,0,0) unstable
(0,0,±β̃ᾱ2 ρ+

ᾱ2
,∓ρ+

ᾱ2
) unstable
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(0,0,±β̃ᾱ2ρ−
ᾱ2

,±ρ−
ᾱ2

) unstable

IX 9 (0,0,0,0) stable 4d-focus
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(±β̃ᾱ1ρ−
ᾱ1

,±ρ−
ᾱ1

,0,0) unstable
(0,0,±β̃ᾱ2ρ+

ᾱ2
,∓ρ+

ᾱ2
) unstable

(0,0,±β̃ᾱ2ρ−
ᾱ2

,±ρ−
ᾱ2

) unstable

Q2Q3 1 (0,0,0,0) stable (degenerate)

Q2Q4 3 (0,0,0,0) stable 4d-node
(0,±ρ+

ᾱ1
,0,0) unstable (degenerate)

Q2Q6 3 (0,0,0,0) unstable (degenerate)
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable (degenerate)

Q4Q5 3 (0,0,0,0) stable (”4d-focus”)
(0,±ρ+

α1
,0,0) stable (degenerate)

Q7Q8 3 (0,0,0,0) unstable (degenerate)
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

Q6Q7 5 (0,0,0,0) unstable
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(0,0,0,±ρ+
ᾱ2

) unstable (degenerate)

Q7Q9 5 (0,0,0,0) unstable (degenerate)
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(0,0,±β̃α̃2ρ+
ᾱ2

,∓ρ+
ᾱ2

) unstable (degenerate)

Q6Q10 7 (0,0,0,0) stable (”4d-node”)
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(±β̃ᾱ1ρ−
ᾱ1

,±ρ−
ᾱ1

,0,0) unstable
(0,0,0,±ρ+

ᾱ2
) unstable (degenerate)

Q6Q11 7 (0,0,0,0) unstable (degenerate)
(±β̃ᾱ2ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable (degenerate)

(0,0,±β̃ᾱ2ρ+
ᾱ2

,∓ρ+
ᾱ2

) unstable
(0,0,±β̃ᾱ2ρ−

ᾱ2
,±ρ−

ᾱ2
) unstable

Q10Q12 7 (0,0,0,0) stable 4d-focus
(±β̃ᾱ1ρ+

ᾱ1
,∓ρ+

ᾱ1
,0,0) stable

(±β̃α1ρ−
α1

,±ρ−
α1

,0,0) unstable
(0,0,0,±ρ+

ᾱ2
) unstable (degenerate)

To illustrate these results, we numerically integrate system (4.2) and give several projected
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Figure 15: Behaviour of the solutions near the critical points of system (4.2) projected
to the (r1,r2)-plane; r1 =

√
Ā2

s + B̄2
s is the horizontal axis and r2 =

√
C̄2

s + D̄2
s is the the

vertical axis. The first four figures describe the case ᾱ1 < β̄ < ᾱ2 (ᾱ1 = 0.65,ᾱ2 = 0.90,
and β̄ = 0.81) and the other figures describe the case ᾱ1 < ᾱ2 < β̄ (ᾱ1 = 0.65,ᾱ2 = 0.77,
and β̄ = 1.01).

trajectories for different values of η̄ and β̄. Because a reduction of system (4.2) to a lower
dimension seems to be impossible, the trajectories are projected on the (r1,r2)-state plane
as has been shown in Fig. 15. For ᾱ1 < β̄ < ᾱ2, the periodic solutions of type 2 and 3 do not
exist in the hyperplane H0. Hence, one only expects periodic solutions in the hyperplane
H∞ (see Figs. 15 (a)-(d)). The stability of the critical points in the (Ās, B̄s,C̄s,D̄s)-space is
the same as in the hyperplane H∞. Whereas for ᾱ1 < ᾱ2 < β̄, one can expect the periodic
solutions of type 2 and 3 to exist on both hyperplanes H0 and H∞. In this case the stability
of the periodic solutions U±

(ᾱ1,∞) and S±
(ᾱ1,∞) in the full system is still similar. However, the

stability of the periodic solutions S±
( ¯(α2,0)

is really different. We know that the points S±(ᾱ2,0)
are stable foci in the hyperplane H0 but become unstable solutions in the full system. This
phenomena is caused by the difference in damping. These results are shown in the last four
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figures of Fig. 15.

Conclusions

In this paper the dynamics of a stretched string suspended between a fixed support and a
vibrating support has been studied. Due to a parametric (longitudinal) excitation the string
can vibrate in vertical direction. When the frequency of the parametric excitation is near
twice a linear natural frequency the amplitudes of the string oscillation can become large.
In this paper the attention is focused on the existence and the stability of (almost) periodic
solutions. There are four parameters (i.e. the damping coefficientsᾱ1 and ᾱ2, the excitation
amplitude β̄, and a detuning coefficient η̄), which influence the ultimate oscillations of
the string. The study is divided into two cases: no damping (i.e. ᾱ1 = ᾱ2 = 0), and
positive damping (i.e. ᾱ1, ᾱ2 > 0). When there is no damping stable whirling motion, and
stable planar motion can occur. With positive damping only planar motion can occur. A
classification of all (almost) periodic motions and their stability is given.

5 Appendix

On the types of critical points of system (4.2)

5.1 The case : ᾱ1 = ᾱ2 = 0

5.1.1 Identification of the semi-trivial solutions

Starting with Ās = B̄s = 0, then equation (4.5) becomes:

β̄C̄s + D̄s[
3
4
(C̄2

s + D̄2
s)−2η̄] = 0,

β̄D̄s +C̄s[
3
4
(C̄2

s + D̄2
s)−2η̄] = 0. (A.1)

Since C̄s and D̄s are not both zero it follows from (A.1) that C̄s = ±D̄s �= 0 under the
condition β̄2 − [3

4(C̄2
s + D̄2

s − 2η̄]2 = 0. Hence, if C̄s = −D̄s then a semi-trivial solution of
(4.5) corresponds to a critical point of type 2, whereas forC̄s = D̄s a semi-trivial solution
corresponds to a critical point of type 3, whereB̄s = 0. Similarly it follows fromC̄s = D̄s = 0
that Ās = ±B̄s �= 0 under the condition β̄2 − [3

4(Ā2
s + B̄2

s − 2η̄]2 = 0. Again a semi-trivial
solution corresponds to a critical point of type 2 or 3.

5.1.2 Identification of the non-trivial solutions

In this case it will turn out to be not so difficult to show that at most one of the solutionsĀs,
B̄s, C̄s, and D̄s is zero. We start with the case that all of the solutions are not zero. Setting
Ās = k1C̄s and B̄s = k2D̄s, and then by substituting Ās and B̄s into (4.5), one obtains:

k1β̄C̄s + k2D̄s

[1
4

(
(3k2

1 +1)C̄2
s +(3k2

2 +1)D̄2
s

)
−2η̄

]
+

1
2
(k1C̄

2
s +

k2D̄2
s )D̄s = 0,

k2β̄D̄s + k1C̄s

[1
4

(
(3k2

1 +1)C̄2
s +(3k2

2 +1)D̄2
s

)
−2η̄

]
+

1
2
(k1C̄

2
s +

k2D̄2
s )C̄s = 0,
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β̄C̄s + D̄s

[1
4

(
(k2

1 +3)C̄2
s +(k2

2 +3)D̄2
s

)
−2η̄

]
+

1
2

k2(k1C̄
2
s +

k2D̄2
s )D̄s = 0,

β̄D̄s +C̄s

[1
4

(
(k2

1 +3)C̄2
s +(k2

2 +3)D̄2
s

)
−2η̄

]
+

1
2

k1(k1C̄
2
s +

k2D̄2
s )C̄s = 0. (A.2)

Multiplying the third equation of (A.2) with k2 and then subtracting this from the first
equation of (A.2), one obtains:

(k1 − k2)C̄s

[
(1+ k1k2)C̄sD̄s +2β̄

]
= 0. (A.3)

Similarly from the second and fourth equation of (A.2) one finds:

(k1 − k2)D̄s

[
(1+ k1k2)C̄sD̄s +2β̄

]
= 0. (A.4)

It follows from (A.3) and (A.4) that there are two cases: k2 = k1 and k2 �= k1. If k2 = k1

(A.2) reduces to:

β̄C̄s + D̄s

[3
4
(1+ k2

1)(C̄
2
s + D̄2

s)−2η̄
]

= 0,

β̄D̄s +C̄s

[3
4
(1+ k2

1)(C̄
2
s + D̄2

s)−2η̄
]

= 0. (A.5)

The non-zero solutions of (A.5) areC̄s = ±D̄s under the condition that

β̄2 −
[3

4
(1+ k2

1)(C̄
2
s + D̄2

s)−2η̄
]2

= 0. (A.6)

This shows that for k1 = k2 the non-trivial solutions of (4.5) correspond to the critical points
of type 2 (C̄s = −D̄s) and of type 3 (C̄s = D̄s). For k1 �= k2 it follows from (A.3) that the
non-trivial solutions of (4.5) satisfy

1
2
(1+ k1k2)C̄sD̄s + β̄ = 0. (A.7)

It then follows from (A.7) that system (A.2) reduces to:

(1+ k2
1)C̄

2
s +3(1+ k2

2)D̄
2
s −8η̄ = 0,

3(1+ k2
1)C̄

2
s +(1+ k2

2)D̄
2
s −8η̄ = 0. (A.8)

The non-zero solutions of (A.8) are given by:

(1+ k2
1)C̄

2
s = (1+ k2

2)D̄
2
s = 2η̄. (A.9)

Therefore, non-trivial solutions of (4.5) with Ās
C̄s

�= B̄s
D̄s

correspond to the critical points of
type 4.
Now we consider the case that exactly one of Ās, B̄s, C̄s, and D̄s is equal to zero. Starting
with Ās = 0, (4.5) can be simplified to:

β̄+
1
2
C̄sD̄s = 0,

B̄2
s +C̄2

s + D̄2
s −4η̄ = 0,

3B̄2
s +C̄2

s +3D̄2
s −8η̄ = 0. (A.10)
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From (A.10) one finds:

Ā2
s +C̄2

s = B̄2
s + D̄2

s = 2η̄,

ĀsB̄s +C̄sD̄s = −2β̄, (A.11)

where Ās = 0. In a similar way the other cases can be treated, and one obtains (A.11).
This means that non-trivial solutions of (4.5) with one of their components equal to zero,
correspond to the critical points of type 4.

5.2 The case : ᾱ1, ᾱ2 > 0

5.2.1 Identification of the semi trivial solutions

Starting with Ās = B̄s = 0, (4.13) becomes:

(β̄+ ᾱ2)C̄s + D̄s

[3
4
(C̄2

s + D̄2
s)−2η̄

]
= 0,

(β̄− ᾱ2)D̄s +C̄s

[3
4
(C̄2

s + D̄2
s)−2η̄

]
= 0. (A.12)

The non-trivial solutions of (A.12) areC̄s = ±
√

β̄−ᾱ2

β̄+ᾱ2
D̄s under the condition:

(β̄2 − ᾱ2
2)−

[3
4
(C̄2

s + D̄2
s)−2η̄

]2
= 0. (A.13)

If C̄s = −
√

β̄−ᾱ2

β̄s+ᾱ2
D̄s, the semi-trivial critical point corresponds to a critical point of type 2,

whereas if C̄s =
√

β̄s−ᾱ2

β̄+ᾱ2
D̄s, the semi-trivial critical point corresponds to a critical point of

type 3. Similarly for C̄s = D̄s = 0 one finds Ās = ±
√

β̄−ᾱ1

β̄+ᾱ1
B̄s under the condition:

(β̄2 − ᾱ2
1)−

[3
4
(Ā2

s + B̄2
s)−2η̄

]2
= 0. (A.14)

Again, one obtains that the semi-trivial critical points correspond to critical points of type
2 or 3.

5.2.2 Identification of the non-trivial solutions

In this case let Ās = k1C̄s and B̄s = k2D̄s and substitute Ās and B̄s into (4.14) to obtain:

k1(β̄+ ᾱ1 +
1
2

C̄sD̄s)C̄s + k2D̄s

[1
4
((3k2

1 +1)C̄2
s +3(k2

2 +1)D̄2
s )−2η̄

]
= 0,

k2(β̄− ᾱ1 +
1
2

C̄sD̄s)D̄s + k1C̄s

[1
4
(3(k2

1 +1)C̄2
s +(3k2

2 +1)D̄2
s )−2η̄

]
= 0,

(β̄+ ᾱ2)C̄s + D̄s

[1
4
((k2

1 +2k1k2 +3)C̄2
s +3(k2

2 +1)D̄2
s )−2η̄

]
= 0,

(β̄− ᾱ2)D̄s +C̄s

[1
4
(3(k2

1 +1)C̄2
s +(k2

2 +2k1k2 +3)D̄2
s )−2η̄

]
= 0. (A.15)

Multiply the third equation in (A.15) with k2 and then subtract this from the first equation
in (A.15) to find:

(k1 − k2)
[1

2
(1+ k1k2)C̄sD̄s + β̄

]
+ k1ᾱ1 − k2ᾱ2 = 0. (A.16)



On the planar and whirling motion of a stretched string 27

Similarly it follows from the second and fourth equation in (A.15) that

(k1 − k2)
[1

2
(1+ k1k2)C̄sD̄s + β̄

]
+ k2ᾱ1 − k1ᾱ2 = 0. (A.17)

By subtracting (A.17) from (A.16) one obtains (k1 − k2)(ᾱ1 + ᾱ2) = 0. Since ᾱ1, ᾱ2 > 0,
it follows that k1 = k2. Substituting k1 = k2 into (A.16) or (A.17) and one finds ᾱ1 = ᾱ2 or
k1 = k2 = 0. This means that for a non-trivial solution of (A.14) we should have ᾱ1 = ᾱ2.
In other words for ᾱ1 �= ᾱ2 (4.14) does not have non-trivial solutions. Substitution of
ᾱ1 = ᾱ2 = α and k1 = k2 into (A.15), one obtains:

(β̄+ α)C̄s + D̄s

[3
4
(1+ k2

2)(C̄
2
s + D̄2

s)−2η̄
]

= 0,

(β̄−α)D̄s +C̄s

[3
4
(1+ k2

2)(C̄
2
s + D̄2

s)−2η̄
]

= 0. (A.18)

The non-trivial solutions of (A.18) areC̄s = ±
√

β̄s−ᾱ
β̄+ᾱ D̄s under the condition:

(β̄2 −α2)−
[3

4
(1+ k2

2)(C̄
2
s + D̄2

s)−2η̄
]2

= 0. (A.19)

Hence, the non-trivial solutions of (4.14) correspond to the critical points of type 2 and 3.
For the case Ās = C̄s = 0 it can readily be seen from (4.14) that D̄s satisfies (A.19) with
α = β̄.
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