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Abstract

In this paper a stretched string which is attached between a fixed support and a vibrating
support will be considered. It is assumed that the vibrating support only vibrates in a plane.
The vibrating support causes a parametrical and vertical (that is, perpendicular to the X-
axis) excitation of the string. For an excitation-frequency near an eigenvalue µm = mπ of
the unperturbed system (m is an odd positive integer) an 1:1 resonance can occur between
the m-th modes in- and out-of plane. Whereas, when the excitation-frequency is near µm

(but m is now an even number) the interaction between a parametric and a normal mode in-
and out-of-plane can occur. The study in this paper will be focused on the existence and
the stability of (almost) periodic solutions. Several cases with and without damping will
be investigated. The effect of the frequency and the amplitude of the excitation force on
the existence and the stability of the (almost) periodic solutions are studied analytically by
using the averaging method.

1 Introduction

The vibrations of the stay-cables of cable-stayed-bridges have recently obtained a lot of
attention in the literature. Usually the stay-cables are attached to a pylon at one end and at
the other end to the bridge deck. Therefore the cable-stayed-bridge can become prone to
vibrations due to wind, rain, traffic, etc. The cable vibrations have been extensively analyzed
in the literature. Pinto da Costa et.al. [1] studied the oscillations of bridge-stay-cables
induced by periodic motions of the deck and/or the towers. They showed that reasonably
small anchoraged amplitudes may lead to important cable oscillations when conditions are
met for the lower-order classical or parametrical resonance of the cables. Jones and Scanlan
[2] studied the wind effects on cable-supported bridges and provided an overview of the
basic steps in the process of a typical aerodynamic analysis and design. The other papers
related to this subject can be found in Refs. [3, 4, 5].
The stay cable could be modelled as a stretched string. Most of the studies of oscillations of
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a stretched string have mainly focused on the in-plane motion of the string [6, 7, 8, 9]. On the
other hand, whenever the excitation-frequency falls in a certain resonance range the string
movement in the plane can become unstable, and can lead to stable non-planar oscillations
[10, 11, 12, 13, 14, 15]. These phenomena have been shown by Matsumoto [16]. He did
an experiment to observe the aerodynamic characteristics of an ”inclined circular cylinder”
of a cable-stayed-bridge when the movement was induced by rain or rain-wind. One of
the results is that the flow stagnation point of the inclined circular cylinder determines the
aerodynamically most sensitive vibrational direction so that the stay cable can vibrate in a
coupled mode in and out of the cable-plane. This shows that the study of non-planar motion
of a string in resonance can be of interest to engineers.

r(x+u,v,w,t)

Figure 1: The inclined string in the dynamic state including normal and parametrical exci-
tation at x = 1.

In the papers [17, 18] the in- and out-of-plane excitation of an inclined elastic cable has been
investigated. Numerical results are presented to describe the transverse responses in- and
out-of-plane due to an external forcing which is distributed along the cable. The numerical
results, however, can not explain the periodic motion completely. In this paper the dynamics
of a stretched string will be studied analytically. As a model the string is attached to a fixed
support and to a vibrating support (see: Fig. 1). Here, it is assumed that the vibrating
support at x = 1 can not vibrate in the w-direction. Due to the inclination the vibrating
support produces an excitation along the string (the so-called parametric excitation) and an
excitation in vertical direction (the so-called normal excitation). It should be observed that
both excitations act only at the end point.
The mathematical model for this system is an extension of the model as given in [20]. The
equations of motion for this model are given by:

vt̄ t̄ − vxx = ε
(

−α1vt̄ + vxx[
1
2

Z 1

0
(v2

x +w2
x)dx+F1 sin(λt̄)

])

,

wt̄ t̄ −wxx = ε
(

−α2wt̄ +wxx

[1
2

Z 1

0
(v2

x +w2
x)dx+F1 sin(λt̄)

])

, (1.1)
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for 0 < x < 1 and t̄ > 0, with initial conditions and boundary conditions:

IC’s: v(x,0) = v̄0(x),vt̄ (x,0) = v̄1(x),w(x,0) = w̄0(x),wt̄(x,0) = w̄1(x),

BC’s: v(0, t̄) = w(0, t̄) = w(1, t̄) = 0,v(1, t̄) = εF2 sin(λt̄), (1.2)

where 0 < ε << 1, α1,α2 ≥ 0, λ > 0, v(x, t̄) and w(x, t̄) are the transversal displacement
in- and out-of-plane, respectively. In (1.1) gravity is not considered, implying that there
is no sag. Hence the parametric excitation only applies to elastic elongation. Therefore,
this model is only of particular relevance for shorter cable-stayed-bridges. In this paper the
averaging method [19] will be applied to study the existence and the stability of (almost)
periodic solutions of (1.1). Bifurcation diagrams will be presented to show the complicated
behaviour of the solutions.

2 Analysis of the problem

Consider the two-point boundary value problem for the partial differential equations (1.1).
To have a problem with homogeneous boundary conditions the following transformation is
introduced:

v(x, t̄) = v̄(x,̄t)+ εF2xsin(λt̄) and w(x, t̄) = w̄(x,̄t). (2.1)

Substitution of (2.1) into (1.1) and (1.2) yields (up to O(ε)):

v̄̄tt̄ − v̄xx = ε
(

−α1 v̄̄t +λ2F2xsin(λt̄)+ v̄xx

[1
2

Z 1

0
( v̄2x + w̄2x)dx+F1 sin(λt̄)

])

,

w̄̄tt̄ − w̄xx = ε
(

−α2 w̄̄t + w̄xx

[1
2

Z 1

0
( v̄2x + w̄2x)dx+F1 sin(λt̄)

])

,

v̄(x,0) = v̄0(x), w̄(x,0) = w̄0(x), v̄̄t (x,0) = v̄1(x,0)− ελF2x, w̄̄t(x,0) = w̄1(x),

v̄(0,̄t) = v̄(1,̄t) = w̄(0,̄t) = w̄(1,̄t) = 0. (2.2)

Notice that in the first equation of (2.2) there are terms describing normal and parametric
forcing, whereas in the second equation there is only a parametric forcing term.
By considering the boundary conditions it follows that system (2.2) can be transformed
to an infinite system of ordinary differential equations (ODEs) by expanding the solutions
v̄(x,̄t) and w̄(x,̄t) in eigenfunction-series, that is,

v̄(x,̄t) =
∞

∑
n=1

vn(t̄)sin(µnx) and w̄(x,̄t) =
∞

∑
n=1

wn(t̄)sin(µnx), (2.3)

where µn = nπ, n = 1,2,3, . . .. By substitution of (2.3) into (2.2) and then by using the
orthogonality properties of the eigenfunctions, one obtains an infinite dimensional system
of ODEs for vn(t̄) and wn(t̄):

ẅn(t̄)+µ2
nwn(t̄) = −ε

(

α2ẇn(t̄)+µ2
nwn(t̄)

[1
4

∞

∑
k=1

µ2
k(v

2
k(t̄)+w2

k(t̄))+F1 sin(λt̄)
])

,

v̈n(t̄)+µ2
nvn(t̄) = −ε

(

α1v̇n(t̄)+µ2
nvn(t̄)

[1
4

∞

∑
k=1

µ2
k(v

2
k(t̄)+w2

k(t̄))+F1 sin(λt̄)
]

−

λ2F2dn sin(λt̄)
)

,

vn(0) = 2
Z 2

0
v̄0(x)sin(µnx)dx, v̇n(0) = 2

Z 1

0
( v̄1(x)− ελF2x)sin(µnx)dx,

wn(0) = 2
Z 2

0
w̄0(x)sin(µnx)dx, ẇn(0) = 2

Z 1

0
w̄1(x)sin(µnx)dx, (2.4)
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where dn = (−1)(n+1) 2
nπ , n = 1,2,3, . . .. The dot represents differentiation with respect to t̄.

By considering the values of excitation-frequency λ, there are three possibilities, namely:

(i) λ 6= µn +O(ε) for all n. Then the parametric and normal forcing terms do not influence
the O(1) approximations of the solutions on a time scale of order ε−1. The origin
will be stable and no O(1) time varying motion will occur due to the forcing terms on
time-scales of O(ε−1).

(ii) λ = µm + O(ε), m is an odd number. Then the normal forcing is important in the
equation for the m-th mode, whereas the parametric term is still not important. This
possibility implies that an O(1) periodic response due to the parametric excitation can
be expected.

(iii) λ = µm +O(ε), m is an even number. Then both parametric and normal forcing are im-
portant in the equations for the m-th mode and the 1

2 m-th mode. Interactions between
these modes (including O(1) periodic responses) can be expected.

When λ is near µm, where m = (2s−1) and s is a positive integer, then the normal excitation
will influence the m-th modes in- and out-of plane up to O(1) but the other modes are
only influenced up to order O(ε) on time-scales of ε−1. Hence, the truncation method
can be applied to (2.4). Assuming that initially (up to order O(ε)) there is no energy in the
system and by applying the truncation method to (2.4), one obtains as model 1 the following
problem:

ẅm(t̄)+µ2
mwm(t̄) = −ε

(

α2ẇm(t̄)+µ2
mwm(t̄)

[1
4

µ2
m(v2

m(t̄)+w2
m(t̄))+F1 sin(λt̄)

])

,

v̈m(t̄)+µ2
mvm(t̄) = −ε

(

α1v̇m(t̄)+µ2
mvm(t̄)

[1
4

µ2
m(v2

m(t̄)+w2
m(t̄))+F1 sin(λt̄)

]

−

λ2F2dm sin(λt̄)
)

. (2.5)

When λ is near µm with m = 2s and s is a positive integer, then the normal excitation will
excite the m-th modes in- and out-of-plane, whereas the parametric excitation excites the
s-th modes in both planes. Again by assuming that the system initially has no energy (up
to O(ε)) and by applying truncation method to (2.4), one obtains as model 2 the following
problem:

v̈m(t̄)+µ2
mvm(t̄) = −ε

(

α1v̇m(t̄)+µ2
mvm(t̄)

[1
4

µ2
m(v2

m(t̄)+w2
m(t̄))+

1
4

µ2
s (v

2
s (t̄)+

w2
s (t̄))+F1 sin(λt̄)

]

−λ2F2dm sin(λt̄)
)

,

ẅm(t̄)+µ2
mwm(t̄) = −ε

(

α2ẇm(t̄)+µ2
mwm(t̄)

[1
4

µ2
m(v2

m(t̄)+w2
m(t̄))+

1
4

µ2
s (v

2
s (t̄)+

w2
s (t̄))+F1 sin(λt̄)

])

,

v̈s(t̄)+µ2
s vs(t̄) = −ε

(

α1v̇s(t̄)+µ2
s vs(t̄)

[1
4

µ2
m(v2

m(t̄)+w2
m(t̄))+

1
4

µ2
s (v

2
s (t̄)+

w2
s (t̄))+F1 sin(λt̄)

]

−λ2F2ds sin(λt̄)
)

,

ẅs(t̄)+µ2
s ws(t̄) = −ε

(

α2ẇs(t̄)+µ2
s ws(t̄)

[1
4

µ2
m(v2

m(t̄)+w2
m(t̄))+

1
4

µ2
s (v

2
s (t̄)+

w2
s (t̄))+F1 sin(λt̄)

])

. (2.6)
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In this paper the study of the model 1 and of the model 2 will be focused on the O(1) periodic
solutions. The existence and the stability of the periodic solutions will be determined by
using the averaging method and the linearisation method, respectively.

3 Analysis of model 1

System (2.5) describes the interaction between the m-th modes in- and out-of-plane. Be-
cause the frequency of the normal excitation is near the natural frequency µm then the motion
in the plane of the string will always exist. When the motion in the out-of-plane also exists
the string begins to whirl, and so-called whirling (non-planar) motion occurs.
Let us set λt̄ = 2t, where λ = µm +ηε with m is an odd number and η = O(1). System (2.5)
then becomes

v′′m(t)+4vm(t) = − ε
µm

(

2α1v′m(t)+4vm(t)
[

γm(v2
m(t)+w2

m(t))+F1µm sin(2t)−

2η
]

−8F2 sin(2t)
)

+O(ε2),

w′′
m(t)+4wm(t) = − ε

µm

(

2α2w′
m(t)+4wm(t)

[

γm(v2
m(t)+w2

m(t))+F1µm sin(2t)−

2η
])

+O(ε2), (3.1)

where γm = 1
4 µ3

m. A prime represents differentiation with respect to t. System (3.1) in
fact represents an 1 : 1 internal resonance case. The steady-states of system (3.1) can be
found analytically from the averaged system. To apply the averaging method the following
transformations (vm(t),v′m(t)) → (Am(t), Bm(t)) and (wm(t), w′

m(t)) → (Cm(t), Dm(t)) are
introduced:

vm(t) = Am(t)sin(2t)+Bm(t)cos(2t), wm(t) = Cm(t)sin(2t)+Dm(t)cos(2t),

v′m(t) = 2(Am(t)cos(2t)−Bm(t)sin(2t)), w′
m(t) = 2(Cm(t)cos(2t)−Dm(t)sin(2t)).

(3.2)

By substituting (3.2) into (3.1) and after averaging one obtains:

C̄′
m(t) = −ε̄

(

ᾱ2C̄m + D̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)B̄m

)

,

D̄′
m(t) = −ε̄

(

ᾱ2D̄m −C̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m))−2η̄

]

− 1
2
(ĀmC̄m + B̄mD̄m)Ām

)

,

Ā′
m(t) = −ε̄

(

ᾱ1Ām + B̄m

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)D̄m

)

,

B̄′
m(t) = −ε̄

(

ᾱ1B̄m − Ām

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m))−2η̄

]

− 1
2
(ĀmC̄m + B̄mD̄m)C̄m +

2β
)

, (3.3)

where ε̄ = γm
µm

ε, η̄ = η
γm

, β = F2
γm

, ᾱi = αi
γm

, i = 1 or 2, and where Ām, B̄m, C̄m, D̄m are the
averaged approximations of Am, Bm, Cm, and Dm respectively. In what follows the stability
of the critical points and then the dependence on the parameters η̄, β, and ᾱi, i = 1 or 2,
will be analyzed. The analysis can be restricted to the case β ≥ 0, since for β < 0 a simple
transformation (Ām := −Ām, B̄m := −B̄m, C̄m := −C̄m, and D̄m := −D̄m) leads to system
(3.3) with β ≥ 0. In this section the study will be divided into two cases: (i) ᾱ1 = ᾱ2 = 0
(no damping), and (ii) ᾱ1, ᾱ2 > 0 (positive damping).
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3.1 The case without damping, i.e. ᾱ1 = ᾱ2 = 0

The critical points of system (3.3) with ᾱ1 = ᾱ2 = 0 satisfy the following algebraic equa-
tions:

B̄m

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)D̄m = 0,

Ām

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)C̄m −2β = 0,

D̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)B̄m = 0,

C̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)Ām = 0. (3.4)

It turns out (see: Appendix 6.1.1) that if a solution of (3.4) exists, then it has to satisfy
B̄m = C̄m = 0 and Ām 6= 0. Substituting B̄m = C̄m = 0 into system (3.4) then gives

Ām

[1
4
(3Ā2

m + D̄2
m)−2η̄

]

−2β = 0,

D̄m

[1
4
(Ā2

m +3D̄2
m)−2η̄

]

= 0. (3.5)

From the second equation in (3.5) it follows that D̄m can be zero. Therefore, for the critical
points of system (3.3) with ᾱ1 = ᾱ2 = 0 three types can be distinguished:

CP-type 1: (Ām, B̄m,C̄m, D̄m) = (Ãm,0,0,0),

CP-type 2: (Ām, B̄m,C̄m, D̄m) = (Ãm,0,0, D̃m),

CP-type 3: (Ām, B̄m,C̄m, D̄m) = (Ãm,0,0,−D̃m), (3.6)

where D̃m > 0. The first type represents motion in the plane of the string while the second
and the third type represent a whirling motion composed of periodic solutions in-and out-
of-plane. However, the second and the third type represent the same kind of motion (and
stability). The difference between these solutions is only a difference in phase. Therefore,
the behaviour around the critical points of type 3 can be determined straight-forwardly from
the behaviour around the critical points of type 2.
The first type of critical points are on the Ām -axis and can be studied as solutions of a cubical
equation. The dependence of Ām on the detuning parameter in the excitation-frequency is
well-known in the literature (see for instance in Refs. [9, 14]). In what follows a (η̄,β)-
diagram will be constructed in which an overview of all possible critical points is given.
Starting with D̃m 6= 0, system (3.5) can be simplified to:

Ã3
m −2η̄Ãm −3β = 0,

D̃2
m =

1
3
(8η̄− Ã2

m),

Cond1(Ãm) = 8η̄− Ã2
m > 0. (3.7)

Looking at the second equation in (3.7) it follows that a positive value of D̃m corresponds
to a critical point of type 2 and a negative value to a critical point of type 3. System (3.7)
defines domains in the (η̄,β)-plane where one, two, or three critical points of type 2 exist.
The critical points of type 3 follow from these of type 2 (as mentioned before). These
domains are found by determining the boundary curves which follow from the equality
Cond1(Ãm) = 0 (where Ãm is a solution of the first equation in (3.7)), and the radicant of the
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cubic equation in standard form ∆2 = ( 3
2 β)2 +(− 2

3 η̄)3 = 0. The Cond1 = 0-curve divides
the (η̄,β)-plane into two domains in which a critical point of type 2 exists or not, whereas
the ∆2 = 0-curve divides the domain where a CP-type 2 exists into two domains with one
and three critical points. When one looks separately at the case D̃m = 0 one obtains the
following cubic equation for Ãm:

Ã3
m − 8

3
η̄Ãm − 8

3
β = 0. (3.8)

This equation differs from the first equation in (3.7). The curve defined by the radicant
∆1 = ( 4

3 β)2 +(− 8
9 η̄)3 = 0 divides the (η̄,β)-plane into two domains in which one or three

critical points of type 1 exist. Whereas on the curve ∆1 = 0 in the (η̄,β)-plane there are two
critical points of type 1. As illustration a bifurcation diagram is given in Fig.2. In this figure
there are four domains. The type and the number of critical points in each of these domains
and on the boundary curves are listed in Table 1.

2

1

Figure 2: Four domains with real solutions of the equations (3.7) and (3.8): ∆1 = ( 4
3 β)2 +

(− 8
9 η̄)3 and ∆2 = ( 3

2 β)2 +(− 2
3 η̄)3.

The stability of a critical point can be determined from the eigenvalues of the Jacobian
matrix of system (3.3) in a neighbourhood of this critical point. The stability of the critical
points of type 1 in Fig. 2 is as follows: in domain I a stable solution; in domain II an
unstable solution; on the curve OP1 a degenerate stable solution; and in the domains III
and IV a stable solution for the smallest amplitude, and the other solutions are unstable.
The stability of the critical points of type 2 is as follows: in the domains II and III stable
solutions; a degenerate stable solution on the curve OP3; and in domain IV a stable solution
for the solution with the largest amplitude and the other solutions are unstable. The stability
of the critical points of type 3 is exactly the same as these of type 2. It is of interest to
know what happens if one varies a parameter while the other parameters are kept fixed. Of
particular interest are the response-curves R3 = Ã2

m and R4 = D̃2
m as function of this varying

parameter. The results are presented in Fig. 3 and in Fig. 4, where the solid and dashed
lines stand for the stable and unstable periodic solutions respectively.
Looking at Fig. 3 it can clearly be seen that for η̄ < Q1 = 0.5000 there is only one stable
critical point which is of type 1. At η̄ = Q1 a pitchfork bifurcation occurs and by increasing
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Table 1: The number of critical points of system (3.3) as described in Fig. 2.

Domain/Curve CP-type 1 CP-type 2 CP-type 3 Total

I and OP1 1 0 0 1
II 1 1 1 3
III 3 1 1 5
IV 3 3 3 9

OP2 2 1 1 4
OP3 3 2 2 7

Figure 3: The stability response-curves R3 = Ã2
m and R4 = D̃2

m of system (3.3) with respect
to η̄ for ᾱ1 = ᾱ2 = 0 and β = 2.0. The solid and dashed line represent stable and unstable
solutions, respectively.

η̄ it follows that the critical point of type 1 losses its stability (via a degenerate case) and
two stable non-planar motions occur. When η̄ increases to Q2 = 2.1634 two new critical
points of type 1 appear, a stable and an unstable one. Analogously, at Q3 = 3.1201 four
new unstable non-planar motions turn up leading in total to nine critical points in domain
IV. A remarkable result is that for small energy differences (that is, the difference between
the amplitudes of the in-plane motion and the in-plane component of non-planar motion)
can lead to non-planar motion for which the amplitudes of the out-plane component become
large. This indicates that the stability of the planar motion can be rather unstable.
In Fig. 4 the influence of the forcing amplitude on the solution is shown. Looking at
this figure one sees that the amplitude of the out-of-plane component decreases gradually
to zero for increasing values of β, while the amplitude of the in-plane component grows
for increasing β. This means that if the amplitude of the vibrating support is very large
compared to the excitation-frequency λ, the motion of the string is usually in plane. It
turns out that the non-planar motion of system (3.3) for ᾱ1 = ᾱ2 = 0 and η̄ = 2 dies out
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to β for ᾱ1 = ᾱ2 = 0 and η̄ = 2.0. The solid and dashed line represent stable and unstable
solutions, respectively.
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Figure 5: The stable motions of the string in the 1 : 1 resonance case for the first mode,
and ε = 0.0025, ᾱ1 = ᾱ2 = 0, η̄ = 0.6450, and β = 0.4561. In (i)-(iii) planar motion is
presented, and in (iv)-(vi) non-planar motion is given.

after β = 16.00. Moreover, in Fig. 4 a jump upward at β = K2 from planar to the non-
planar motion can occur for increasing values of β up to β = 16.00. For β > 16.00 the
motion will be planar again. The analytically obtained results are compared to numerical
results obtained by using the Runge-Kutta method (see Fig. 5). This figure shows that the
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analytical results are the same as the numerical results on long time-scales. In the upper
part of Fig. 5 the stable in-plane motion is presented, whereas in the lower part of Fig. 5 the
non-planar motion is given.

3.2 The case with (positive) damping in both planes, i.e. ᾱ1, ᾱ2 > 0

The critical points of system (3.3) for ᾱ1, ᾱ2 > 0 satisfy the following algebraic equations:

ᾱ1Ām + B̄m

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)D̄m = 0,

ᾱ1B̄m − Ām

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m))−2η̄

]

− 1
2
(ĀmC̄m + B̄mD̄m)C̄m +2β = 0,

ᾱ2C̄m + D̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m))−2η̄

]

+
1
2
(ĀmC̄m + B̄mD̄m)B̄m = 0,

ᾱ2D̄m −C̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m))−2η̄

]

− 1
2
(ĀmC̄m + B̄mD̄m)Ām = 0. (3.9)

In Appendix 6.1.2 it has been shown that when a solution of system (3.9) exists then B̄m 6=
0 and that if C̄m = 0 then D̄m = 0. Therefore, the critical points of system (3.3) can be
classified into two types:

CP-type 1: (Ām, B̄m,C̄m, D̄m) = (Ãm, B̃m,0,0), with B̃m 6= 0,

CP-type 2: (Ām, B̄m,C̄m, D̄m) = (Ãm, B̃m,C̃m, D̃m), with C̃m 6= 0 and B̃m 6= 0.

(3.10)

Starting with the analysis of the critical point of type 2 it follows from Appendix 6.2.1 that
(3.9) can be reduced to:

(R3 +R4)(R3 +3R4)−
16
3

η̄(2R3 +3R4)+
64
3

η̄2 +
16
3

ᾱ2
2 = 0,

(ᾱ1R3 + ᾱ2R4)
2 +(R3 −R4)

2
[3

4
(R3 +R4)−2η̄

]2
−4β2R3 = 0,

Cond2(R3,R4) = (R3 +3R4)−8η̄ < 0,

Cond3(R3) = R3 −4ᾱ2 > 0, (3.11)

where R3 = Ã2
m + B̃2

m and R4 = C̃2
m + D̃2

m. The first two equations in (3.11) can be reduced
further to (as also has been shown in Appendix 6.2.1) :

aoR4
3 +[a1(ᾱ1 − ᾱ2)−4β2]R3

3 +[a2(ᾱ1 − ᾱ2)+a3]R
2
3 +[a4(ᾱ1 − ᾱ2)+a5]R3 +

a6(ᾱ1 − ᾱ2)+a7 = 0,

R4 =
8
3

η̄− 2
3

R3 ±
1
3

√

R2
3 −16ᾱ2

2,

Cond4(R3) = 8η̄−2R3 ±
√

R2
3 −16ᾱ2

2 > 0, (3.12)

where a j, j = 0,1,2, . . . ,7 are defined in Appendix 6.2.1. First, we consider the case ᾱ1 =
ᾱ2 > 0. In this case the first equation of (3.12) can be simplified to the standard cubic
equation:

X3 +κ12X +δ12 = 0, (3.13)

where:

κ12 = − 1
48β4 (a2

3 +12β2a5),
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δ12 = − 1
864β6

[

a3
3 +18β2(a3a5 +12β2a7)

]

,

X = R3 −
1

12β2 a3.

0

Figure 6: The domains with real solutions of (3.13) in which the conditions 2-4 are satisfied
for ᾱ1 = ᾱ2 = 0.50: ∆12 = ( 1

2 δ12)
2 +( 1

3κ12)
3.

In Fig. 6 an overview is given of all real solutions of (3.13) (and satisfying Cond4) for
ᾱ1 = ᾱ2 = 0.50. In this figure two domains I-1 and II-3 are given in which one and three
critical points of type 2 exist respectively. When one considers separately the critical points
of type 1, that is C̄m = D̄m = 0, one obtains the following equation for R3:

Y 3 +κ11Y +δ11 = 0, (3.14)

where:

κ11 = −16
9

(
4
3

η̄2 − ᾱ2
1),

δ11 = −64
9

(β2 − 4
9

ᾱ2
1η̄− 16

81
η̄3),

Y = R3 −
16
9

η̄.

By setting the radicant∆11 = ( 1
2 δ11)

2 + ( 1
3 κ11)

3 of (3.14) equal to zero one obtains two
curves which are indicated by P2P6 and P6P8 in Fig. 7. It should be noted that the boundary
curves P2P6 and P6P8 are independent of α2. This means that the position of the critical
points of type 1 does not depend on the damping coefficient in the out-of-plane. However,
the stability depends on α2. In Domain I system (3.3) has only one stable critical point of
type 1. In domain II system (3.3) has two critical points, one of which is a critical point of
type 1, and the other is a critical point of type 2. In the other domains and on the boundary
curves, the type and the number of critical points are given in Table 2. The stability of these
critical points will be studied later on in this section.
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Figure 7: The domains with real solutions of system (3.9) for ᾱ1 = ᾱ2 = 0.50: ∆11 =
( 1

2 δ11)
2 +( 1

3 κ11)
3 and ∆12 = ( 1

2 δ12)
2 +( 1

3 κ12)
3.

Table 2: The number of critical points of system (3.3) as described in Fig. 7.

Domain/Curve CP-type 1 CP-type 2 Total

I and P1P7 1 0 1
II 1 1 2

III and P7P9 3 0 3
IV 3 1 4
V 3 3 6

P2P6 and P6P7 2 0 2
P7P8 2 1 3

P3P4 and P3P5 3 2 5

For ᾱ1 6= ᾱ2, the solutions of the first equation in (3.12) can be determined from the follow-
ing equation:

z̄3 +κ13 z̄+δ13 = 0, (3.15)

where κ13, δ13, and the relationship between R3 and z̄ are defined in Appendix 6.2.1. An
overview of all real solutions of (3.12) for ᾱ1 6= ᾱ2 can be found from (3.15). As illustration
we consider the case ᾱ1 = 0.25 and ᾱ2 = 0.75, and the case ᾱ1 = 0.75 and ᾱ2 = 0.25. The
resulting boundary curves are presented in Fig. 8. Figure 8(i) is quite similar in appearance
as Fig. 7; so, the type and the number of critical points for system (3.3) in this figure are
given in Table 2. Figure 8(ii), however, is quite different from Fig. 7. For this case the type
and the number of critical points of system (3.3) are given in Table 3.
According to (3.12) non-planar motion will exist for those parameters for which Cond4 > 0.
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(i) ᾱ1 = 0.25 and ᾱ2 = 0.75 (ii) ᾱ1 = 0.75 and ᾱ2 = 0.25

Figure 8: The domains with real solutions of system (3.9) as illustration for the case ᾱ1 6=
ᾱ2: ∆13 = ( 1

2 δ13)
2 +( 1

3κ13)
3.

Table 3: The number and the type of critical points of system (3.3) as described in Fig. 8(ii),
with ᾱ1 = 0.75 and ᾱ2 = 0.25.

Domain/Curve CP-type 1 CP-type 2 Total

I, P1P6, and P6P7 1 0 1
II and P2P7 1 1 2

III 1 2 3
IV 3 1 4
V 3 3 6

P7P8 and P7P9 2 1 3
P3P4 and P3P5 3 2 5

When ᾱ1 and ᾱ2 are kept fixed, it can be observed from Fig. 8 that the domain of existence
of non-planar motion in the case ᾱ1 > ᾱ2 is smaller than in the case ᾱ1 < ᾱ2. This means
that the damping in the in-plane direction is more effective to reduce non-planar motion
than the damping in the out-of-plane direction.
As in the case without damping, the stability of the critical points of system (3.3) is analyzed
by the linearisation method. For ᾱ1 = ᾱ2 the results of the stability analysis are presented
in Fig. 9 and in Fig. 10. In Fig. 9 the response-curves R3 = Ã2

m + B̃2
m and R4 = C̃2

m + D̃2
m

are plotted as function of the detuning parameter η̄ for ᾱ1 = ᾱ2 = 0.5 and β = 2.0. The
presence of jump phenomena can be observed in this figure. Starting with a negative value
of η̄ in Domain I in Fig. 7 for β = 2.0 and following the line indicated and parallel to the
η̄-axis, one encounters the points Qi, i = 1− 4. These points are also indicated in Fig. 9.
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− 2 0 2 4 6 8 10

Figure 9: The stability response-curves of system (3.3) with respect to the detuning pa-
rameter η̄ for ᾱ1 = ᾱ2 = 0.50 and β = 2.0. The solid and dashed line represent stable and
unstable solutions, respectively.
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Figure 10: The stability response-curves of system (3.3) with respect to the excitation-
amplitude β for ᾱ1 = ᾱ2 = 0.50 and η̄ = 2.0. The solid and dashed line represent stable and
unstable solutions, respectively.

When η̄ < Q1 = 0.5764, initially only stable planar motion is possible. At the point Q1 the
transversally excited mode in the out-of-plane direction turns up. Then as η̄ increases, the
motion of the string smoothly changes from planar to non-planar motion. When one arrives
at Q4 = 8.0177 the non-planar motion becomes unstable and then any further increase of η̄
causes a spontaneous jump downward from non-planar motion back to the planar motion.
During this jump the amplitude of the in- and the out-of-plane components suddenly decay.
And after that only the planar motion will exist. Reversing the procedure and starting with
a large value of η̄, a jump phenomenon occurs at Q2 = 2.1415, where now the amplitudes
of the in- and the out-of-plane components increase. This phenomenon changes the motion
from planar to non-planar motion. If one decreases the value of η̄ further, then the motion
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changes smoothly back to planar motion after the point Q1. We note that for ᾱ1 = ᾱ2 =
0.50, β = 2.0, and large values of η̄ (approximately η̄ > 24.0007) non-planar motion will
disappear.

− 2 2 4 6 8 10

− 2 2 4 6 8 10

Figure 11: The stability response-curves of system (3.3) with respect to the detuning param-
eter η̄ for β = 2 and ᾱ1 6= ᾱ2. In the upper figures ᾱ1 = 0.25 and ᾱ2 = 0.75 (ᾱ1 < ᾱ2) and
in the lower figure ᾱ1 = 0.75 and ᾱ2 = 0.25 (ᾱ1 > ᾱ2). The solid and dashed line represent
stable and unstable solutions, respectively.

In Fig. 10 the response-curves R3 and R4 are given as function of the excitation-amplitude
β for ᾱ1 = ᾱ2 = 0.50 and η̄ = 2.0. In this figure non-planar motion can be observed for
β > K2 = 0.5946. In contrast to the results in Fig. 9 for varying values of η̄, it is of interest
to observe the additional stable critical point of type 2 which is indicated by the K̄2K̄3 curve.
When one follows the solution along this curve apparently at the end β = K3 a jump from
non-planar motion to planar motion occurs with an accompanying decrease in amplitude of
the in-plane and out-of-plane components. However, by reversing the procedure, a different
phenomenon occurs, that is, a jump from non-planar motion to planar motion occurs at
β = K2 followed by a sudden decrease in amplitude of the in-plane component but by a
smooth decrease in amplitude of the out-of-plane component.
For ᾱ1 6= ᾱ2 the response-curves R3 and R4 as function of the detuning parameter η̄ and
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Figure 12: The stability response-curves of system (3.3) with respect to the excitation-
amplitude β for ᾱ1 6= ᾱ2 and η̄ = 2.0. In the upper figures ᾱ1 = 0.25 and ᾱ2 = 0.75 (ᾱ1 <

ᾱ2) and in the lower figures ᾱ1 = 0.75 and ᾱ2 = 0.25 (ᾱ1 > ᾱ2). The solid and dashed line
represent stable and unstable solutions, respectively.

the excitation-amplitude β are presented in Fig. 11 and in Fig. 12, respectively. In these
figures jump phenomena can readily be observed. A jump downward or a jump upward
from planar motion to non-planar motion or vice versa can be observed by varying η̄ or
β. For β = 2 and for increasing values of η̄ the numerical calculations indicate that for
ᾱ1 = 0.25 and ᾱ2 = 0.75 non-planar motion will die out approximately after η̄ > 95.9681
and after η̄ > 11.9960 for ᾱ1 = 0.75 and ᾱ2 = 0.25. This shows that the string can oscillate
in-plane for large values of ᾱ1.
As in the case without damping, the analytical results can be compared with numerical
results which are obtained by for instance using a Runge-Kutta method. Here, we only
compare the predicted stable motion of the string in the case ᾱ1 = ᾱ2 = 0.2580, β = 0.4561,
and η̄ = 0.3225. The results are presented in Fig. 13. This figure shows that the analytical
results based on the averaging method are comparable with the numerical results on long
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Figure 13: The stable motions of the string in the 1:1 resonance case for the first mode with
ε̄ = 0.0025, ᾱ1 = ᾱ2 = 0.2580, β = 0.4561, and η̄ = 0.3225. The upper figure presents
planar motion and the lower figure presents non-planar motion.

time-scales. In the same way the analytical and the numerical results for ᾱ1 6= ᾱ2 are close
to each other on long time-scales.

4 Analysis of model 2

In this section system (2.6) will be studied, which describes the O(1) responses of the string
due to the transversal excitation and parametric excitation of the string. It is assumed that
both F1 and F2 are nonzero (since the cases F1 = 0 or F2 = 0 already have been studied in
the previous the previous section).
As in section 3 for model 1 we introduce λt̄ = 2t, where λ = µm +εη with µm = 2µs (m=2s)
and η = O(1). system (2.6) then becomes (up to order ε):

v′′m(t)+4vm(t) = − ε
µm

(

2α1v′m(t)+4vm(t)
[

γm((v2
m(t)+w2

m(t))+
1
4
(v2

s (t)+w2
s (t)))+

F1µm sin(2t)−2η
]

+8F2 sin(2t)
)

,

w′′
m(t)+4wm(t) = − ε

µm

(

2α2w′
m(t)+4wm(t)

[

γm((v2
m(t)+w2

m(t))+
1
4
(v2

s (t)+w2
s(t)))+

F1µm sin(2t)−2η
])

,

v′′s (t)+ vs(t) = − ε
µm

(

2α1v′s(t)+ vs(t)
[

γm((v2
m(t)+w2

m(t))+
1
4
(v2

s (t)+w2
s(t)))+

F1µm sin(2t)−2η
]

−4F2µmds sin(2t)
)

,
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w′′
s (t)+ws(t) = − ε

µm

(

2α2w′
s(t)+ws(t)

[

γm((v2
m(t)+w2

m(t))+
1
4
(v2

s (t)+w2
s (t)))+

F1µm sin(2t)−2η
])

. (4.1)

By introducing a similar transformation as (3.2), and then by using the averaging method,
one obtains as averaged system for (4.1):

Ā′
m(t) = −ε̄

(

ᾱ1Ām + B̄m

[3
4
(Ā2

m + B̄2
m)+

1
4
(C̄2

m + D̄2
m)+

1
8
(Ā2

s + B̄2
s +C̄2

s + D̄2
s)−2η̄

]

+

1
2
(ĀmC̄m + B̄mD̄m)D̄m

)

,

B̄′
m(t) = −ε̄

(

ᾱ1B̄m − Ām

[3
4
(Ā2

m + B̄2
m)+

1
4
(C̄2

m + D̄2
m)+

1
8
(Ā2

s + B̄2
s +C̄2

s + D̄2
s)−2η̄

]

−
1
2
(ĀmC̄m + B̄mD̄m)C̄m −2β

)

,

C̄′
m(t) = −ε̄

(

ᾱ2C̄m + D̄m

[1
4
(Ā2

m + B̄2
m)+

3
4
(C̄2

m + D̄2
m)+

1
8
(Ā2

s + B̄2
s +C̄2

s + D̄2
s)−2η̄

]

+

1
2
(ĀmC̄m + B̄mD̄m)B̄m

)

,

D̄′
m(t) = −ε̄

(

ᾱ2D̄m −C̄m

[1
4
(Ā2

m + B̄2
m)+

3
4
(C̄2

m + D̄2
m)+

1
8
(Ā2

s + B̄2
s +C̄2

s + D̄2
s)−2η̄

]

−
1
2
(ĀmC̄m + B̄mD̄m)Ām

)

,

Ā′
s(t) = −ε̄

(

(ᾱ1 +σ)Ās + B̄s

[1
4
(Ā2

m + B̄2
m +C̄2

m + D̄2
m)+

3
32

(Ā2
s + B̄2

s)+
1

32
(C̄2

s + D̄2
s )

−η̄
]

+
1

16
(ĀsC̄s + B̄sD̄s)D̄s

)

,

B̄′
s(t) = −ε̄

(

(ᾱ1 −σ)B̄s− Ās

[1
4
(Ā2

m + B̄2
m +C̄2

m + D̄2
m)+

3
32

(Ā2
s + B̄2

s)+
1

32
(C̄2

s + D̄2
s )

−η̄
]

− 1
16

(ĀsC̄s + B̄sD̄s)C̄s

)

,

C̄′
s(t) = −ε̄

(

(ᾱ2 +σ)C̄s + D̄s

[1
4
(Ā2

m + B̄2
m +C̄2

m + D̄2
m)+

1
32

(Ā2
s + B̄2

s)+
3
32

(C̄2
s + D̄2

s)

−η̄
]

+
1

16
(ĀsC̄s + B̄sD̄s)B̄s

)

,

D̄′
s(t) = −ε̄

(

(ᾱ2 −σ)D̄s−C̄s

[1
4
(Ā2

m + B̄2
m +C̄2

m + D̄2
m)+

1
32

(Ā2
s + B̄2

s)+
3
32

(C̄2
s + D̄2

s)

−η̄
]

− 1
16

(ĀsC̄s + B̄sD̄s)Ās

)

, (4.2)

where ε̄ = γm
µm

ε, η̄ = η
γm

, β = F2
γm

, σ = µm
4γm

F1, ᾱi = αi
γm

, i = 1 or 2, and where Ām(t), B̄m(t),

C̄m(t), D̄m(t), Ās(t), B̄s(t), C̄s(t), and D̄s(t) are the averaged approximations of Am(t), Bm(t),
Cm(t), Dm(t), As(t), Bs(t), Cs(t), and Dm(t), respectively. It follows from the last four
equations in (4.2) that (see also [20]):

d
dt

(ĀsD̄s − B̄sC̄s)(t) = −ε̄(ᾱ1 + ᾱ2)(ĀsD̄s − B̄sC̄s)(t). (4.3)

A first integral of system (4.2) then follows from (4.3), yielding

G(Ās(t), B̄s(t),C̄s(t), D̄s(t)) = (ĀsD̄s(t)− B̄sC̄s(t))e
ε̄(ᾱ1+ᾱ2)t . (4.4)
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Based on (4.4) ḠE is defined by:

GE =
{

(Ās(t), B̄s(t),C̄s(t), D̄s(t), Ām(t), B̄m(t),C̄m(t), D̄m(t)) :

| G(Ās(t), B̄s(t),C̄s(t), D̄s(t)) |= E, E ≥ 0
}

. (4.5)

Because of the properties of a first integral, the ”hyperplanes” GE are invariants of system
(4.2). Again from (4.4) one can easily deduce that for ᾱ1 + ᾱ2 > 0 the solutions Ās(t),
B̄s(t), C̄s(t), and D̄s(t) of system (4.2) satisfy (Ās(t)D̄s(t)− B̄s(t)C̄s(t)) → 0 as t → ∞. This
implies that the critical points of system (4.2) can only be found in the hyperplane G0. It
follows from [20] that if ᾱ1 6= ᾱ2, then one only obtains Ās = B̄s = 0 or C̄s = D̄s = 0. In the
other words, there is no interaction between the parametric in- and out-of-plane modes. To
reduce the amount of computations we will restrict the analysis to the most interesting case
ᾱ1 = ᾱ2 = ᾱ > 0. For this case it turns out from (4.3) that the stability of the critical points
of system (4.2) in the (Ās, B̄s,C̄s, D̄s, Ām, Ās, B̄m,C̄m, D̄m)-space is exactly the same as in the
hyperplanes G0. Hence, the study of the existence and the stability of periodic solutions of
system (4.2) can be restricted to the hyperplane G0.
Now one defines the hyperplane Hk as a partition of the hyperplane G0 as follows:

Hk =































{

(Ās(t), B̄s(t),C̄s(t), D̄s(t), Ām(t), B̄m(t),C̄m(t), D̄m(t)) ∈ G0 | Ās(t) = kC̄s(t)

and B̄s(t) = kD̄s(t)
}

; k is a real number,
{

(Ās(t), B̄s(t),C̄s(t), D̄s, Ām(t), B̄m(t),C̄m(t), D̄m(t)) ∈ G0 | C̄s = 0 and

D̄s(t) = 0
}

; k = ±∞.

(4.6)

The behaviour of the solutions of the critical points of system (4.2) in the hyperplane Hk is
described by:

Ā′
m(t) = −ε̄

(

ᾱĀm + B̄m

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m)+

1
2
(k2 +1)(C̄2

s + D̄2
s))−2η̄

]

+

1
2
(ĀmC̄m + B̄mD̄m)D̄m

)

,

B̄′
m(t) = −ε̄

(

ᾱB̄m − Ām

[1
4
(3(Ā2

m + B̄2
m)+(C̄2

m + D̄2
m)+

1
2
(k2 +1)(C̄2

s + D̄2
s))−2η̄

]

−
1
2
(ĀmC̄m + B̄mD̄m)C̄m −2β

)

,

C̄′
m(t) = −ε̄

(

ᾱC̄m + D̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m)+

1
2
(k2 +1)(C̄2

s + D̄2
s ))−2η̄

]

+

1
2
(ĀmC̄m + B̄mD̄m)B̄m

)

,

D̄′
m(t) = −ε̄

(

ᾱD̄m −C̄m

[1
4
((Ā2

m + B̄2
m)+3(C̄2

m + D̄2
m)+

1
2
(k2 +1)(C̄2

s + D̄2
s ))−2η̄

]

−
1
2
(ĀmC̄m + B̄mD̄m)Ām

)

,

C̄′
s(t) = −ε̄

(

(ᾱ+σ)C̄s + D̄s

[1
4
((Ā2

m + B̄2
m +C̄2

m + D̄2
m)+

3
8
(k2 +1)(C̄2

s + D̄2
s ))− η̄

])

,

D̄′
s(t) = −ε̄

(

(ᾱ−σ)D̄s −C̄s

[1
4
((Ā2

m + B̄2
m +C̄2

m + D̄2
m)+

3
8
(k2 +1)(C̄2

s + D̄2
s ))− η̄

])

,

(4.7)

It should be observed that the behaviour of the solutions of the critical points of system (4.2)
in the hyperplane G0 corresponds to the behaviour of the solutions in the hyperplane Hk.
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The periodic solutions of system (4.7) and their stability will be studied for the case ᾱ > 0.
From the applicational point of view this is the most interesting case.
The critical points of system (4.7) for ᾱ > 0 satisfy (after introducing the rescalings Ām =√

ᾱÃm, B̄m =
√

ᾱB̃m, C̄m =
√

ᾱC̃m, D̄m =
√

ᾱD̃m, C̄s =
√

ᾱC̃s, and D̄s =
√

ᾱD̃s):

Ãm + B̃m

[1
4
(3(Ã2

m + B̃2
m)+(C̃2

m + D̃2
m)+

1
2
(k2 +1)(C̃2

s + D̃2
s ))−2η̃

]

+
1
2
(ÃmC̃m +

B̃mD̃m)D̃m = 0,

B̃m − Ãm

[1
4
(3(Ã2

m + B̃2
m)+(C̃2

m + D̃2
m)+

1
2
(k2 +1)(C̃2

s + D̃2
s ))−2η̃

]

− 1
2
(ÃmC̃m +

B̃mD̃m)C̃m −2β̃ = 0,

C̃m + D̃m

[1
4
((Ã2

m + B̃2
m)+3(C̃2

m + D̃2
m)+

1
2
(k2 +1)(C̃2

s + D̃2
s))−2η̃

]

+
1
2
(ÃmC̃m +

B̃mD̃m)B̃m = 0,

D̃m −C̃m

[1
4
((Ã2

m + B̃2
m)+3(C̃2

m + D̃2
m)+

1
2
(k2 +1)(C̃2

s + D̃2
s))−2η̃

]

− 1
2
(ÃmC̃m +

B̄mD̃m)Ãm = 0,

(1+ σ̃)C̃s + D̃s

[1
4
((Ã2

m + B̃2
m +C̃2

m + D̃2
m)+

3
8
(k2 +1)(C̃2

s + D̃2
s))− η̃

]

= 0,

(1− σ̃)D̃s −C̃s

[1
4
((Ã2

m + B̃2
m +C̃2

m + D̃2
m)+

3
8
(k2 +1)(C̃2

s + D̃2
s))− η̃

]

= 0, (4.8)

where η̃ = η̄
ᾱ , σ̃ = σ

ᾱ , and β̃ = β
ᾱ
√

ᾱ . The dependence of the solutions of system (4.8) on

the parameters σ̃ and β̃ can be restricted to the case σ̃ > 0 and β̃ > 0, since the case σ̃ < 0
and β̃ < 0 leads by a simple transformation as defined in [20] and in section 3 to system
(4.8) with σ̃ > 0 and β̃ > 0. As in subsection 3.2 it can be shown that when a solution of
system (4.8) exists then B̃m 6= 0, and that when C̃m = 0 then also D̃m = 0. When a solution
of system (4.8) exists, then C̃s = D̃s = 0 can be a solution of system (4.8). It follows from
the fifth and the sixth equation in (4.8) that the non-trivial solutions C̃s and D̃s are given by

C̃s =±
√

σ̃−1
σ̃+1 D̃s under the conditions 1

4 ((Ã2
m + B̃2

m +C̃2
m + D̃2

m)+ 3
8(k2 +1)(C̃2

s + D̃2
s))− η̃ =

∓
√

σ̃2 −1, respectively. As we know from [20] the critical points related to C̃s =
√

σ̃−1
σ̃+1 D̃s

are unstable. These unstable points will not be studied in this paper. Therefore, the type of
critical points of system (4.7) are classified as follows:

CP-type 1: (C̄s, D̄s, Ām, B̄m,C̄m, D̄m) = (0,0,
√

ᾱÃm,
√

ᾱB̃m,0,0),

CP-type 2: (C̄s, D̄s, Ām, B̄m,C̄m, D̄m) = (0,0,
√

ᾱÃm,
√

ᾱB̃m,
√

ᾱC̃m,
√

ᾱD̃m),

CP-type 3: (C̄s, D̄s, Ām, B̄m,C̄m, D̄m) = (−
√

ᾱ(σ̃−1)

σ̃+1
D̃s,

√
ᾱD̃s,

√
ᾱÃm,

√
ᾱB̃m,0,0),

CP-type 4: (C̄s, D̄s, Ām, B̄m,C̄m, D̄m) = (−
√

ᾱ(σ̃−1)

σ̃+1
D̃s,

√
ᾱD̃s,

√
ᾱÃm,

√
ᾱB̃m,

√
ᾱC̃m,

√
ᾱD̃m). (4.9)

It is clear that critical points of type 3 and 4 can be expected for σ̃ ≥ 1. The existence
of critical points of type 1 and of type 2 can be determined as in subsection 3.2. Again it
can be shown that their existence is independent of the parametric excitation. However, the
behaviour of the solutions around these critical points might depend on it.
Substitution of the CP-type 3 as given in (4.9) into system (4.8) finally leads to

X3 +κ21X +δ21 = 0,



In- and out-of-plane response of a stretched string 21

Cond8(X) =
44
15

η̃+
92
15

√

σ̃2 −1−X > 0,

R3 = X +
16
15

η̃− 32
15

√

σ̃2 −1,

R2 =
8

3(1+ k2)
Cond8(X), (4.10)

where R2 = Ã2
s +B̃2

s , R3 = Ã2
m +B̃2

m, k is defined in (4.6), κ21 and δ21 are defined in Appendix
6.2.2. In a similar way, but now by using the CP-type 4 as given in (4.9), one obtains
R3 =Y − 1

3 c2, R4 = C̃2
m +D̃2

m = 1
5 Cond9(R3), and R2 = 8

5(k2+1)
Cond10(R3), where Y satisfies:

Y 3 +κ22Y +δ22 = 0,

Cond9(R3) = 8η̃−16
√

σ̃2 −1−2R3 ±3
√

R2
3 −16 > 0,

Cond10(R3) = 4η̃+12
√

σ̃2 −1−R3∓
√

R2
3 −16 > 0, (4.11)

where c2, κ22, and δ22 are defined in Appendix 6.2.2. The + sign in Cond9(R3) is related to
the − sign in Cond10(R3) and vice versa. As indicated in the previous section, an overview
of the number of real solutions of types 1-4 of system (4.8) and their dependence on η̃ and
β̃ is given in Fig. 14.

Q Q
Q

Q Q
Q

1 2 Q3

4

5 6

7

Q8
Q

9

Figure 14: Twenty-two domains with real solutions of system (4.8) for ᾱ > 0 and σ̃ = 1:
∆3 = 1

4 δ2
21 + 1

27 κ3
21 and ∆4 = 1

2 δ2
22 + 1

27 κ3
22. The vertical axis is the β̃ axis and the horizontal

axis is the η̃ axis.

In contrast to the case without a parametric excitation, it now turns out that the non-planar
motion consisting of the transversally excited modes (corresponding to CP-type 2) becomes
unstable when the non-planar motion corresponding to CP-type 3 and/or CP-type 4 exists
as is shown in Fig. 9 and Fig. 15. This is caused by the fact that the effect of the parametric
excitation is not negligible to the damping. Moreover, the parametric excitation also reduces
the domain of existence of this motion, but it enlarges the domain of existence of the planar
motion (see Fig. 7 and Fig. 14). The number of critical points of system (4.7) in the domains
in Fig. 14 is given in Table 4.
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Table 4: The number of critical points of system (4.7) for ᾱ > 0 and σ̃ = 1 as described in
Fig. 14.

Domain/Curve CP-type 1 CP-type 2 CP-type 3 CP-type 4 Total

I 1 0 0 0 1
II 1 0 1 0 2
III 1 1 0 0 2
IV 1 1 1 0 3
V 1 0 1 1 3
VI 3 0 1 0 4
VII 1 1 1 1 4
VIII 1 0 3 0 4
IX 3 1 1 0 5
X 3 0 1 1 5
XI 1 0 3 1 5
XII 3 1 1 1 6
XIII 3 3 1 0 7
XIV 3 0 3 1 7
XV 3 3 1 1 8
XVI 3 1 1 3 8
XVII 3 1 3 1 8
XVIII 3 3 1 2 9
XIX 3 3 1 3 10
XX 3 1 3 3 10
XXI 3 3 3 2 11
XXII 3 3 3 3 12

In Fig. 15 the stability response-curves for system (4.7) are plotted as function of η̃. In this
figure jumps from planar motion to non-planar motion can be observed. Let us first consider
the case for which η̃ increases from zero. One notes that when η̃ is smaller than Q′

1, only a
stable planar motion exists. At η̃ = Q′

2 the motion will be transformed smoothly to the stable
non-planar motion consisting of the transversally excited modes up to Q ′

3. Between Q′
3 and

Q′
8 the stable motion transforms smoothly to the stable non-planar motion consisting of

the transversally excited modes and the parametrically excited modes in-plane and out-of-
plane (CP-type 4). For increasing values of η̃ the stable motion becomes stable non-planar
motion consisting of the parametrically excited modes in both planes and the transversally
excited mode in-plane (CP-type 3). A jump occurs at η̃ = Q′

9 followed by a decrease in the
amplitudes R1, R2, and R3. By reversing the procedure a jump upward occurs at η̃ = Q′

4
or η̃ = Q′

2 after which the stable motion changes smoothly. As an illustration the types of
stable motions are presented in Fig. 16.
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Figure 15: The stability response-curves for system (4.7) for ᾱ > 0, σ̃ = 1, and β̃ = 2. The
solid and dashed line represent stable and unstable solutions, respectively.

5 Conclusions

In this paper a stretched string which is attached between a fixed support and a vibrating
support is studied. The vibrations of the support lead to parametrical and normal (external)
excitations of the string. By using a modified Kirchhoff approach (see also the previous pa-
per) the model problem can be reduced to a coupled system of partial differential equations
which describes the in- and out-of-plane vibrations of the string. There are two interesting
cases which are related to the frequency λ of the vibrating support. In the first case λ is near
an eigenfrequency µm of the string (where µm = mπ and m is odd), and in the second case λ
is near 2µs = 2sπ. In the first case an interaction between the m-th modes (the transversally
excited modes) in-plane and out-of-plane occurs. This interaction is described by a system
of two nonlinearly coupled, second order ordinary differential equations. By using the aver-
aging method the periodic solutions (and their stability) of these equations are found. Then,
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Figure 16: Stable motions of the string for ᾱ > 0, σ̃ = 1, and β̃ = 2. Middle and right part
of the upper figure are motions corresponding to CP-type 2 and CP-type 3, respectively, and
in the lower figure the motions correspond to CP-type 4.

in a parameter plane the existence of all types of periodic solutions and their stability have
been determined. In the second case (that is, for λ near 2µs) an interaction between the s-th
modes (the parametrically excited modes) and the m-th modes (the transversally excited
modes with m = 2s) in-plane and out-of-plane occurs. This interaction is described by a
non-linear system of four second order, ordinary differential equations. As in the previous
case, the stability of all types of periodic solutions has been determined. Stable non-planar
motion consisting of the transversally excited modes in-plane and out-of-plane can only oc-
cur when positive damping is present. A number of jump phenomena from planar motion
to non-planar motion and from non-planar motion to non-planar motion can occur in both
cases for λ. These jumps are usually followed by an increase or decrease in the amplitudes
of the periodic solutions.

6 Appendix

6.1 On the determination of the critical points

6.1.1 The case : ᾱ1 = ᾱ2 = 0 for system (3.3)

Proof Ām 6= 0 :
Let Ām = 0 be a solution of (3.4). Substituting this into the first and the third equation of
(3.4) yields:

B̄m

[1
4
(3B̄2

m +C̄2
m +3D̄2

m)−2η̄
]

= 0,
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D̄m

[3
4
(B̄2

m +C̄2
m + D̄2

m)−2η̄
]

= 0. (A.1)

From (A.1) it follows that at least one of the B̄m, C̄m, or D̄m is equal to zero. Substituting
this into the second equation of (3.4) gives β = 0. This contradicts the assumption that
β = F2

γm
6= 0. So, if a solution of (3.4) exists, then Ām 6= 0.

Proof B̄m = 0 :
Let B̄m 6= 0 be a solution of system (3.4). By multiplying the first and the second equation
of (3.4) with Ām and B̄m respectively, and then by subtracting the so-obtained equations, it
follows that:

(ĀmC̄m + B̄mD̄m)(ĀmD̄m − B̄mC̄m)+4βB̄m = 0. (A.2)

Since β 6= 0 (A.2) then implies that at least one of the C̄m or D̄m is not equal to zero. On the
other hand the last two equations in (3.4) imply that C̄m = 0 if and only if D̄m = 0. Therefore,
by multiplying the third and the fourth equation of (3.4) with C̄m and D̄m respectively, and
by subtracting the so-obtained equations, it follows that

(ĀmC̄m + B̄mD̄m)(ĀmD̄m − B̄mC̄m) = 0. (A.3)

It then follows from (A.2) and (A.3) that 4βB̄m = 0, implying B̄m = 0 (since β = 0). So, if
a solution of (3.4) exists, then B̄m = 0.

Proof C̄m = 0 :
Let C̄m 6= 0 be a solution of system (3.4), then the first equation of (3.4) implies that D̄m = 0
(by using the fact that Ām 6= 0, B̄m = 0). By substituting this into the second and fourth
equation of (3.4) it follows that:

Ām

[3
4
(Ā2

m +C̄2
m)−2η̄

]

−2β = 0,

C̄m

[3
4
(Ā2

m +C̄2
m)−2η̄

]

= 0. (A.4)

Because both Ām and C̄m are not equal to zero, it follows that β = 0, which is a contradiction.
So, if a solution of (3.4) exists, then C̄m should be equal to zero.

6.1.2 The case : ᾱ1, ᾱ2 > 0 for system (3.3)

Proof B̄m 6= 0 :
Let B̄m = 0 be a solution of system (3.9). Since β 6= 0 it then follows from the second
equation in (3.9) that Ām 6= 0. From the first equation in (3.9) it can then be deduced that
C̄mD̄m = −2ᾱ1. By multiplying the third and the fourth equation in (3.9) with C̄m and D̄m

respectively, and by adding the so-obtained equations it follows that (using the fact that
C̄mD̄m = −2ᾱ1):

ᾱ2(C̄
2
m + D̄2

m)+ ᾱ1Ā2
m = 0. (A.5)

Since ᾱ1, ᾱ2 > 0 it follows from (A.5) that Ām = C̄m = D̄m = 0. Then, by substituting
Ām = B̄m = C̄m = D̄m = 0 into the second equation of (3.9) it follows that β = 0, which
contradicts the assumption that β 6= 0. So, if a solution of (3.9) exists, then B̄m 6= 0.

Proof If C̄m = 0 then D̄m = 0:
Let C̄m = 0 be a solution of system (3.9). Then, it follows from the fourth equation in (3.9)
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that D̄m = 0 or 2ᾱ2 = ĀmB̄m. For D̄m 6= 0 it then follows that 2ᾱ2 = ĀmB̄m, and since ᾱ2 > 0
it follows that Ām and B̄m are both nonzero, and that ĀmB̄m > 0. By multiplying the third
equation in (3.9) with −B̄m and by adding this to the first equation in (3.9) one obtains:
ᾱ1Ām + 1

2 Ā2
mB̄m = 0 ⇔ Ām = 0 or ĀmB̄m = −2ᾱ1 < 0, which contradicts the fact that (for

D̄m 6= 0) ĀmB̄m > 0. So, if a solution of (3.9) exists with C̄m = 0, then D̄m also should be
equal to zero.

6.2 Critical Points

6.2.1 Model 1 (λ = µm +O(ε), m is an odd number)

When at least one of the components Ãm and D̃m of the critical point of type 2 is equal to
zero, the properties of the critical point can easily be derived. Now we consider the case
for which all of the components of the critical points of type 2 are not equal to zero. By
multiplying the first and second equation in (3.9) with Ãm and B̃m respectively, and then by
adding the so-obtained equations it follows that:

ᾱ1(Ã
2
m + B̃2

m)+
1
2
(ÃmC̃m + B̃mD̃m)(ÃmD̃m − B̃mC̃m)+2βB̃m = 0. (B.1)

Again by multiplying the first and second equation in (3.9) but now with B̃m and Ãm respec-
tively, and then by subtracting the so-obtained equations it follows that:

(Ã2
m + B̃2

m)
[1

4
(3(Ã2

m + B̃2
m)+(C̃2

m + D̃2
m))−2η̄

]

+
1
2
(ÃmC̃m + B̃mD̃m)2 −2βÃm = 0. (B.2)

Similarly, it follows from the third and fourth equation in (3.9) that

(C̃2
m + D̃2

m)
[1

4
((Ã2

m + B̃2
m)+3(C̃2

m + D̃2
m))−2η̄

]

+
1
2
(ÃmC̃m + B̃mD̃m)2 = 0, and

ᾱ2(C̃
2
m + D̃2

m)− 1
2
(ÃmC̃m + B̃mD̃m)(ÃmD̃m − B̃mC̃m) = 0. (B.3)

From (B.3) it follows that a critical point of type 2 can be expected if the following condition
is satisfied:

Cond2 = (Ã2
m + B̃2

m)+3(C̃2
m + D̃2

m)−8η̄ < 0. (B.4)

Accordingly, to have a critical point of type 2 it is assumed that Cond2 holds. By adding
(B.1) and the second equation in (B.3) one obtains

ᾱ1(Ã
2
m + B̃2

m)+ ᾱ2(C̃
2
m + D̃2

m) = −2βB̃m, (B.5)

and by subtracting (B.2) from the first equation in (B.3), it follows that
[

(Ã2
m + B̃2

m)− (C̃2
m + D̃2

m)
][3

4
((Ã2

m + B̃2
m)+(C̃2

m + D̃2
m))−2η̄

]

= 2βÃm. (B.6)

Let us rewrite (B.3) as

−2(C̃2
m + D̃2

m)
[1

4
((Ã2

m + B̃2
m)+3(C̃2

m + D̃2
m))−2η̄

]

= (ÃmC̃m + B̃mD̃m)2
,

2ᾱ2(C̃
2
m + D̃2

m) = (ÃmC̃m + B̃mD̃m)(ÃmD̃m − B̃mC̃m). (B.7)

By squaring both sides of the first and second equation in (B.7), and then by adding the
so-obtained equations, one obtains (by using the fact that C̃2

m + D̃2
m 6= 0):

4(C̃2
m + D̃2

m)
(

ᾱ2
2 +

[1
4
((Ã2

m + B̃2
m)+3(C̃2

m + D̃2
m))−2η̄

]2)

= (ÃmC̃m +

B̃mD̃m)2(Ã2
m + B̃2

m). (B.8)
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From (B.8) and the first equation in (B.7) it follows that (after some simplifications):
[1

4
(2(Ã2

m + B̃2
m)+3(C̃2

m + D̃2
m))−2η̄

]2
=

1
16

(Ã2
m + B̃2

m)2 − ᾱ2
2. (B.9)

To have a critical point of type 2 it follows from (B.9) that Ãm and B̃m have to satisfy

Cond3 = (Ã2
m + B̃2

m)−4ᾱ2 ≥ 0. (B.10)

By squaring both sides of (B.5) and (B.6), and then by adding the so-obtained equations,
one obtains (after some simplifications):

[

(Ã2
m + B̃2

m)− (C̃2
m + D̃2

m)
]2[3

4
((Ã2

m + B̃2
m)+(C̃2

m + D̃2
m))−2η̄

]2
+

[

ᾱ1(Ã
2
m + B̃2

m)+

ᾱ2(C̃
2
m + D̃2

m)
]2

−4β2(Ã2
m + B̃2

m) = 0. (B.11)

By putting R3 = Ã2
m +B̃2

m and R4 = C̃2
m +D̃2

m it follows that (B.9) and (B.11) can be simplified
to

a0R4
3 +

[

a1(ᾱ1 − ᾱ2)−4β2
]

R3
3 +

[

a2(ᾱ1 − ᾱ2)+a3

]

R2
3 +

[

a4(ᾱ1 − ᾱ2)+a5

]

R3 +

a6(ᾱ1 − ᾱ2)+a7 = 0,

R4 =
8
3

η̄− 2
3

R3 ±
1
3

√

(R2
3 −16ᾱ2

2), (B.12)

where:

a0 = (ᾱ1 − ᾱ2)
2
,

a1 = −4
3
(3ᾱ1 −7ᾱ2)η̄,

a2 =
1

36

[

16(9ᾱ1 −73ᾱ2)η̄2 +81ᾱ3
1 −135ᾱ2

1ᾱ2 −81ᾱ1ᾱ2
2 +249ᾱ3

2

]

,

a3 =
16
9

(4ᾱ1ᾱ2η̄2 +9β2η̄+9ᾱ1ᾱ3
2),

a4 =
2
9

[

96ᾱ2η̄3 +4(27ᾱ2
1 +104ᾱ1ᾱ2 +35ᾱ2

2)ᾱ2η̄−27β2(3ᾱ1 + ᾱ2)
]

,

a5 = −16
9

(16ᾱ2
2η̄3 +9β2η̄2 +52ᾱ1ᾱ2η̄− 27

4
β2ᾱ1ᾱ2),

a6 = −16
9

ᾱ2

[

4(17ᾱ1 +5ᾱ2)ᾱ2η̄2 +54β2η̄+4ᾱ3
2(4ᾱ1 + ᾱ2)

]

,

a7 =
16
9

[

ᾱ2
2(16η̄4 +104ᾱ2

1η̄2 −72β2η̄+25ᾱ2
1ᾱ2

2)+
81
4

β4
]

.

If one assumes additionally that ᾱ1 = ᾱ2 = α, then the first equation in (B.12) can be sim-
plified to a standard cubic equation:

X3 +κ12X +δ12 = 0, (B.13)

where:

X = R3 −
1

12β2 a3,

κ12 = − 1
48β4 (12β2a5 +a2

3)),

δ12 = − 1
864β6 (18β2a3a5 +216β4a7 +a3

3).
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For ᾱ1 6= ᾱ2 a simplification of the first equation in (B.12) can be obtained by introducing
a new variable Z = R3 + 1

4a0
(a1(ᾱ1 − ᾱ2)− 4β2). Substituting this variable Z into the first

equation of (B.12), one obtains the standard quartic equation in Z:

Z4 + p1Z2 +q1Z + r1 = 0, (B.14)

where:

p1 =
3β2

a2
0

(

(ᾱ1 − ᾱ2)a1 −2β2
)

+
1
a0

(

(ᾱ1 − ᾱ2)a2 +a3 −
3
8

a2
1

)

,

q1 =
2β4

a3
0

(

3(ᾱ1 − ᾱ2)a1 −4β2
)

+
1

a2
0

(

(ᾱ1 − ᾱ2)(
1
8

a3
1 −

1
2

a1a2 +2β2a2)+β2(2a3 −

3
2

a2
1)

)

+
1
a0

(

(ᾱ1 − ᾱ2)a4 +a5 −
1
2

a1a2

)

,

r1 =
3β6

a4
0

(

(ᾱ1 − ᾱ2)a1 −β2
)

+
1

a3
0

(

(ᾱ1 − ᾱ2)β2(
3

16
a3

1 −
1
2

a1a3 +β2a2)+β4(a3 −

9
8

a2
1)

)

+
1

a2
0

(

(ᾱ1 − ᾱ2)(
1

16
a2

1a2 +β2a4 −
1
4

a1a5)+
1

16
a2

1(a3 −
3

16
a2

1)+

β2(a5 −
1
2

a1a2)
)

+
1
a0

(

(ᾱ1 − ᾱ2)a6 +a7 −
1
4

a1a4

)

.

The four solutions Zi, i = 1,2,3, and 4 of (B.14) can be given as:

Z1,2 =
1
2
(
√

z1 ±
√

z2 ±
√

z3),

Z3,4 =
1
2
(−√

z1 ±
√

z2 ∓
√

z3), (B.15)

where zi, i = 1,2, and 3 are solutions of the cubic resolvent:

z3 +2p1z2 +(p2
1 −4r1)z−q2

1 = 0. (B.16)

From (B.15) and z1z2z3 = q2
1 > 0 the relation between the solutions of (B.14) and (B.16)

follows and is given in Table (5).
By introducing a new variable z̄ = z+2

3 p1 (B.16) becomes a standard cubic equation:

z̄3 +κ13 z̄+δ13 = 0, (B.17)

where κ13 = −(4r1 + 1
3 p2

1) and δ13 = −( 2
27 p3

1 +q2
1 − 8

3 p1r1).

6.2.2 Model 2 (λ = µm +O(ε), m is an even number)

It can readily be seen that C̃s = D̃s = 0 is a solution of system (4.8). For C̃s = D̃s = 0 system
(4.8) reduces to an identical form as system (3.9). Hence, the solutions of the reduced
system (4.8) can be found directly from system (3.9). In order to have non-trivial solutions
for C̃s and D̃s it follows from the last two equations of (4.8) that σ̃2 −1 ≥ 0. By considering
C̃s 6= 0 and D̃s 6= 0, it also follows from the last two equations of (4.8) that:

1
4
(Ã2

m + B̃2
m +C̃2

m + D̃2
m)+

3
32

(k2 +1)(C̃2
s + D̃2

s )− η̃ = −
√

σ̃2 −1, or

1
4
(Ã2

m + B̃2
m +C̃2

m + D̃2
m)+

3
32

(k2 +1)(C̃2
s + D̃2

s )− η̃ =
√

σ̃2 −1, (B.18)
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Table 5: The three cases which arise from the relation between the solutions of (B.14) and
(B.16).

solutions of solutions of
the cubic resolvent (B.16) the standard quartic equation (B.14)

all positive real solutions all real solutions

one positive and two negative two pairs of conjugate complex
real solutions solutions

one real and two conjugate two real and two conjugate
complex solutions complex solutions

and that C̃s =
√

σ̃−1
σ̃+1 D̃s and C̃s = −

√

σ̃−1
σ̃+1 D̃s, correspondingly. However, the solution C̃s =

√

σ̃−1
σ̃+1 D̃s produces an unstable periodic solution (see also [20]). Hence, this solution will

not be studied. Substitution of the second equation in (B.18) and C̃s = −
√

σ̃−1
σ̃+1 D̃s into

system (4.8) gives

Ãm + B̃m

[ 5
12

(Ã2
m + B̃2

m)− 1
12

(C̃2
m + D̃2

m)+
4
3

√

σ̃2
s −1− 2

3
η̃
]

+
1
2
(ÃmC̃m +

B̃mD̃m)D̃m = 0,

B̃m − Ãm

[ 5
12

(Ã2
m + B̃2

m)− 1
12

(C̃2
m + D̃2

m)+
4
3

√

σ̃2
s −1− 2

3
η̃
]

− 1
2
(ÃmC̃m +

B̃mD̃m)C̃m −2β̃ = 0,

C̃m + D̃m

[

− 1
12

(Ã2
m + B̃2

m)+
5

12
(C̃2

m + D̃2
m)+

4
3

√

σ̃2 −1− 2
3

η̃
]

+
1
2
(ÃmC̃m +

B̃mD̃m)B̃m = 0,

D̃m −C̃m

[

− 1
12

(Ã2
m + B̃2

m)+
5

12
(C̃2

m + D̃2
m)+

4
3

√

σ̃2 −1− 2
3

η̃
]

− 1
2
(ÃmC̃m +

B̃mD̃m)Ãm = 0. (B.19)

It is easy to see that C̃m = D̃m = 0 satisfies the last two equations of (B.19). Substituting
this into the first equation in (B.19) yields Ãm =−R3

24 (5R3 +16
√

σ̃2 −1−8η̃) and B̃m = R3

2β̃
,

where R3 satisfies:

X3 +κ21X +δ21 = 0,

R3 = X − 1
3

b2, (B.20)

κ21 = b1 − 1
3 b2

2, δ21 = − 1
27(9b1b2 − 2b3

2 − 27b0), b0 = − 576
25 β̃2, b1 = 16

25 (16σ̃2 + 4η̃2 −
16
√

σ̃2 −1− 7), and b2 = 16
5 (2

√
σ̃2 −1− η̃). Solutions of (B.20) are only solutions of

system (4.8) when the condition Cond8(X) = 44
15 η̃+ 92

15

√
σ̃2 −1−X > 0 has been satisfied.
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The solution C̃s satisfies R2 = C̃2
s + D̃2

s = 8
3(k2+1)

Cond8(X). For C̃m 6= 0 and D̃m 6= 0 the so-
lutions of system (B.19) can be obtained in a similar way as has been shown in (B.1)-(B.13),
and then by substituting these solutions into the second equation in (B.18) the solutions for
C̃s are found. After some calculations, the following equations are obtained:

Y 3 +κ22Y +δ22 = 0,

R3 = Y − 1
3

c2,

R4 =
1
5
(8η̃−16

√

σ̃2 −1−2R3 ±3
√

R2
3 −16),

R2 =
8

5(k2 +1)
(4η̃+12

√

σ̃2 −1−R3 ∓
√

R2
3 −16),

Cond9(R3) = 8η̃−16
√

σ̃2 −1−2R3 ±3
√

R2
3 −16,

Cond10(R3) = 4η̃+12
√

σ̃2 −1−R3 ∓
√

R2
3 −16, (B.21)

where κ22 = c1 − 1
3 c2

2, δ22 = − 1
27(9c1c2 −2c3

2 −27c0), and

c0 = − 64

25β̃2

[

16η̃4 −128η̃3
√

σ̃2 −1+8η̃2(48σ̃2 −19)−8η̃(64σ̃2
√

σ̃2 −1+

52
√

σ̃2 −1+25β̃2)+(16σ̃2 +33)(16σ̃2 −7)+
25β̃2

4
(64

√

σ̃2 −1+25β̃2
]

,

c1 =
4

25β̃2

[

16η̃3 +(25β̃2 −96
√

σ̃2 −1)η̃2 +4(48σ̃2 −25β̃2
√

σ̃2 −1−19)η̃−

8(16σ̃2 +13)
√

σ̃2 −1+25β̃2(4σ̃2 − 3
4

β̃2)
]

,

c2 = − 4

25β̃2

[

4η̃2 +(25β̃2 −16
√

σ̃2 −1)η̃+16σ̃2 +9−50β̃2
√

σ̃2 −1
]

.
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