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Abstract

In this report we give a short overview of aspects on parallel deflated conjugate
gradient method which is applied on large, sparse, symmetric and semi-positive
definite linear systems obtained from moving boundary problems. Moreover, we
present some results of small numerical experiments.

After introducing the Navier-Stokes equations for multiphase flows, the pres-
sure correction method is described shortly. In this method the Poisson equation
dominates and leads to an ill-conditioned and huge linear sytem. This system
is solved with the conjugate gradient method preconditioned with incomplete
Cholesky or block-Jacobi. To accelerate the convergence of the iterative method
a deflation technique is incorporated. We end with some aspects on implement-
ing the whole technique in a parallel environment.

Keywords: Deflation, preconditioning, conjugate gradient method, Navier-
Stokes equations, parallelism, domain decomposition methods.
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Chapter

1

Introduction

Physical principles governing the flow of fluids and gases, such as water and air,
have mathematically been understood since the times of Newton. This classical
discipline is also known as fluid dynamics. Fluid flows encounter in everyday
life include meteorological phenomena (rain, hurricanes, floods), environmental
hazards (air pollution), processes in human body (blood flow, breathing) and
so on.

Computational Fluid Dynamics (CFD) is a rather new discipline starting
from the 1960’s and which is in a state of rapid development. CFD gives an
insight into flow patterns that are difficult, expensive or impossible to study
using traditional (experimental) techniques. It provides a qualitative and some-
times even quantitative prediction of fluid flows or other phenomena in the fluid
dynamics by means of mathematical modelling (partial differential equations),
numerical methods (discretization and solution techniques) and software tools
(solvers, pre- and postprocessing utilities). Numerical methods are required,
since the most partial differential equations can not be solved analytically.

The Navier-Stokes equations describe many physical processes and, there-
fore, they are the main equations in the CFD. In Chapter 2 we will treat the
Navier-Stokes equations in more detail. As a special application, multi-phase
flows are considered where the phases are non-stationary resulting in moving
boundary problems. We deal shortly with the varying interfaces which give the
most difficulties in this kind of problems.

The so-called pressure-correction method is employed to find solutions of the
Navier-Stokes equations. Most time-consuming part to solve inside this method
is the Poisson equation. We apply the iterative conjugate gradient method (CG
method) to solve the huge and ill-conditioned linear system which follows af-
ter discretization of the Poisson equation. However, the CG method performs
very slowly, even after preconditioning the linear system with for instance the
incomplete Cholesky decomposition (resulting in the ICCG method). Deflation
techniques can be incorporated in the ICCG method to accelerate the conver-
gence. This results in the DICCG method, which is the subject of Chapter 3.

1



2 Chapter 1. Introduction

Figure 1.1: An example of a two-phase flow: a droplet splash.

In this chapter different variants and aspects about deflation methods are con-
sidered in more detail.

In 3-dimensional multi-phase flows the linear system can be very large. This
may result in a problem which can not be solved on a sequential computer,
even when the DICCG method is applied. In this case, we have to use domain
decomposition methods (DDM) and switch to a parallel environment. Paral-
lelization of DICCG is not straightforward since the IC preconditioner has not
been designed for this purpose. We apply other preconditioners like the so-called
block-Jacobi preconditioner. In Chapter 4, this subject is treated in more detail.



Chapter

2

Moving Boundary Problems

2.1 Introduction

A moving boundary problem (MBP) is a non-linear initial or boundary value
problem with a moving boundary whose position has to be determined as part
of the solution. An MBP arises in several branches of applied mathematics.
The difficulties inherent in these problems represent an analytical as well as a
numerical challenge, because MBP’s are always non-linear. Perhaps the oldest
problem of this type was treated by Isaac Newton, in Book II of his great
‘Principia Mathematica’ of 1687, by considering the optimal nose-cone shape
for the motion of a projectile subject to air resistance. Many other applications
of MBP’s are known, such as the ice-water front during the melting of ice, the
filling front during the filling of a mold and the shoreline of a sedimentary basin.

Recently, moving boundary problems have received much attention due to
their applicative relevance in diffusion and heat flow processes. Most of the
previous studies are concerned with the linear heat equation, particularly in
connection with the classical Stefan problem and its generalizations. In for
instance Segal et al. [33] and Vermolen & Vuik [37], the dissolution of metal-
lurgical particles occurring during the heat treatment of alloys are considered.
The mathematical model of this dissolution process contains a description of the
particle interface, of which the position varies in time. Such a model is called a
Stefan problem. For a general two- or three-dimensional Stefan problem, it is
impossible to obtain an analytical solution, so numerical schemes are required
to solve this.

Other current research items deal with MBP’s in fluid flows. Applications
are bubbly or multi-phase flows, for instance the appearance of oil droplets or
air bubbles in water, see for instance Van der Pijl et al. [30]. High density-ratio
flows with complex interface topologies can occur in these flows. Between the
phases a sharp front can exist, where density and viscosity change abruptly.
This leads to MBP’s which are numerically hard to solve.

In this chapter, we will focus on the mathematical model in modelling bubbly

3



4 Chapter 2. Moving Boundary Problems

Υ1

Υ0

Figure 2.1: Geometry of the two-phase model with the fluids Υ0 and Υ1.

flows and it is mainly based on [30].

2.2 Mathematical model

For simplicity, we consider a two-phase flow with fluids Υ0 and Υ1 in domain Ω ∈
R

2, where Υ1 corresponds with a bubble and Υ0 with the environment of that
bubble, see Figure 2.2. Generalizing to Ω ∈ R

3 and with more fluids/bubbles is
straightforward.

Both fluids are assumed to be incompressible, so that the flow in each fluid
is divergence-free. From the continuity equation we can derive

∇ · u = 0, (2.1)

which holds inside Υ0 or Υ1. Moreover, u = (u1, u2)T is the velocity vector
in (2.1).

The flow is governed by the well-known Navier-Stokes equations for incom-
pressible flow:

∂u

∂t
+ u · ∇u +

1
ρ
∇p =

1
ρ
∇ · µ (∇u + ∇uT

)
+ g − fσκ, (2.2)

with x ∈ Ω and t > 0. In (2.2), g = (g1, g2)T and fσκ = (fσκ1, fσκ2)T are
vectors of the gravity and surface tension force (which will also be defined later
on) and ρ, p, µ are the density, pressure and viscosity, respectively. Furthermore,
we assume that ρ = ρ0 and µ = µ0 hold in Υ0 and ρ = ρ1 and µ = µ1 in Υ1.
This means that density ρ and viscosity µ are non-continuous but piecewise-
continuous on Ω. 1

When the horizontal and vertical direction are denoted by x1 and x2, re-
spectively, we can rewrite (2.2) in components:

∂ui

∂t
+ u1

∂ui

∂x1
+ u2

∂ui

∂x2
+

1
ρ

∂p

∂xi
=

1
ρ
ϑi + gi − fσκi, (2.3)

with stress tensor ϑ defined by

ϑi = (= τ · n) ≡ ∂

∂x1
µ

[
∂ui

∂x1
+

∂u1

∂xi

]
+

∂

∂x2
µ

[
∂ui

∂x2
+

∂u2

∂xi

]
, (2.4)

1Note that from Eqs. (2.1) and (2.2), we obtain ∇ · µ
`∇u + ∇uT

´ �= µ ∆u, since µ is
non-constant (only piecewise constant) in Ω.
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which holds for i = 1, 2.

2.3 Assumptions for Some Parameters

To implement the above mathematical model in a numerical model, some as-
sumptions are made about the parameters acting in the Navier-Stokes equa-
tions (2.2).

Viscosity µ

Without loss of generality, the viscosity µ can be made continuously by smooth-
ing (see Exp. (10) and (11) of [30]). Due to the smoothed viscosity µ, the
velocity u and its derivatives are continuous, so that the gradients of u can be
approximated by central differences in the numerical implementation. In addi-
tion, the interface conditions at the interface of Υ0 and Υ1, say S, are simplified.
Considering µ and the continuity of mass and momentum, we can express the
following interface conditions (cf. Section 2.1 of [30]):{

[u] = 0,
[p] = σκ,

(2.5)

where the brackets denote jumps across the interface, σ is the surface tension
coefficient and κ is the curvature of the interface.

Density ρ

Note that, in contrast to the viscosity, smoothing the density ρ does not preserve
the conservation of mass anymore [30]. Therefore, ρ has to remain discontinuous
in the model. This discontinuous density field can be dealt with similarly to the
ghost fluid method, see Section 3.1.2 of [30]. We need the jump condition[

1
ρ
∇p

]
= 0 (2.6)

to discretize the pressure derivative 1
ρ∇p at the left-hand-side of the Navier-

Stokes equations (2.2) in the neigbourhood of the interface. For the first com-
ponent we obtain:

1
ρ

∂p

∂x
|i+1=

1
ρi+1

pi+ 3
2
− pi+ 1

2

∆x
. (2.7)

Parameter ρ is the weighted average defined by:

ρ = (1 − θ)ρ0 + θρ1, (2.8)

where the relative fraction θ ∈ (0, 1) is defined according to Figure 2.3. 2

2If θ = 1
2
, then we obtain the original average:

ρ =
ρ0 + ρ1

2
. (2.9)
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i

θhh

i − 1 i + 1

(1 − θ)h

jump

fluid Υ0 fluid Υ1

Figure 2.2: Geometry of the two-phase model with parameter θ.

Surface Tension Force fσκ

The parameter fσκ has been incorporated in the Navier-Stokes equations (2.2),
since the surface tension force is acting at the interface S. Due to the smoothed
µ, the velocity components are also continuous which results in the interface
conditions (2.5). To make the pressure also continuously, we smooth fσκ by (cf.
(20) of [30]):

fσκ ≡ 2
ρ0 + ρ1

σκδα(Φ)∇Φ, (2.10)

where
κ = ∇ · ∇Φ

|∇Φ| , (2.11)

which can be approximated with central differences. In (2.10) and (2.11), δα is
the smoothed delta function and function Φ is defined as in the level-set method
(see later on).

2.4 Pressure Correction Method

The Navier-Stokes equations (2.2) are discretized using an FD scheme with a
uniform Cartesian grid. The unknown velocity components u1 and u2 are solved
sequentially. Superscript n denotes time-level n. First a tentative velocity u∗

i is
computed by the predictor step:

u∗
i − un

i

∆t
= −un

1

(
∂ui

∂x1

)∗
− un

2

(
∂ui

∂x2

)∗
+

1
ρ

(ν∗
i + �n

i ) , (2.12)

with

ν∗
i ≡

(
∂

∂x1
µ

∂ui

∂x1
+

∂

∂x2
µ

∂ui

∂x2

)∗
, �n

i ≡
(

∂

∂x1
µ

∂u1

∂xi
+

∂

∂x2
µ

∂u2

∂xi

)n

, (2.13)

which has been splitted into a part on an implicit time level * and a part on
an explicit time level n, due to the fact that u1 and u2 are solved sequentially
where also Eq. (2.1) has to be incorporated. To relax the time step ∆t in the
numerical model, the whole stress tension ϑi can be made implicitly by replacing
n by ∗ which results in a harder solvable scheme.

The resulting matrix-vector system of equations can be solved by a direct or
iterative method. We can note that in general we obtain a ‘favorable’ matrix in
the sense of consisting eigenvalues relatively close to one. This is the consequence
of the appearance of ∆t, which is very small in practice, on the left-hand-side
of (2.12).
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After the prediction step (2.12), the velocities at the new time instant n + 1
can be computed by the correction step:

un+1
i − u∗

i

∆t
= −1

ρ
∇p + gi − fσκi, i = 1, 2, (2.14)

under the constraint of the continuity equation (2.1). This yields⎧⎨
⎩ un+1

i = u∗
i + ∆t

(
−1

ρ
∇p + gi − fσκi

)
, i = 1, 2,

∇ · un+1 = 0,
(2.15)

where the divergence and the gradient operators still have to be discretized.
Combining both expressions of (2.15) leads to the pressure correction step, also
known as the Poisson equation,

∇ ·
(

1
ρ
∇p

)
= f, (2.16)

with f ≡ ∇ · (
1

∆tu
∗ + g − fσκ

)
. In contrast to the velocity u, the pressure is

discontinuous due to the discontinuous density ρ. Therefore, discretizing and
solving of (2.15) is not straightforward.

In summary, solving the Navier-Stokes equation (2.2) at each time step con-
sists of sequentially carrying out the velocity prediction (2.12), pressure cor-
rection (2.16) and velocity correction (2.15) steps. As earlier mentioned, the
pressure correction step (2.16) is by far the most difficult one since the pressure
operator is the leading contributor to stiffness. In other words, it is the pres-
sure correction step which is the most computationally challenging, despite its
elliptic origins.

Further details on the pressure-correction method and its accuracy can be
found in [30] and Van Kan [17].

2.5 Interface Advection

Recently, many methods are proposed to treat bubbly flows and to advect the
moving interfaces. In general, the interface representation can be explicit (‘mov-
ing, boundary conforming mesh’) or implicit (‘fixed mesh’) or a combination of
both.

Purely moving, boundary-conforming meshes are troublesome for simulating
large numbers of arbitrarily shaped interfaces. Front-tracking methods are com-
binations of fixed and moving mesh methods. Although the interface is tracked
by an interface grid, the flow is solved on a fixed grid. However, the interface
grid will be difficult to evaluate when the interface has arbitrary shape and
topology. Therefore an implicit interface definition by means of the Volume-of-
Fluid (VOF) and Level-Set (LS) methodology is preferred in our applications.
These methods have their drawbacks: advecting the so-called marker function
in VOF is not straightforward whereas the LS is not mass-conserving. Van der
Pijl et al. [30] have combined these two methods to obtain a mass-conserving
Level-Set (MLS) method, where advecting the marker function is a lot simpler
compared by the original VOF method. A short description of the MLS is given
below, see [30] for details.
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2.5.1 LS and VOF Method

In the original LS method, the interface is defined by the zero level-set of a
marker function Φ: Φ = 0 at the interface, Φ > 0 inside fluid Υ1 and Φ < 0
elsewhere. The interface is implicitly advected by advecting Φ as if it were a
material property:

∂Φ
∂t

+ u · ∇Φ = 0. (2.17)

Although this results in an elegant method, the drawback is that it does not
conserve mass. This means that additional effort is necessary to conserve mass
or at least to improve mass conservation.

In the VOF method, a marker function Ψ indicates the fractional volume of
a certain fluid Υ1 in a computational cell τ :

Ψ =
1

vol(τ)

∫
τ

χ dτ, (2.18)

where χ is the characteristic function which is 1 in Υ1 and 0 elsewhere. As a re-
sult, the value of Ψ will be 0 or 1 in cells without interface and 0 < Ψ < 1 in cells
containing the interface. There are algebraic and geometric methods available
to advect Ψ. However, algebraic methods are straightforward but inaccurate,
whereas geometric methods are elaborate to apply. Therefore advecting Ψ is
rather complicated.

2.5.2 Mass-Conserving Level Set Method

In the MLS method, corrections to the LS function at time step n, say Φn,
are made by considering the fractional volume Ψ of a certain fluid within a
computational cell. First the usual LS advection is performed resulting in a
tentative LS function Φn+1,∗. Since Φn+1,∗ will certainly not conserve mass,
corrections are made such that it does conserve mass. This requires three steps
at each time step:

1. the relative volume Ψn of a certain fluid in a computational cell is com-
puted from an explicit formula f which depends on Φn and its gradient:
Φn:

Ψn = f(Φn,∇Φn); (2.19)

2. the VOF function Ψn has to be advected conservatively during a time step
towards Ψn+1, using Φn;

3. corrections to Φn+1,∗ are sought such that

f(Φn+1,∇Φn+1) = Ψn+1 (2.20)

holds, resulting in a mass-conserving Φn+1.

The MLS method is described in detail in [30].
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3
CG Method, Preconditioning

and Deflation Techniques

3.1 Introduction

Large and sparse linear systems occur in many scientific and engineering appli-
cations. These systems result often from a discretization of partial differential
equations (PDE) where Finite Elements (FE), Finite Volumes (FV) or Finite
Differences (FD) schemes are applied. The systems tend to become very large
for 3-dimensional problems. Some models involve both time and space as inde-
pendent parameters and therefore it is necessary to solve such a linear system
efficiently at all time steps.

If we write a linear system as Ax = b, A ∈ R
n×n, which is used to discretize

an elliptic PDE defined on Ω, then A appears regularly to be a symmetric and
positive definite (SPD) coefficient matrix. In the previous chapter, we have
defined the Poisson equation:

∇ ·
(

1
ρ
∇p

)
= f, (3.1)

which is an elliptic PDE. Therefore, the resulting matrix A is SPD when ap-
propriate boundary conditions are used. Presently, direct methods (such as a
Cholesky decomposition) are available to solve such a linear system. However,
fill-in causes a loss of efficiency for large and sparse matrix A. For such a case,
iterative methods are a better alternative to reduce both memory requirements
and computing time.

The most popular iterative method is the Conjugate Gradient (CG) method
(see e.g. [14]). It is well-known that the convergence rate of the CG method is
bounded as a function of the condition number of matrix A. After k iterations
of the CG method, the error is bounded by (cf. Golub & Van Loan [14], Thm.
10.2.6):

||x − xk||A ≤ 2||x − x0||A
(√

κ − 1√
κ + 1

)k

, (3.2)

9



10 Chapter 3. CG Method, Preconditioning and Deflation Techniques

where κ = κ(A) = λn/λ1 is the spectral condition number of A and, moreover,
the A-norm of x is given by ||x||A =

√
xT Ax. Therefore, a smaller κ leads to a

faster convergence of the CG method. Van der Sluis & Van der Vorst [34] noted
that the convergence may be significantly faster than suggested in (3.2) if the
eigenvalues λi of A are clustered.

In practice, it appears that the condition number κ is relatively large, so
that solving Ax = b applying the CG method shows slow convergence to the
solution. Instead, a preconditioned system M−1Ax = M−1b could be solved,
where the SPD preconditioner M is chosen, such that M−1A has a more clus-
tered spectrum or a smaller condition number than that of A. Furthermore, M
must be chosen in such a way that the system My = z for every vector z can
be solved with less computational work than the original system Ax = b .

Probably the most general and effective SPD preconditioning strategy in
common use is to take M = LLT which is an Incomplete Cholesky (IC) fac-
torization of A, defined by Meijerink & Van der Vorst [22]. Since A is an SPD
matrix, an IC decomposition always exists. We denote the preconditioned Con-
jugate Gradient method by PCG and the PCG with IC factorization by ICCG.

In simple practical applications, ICCG shows good convergence relative to
other iterative methods (e.g., CG, Gauss-Seidel, SOR). However, it appears
that ICCG still does not give satisfactory results in more complex models, for
instance when the number of grid points becomes very large or when there are
large jumps in the coefficients of the discretized PDE.

To remedy the bad convergence of ICCG in more complex models, (eigen-
value) deflation techniques are proposed, originally by Nicolaides [26]. This
deflation technique has been exploited by several other authors, e.g., Mans-
field [20, 21], Morgan [23], De Gersem & Hameyer [12], Kolotilina [18] and
Waisman et al. [45, 46]. The deflation technique has also been exploited by
Vuik et al. [11, 38, 42–44] where we will concentrate on in this report.

The purpose of deflation techniques is projecting very small eigenvalues of
A near zero to exactly zero. These techniques might be successful due to Kaas-
schieter [16]. He notes that eigenvalues of a symmetric positive semi-definite
(SPSD) matrix that are zero do not contribute to the convergence of the CG
method.

In this chapter we first derive the projection matrix required for the deflation
technique. Thereafter, some properties, choices of deflation vectors and the de-
flated preconditioned CG algorithm are presented. We end with some examples
to illustrate the deflation technique.

3.2 Derivation Projection Matrix

To describe the deflation method in mathematical sense we need to define the
so-called ‘projection matrix’ first. Therefore we follow the approach of Nico-
laides [26].

Let the system to be solved be denoted by Ax = b, where A is n × n and
SPD. For this system, denote the iterate residuals by rk = b−Axk. In fact, the
unpreconditioned CG algorithm is described by

x0 = 0;
xk+1 = Ck[xk, xk−1] + µkrk, k = 0, 1, 2, . . . ,

(3.3)
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where the expression Ck[xk, xk−1] means a determined convex combination of
xk and xk−1. Moreover, the parameter sequences µk and also the convex com-
binations Ck[xk, xk−1] are determined by requiring that rk+1 is orthogonal to
both rk−1 and rk. Clearly,

rk+1 = Ck[rk, rk−1] − µkArk, k = 0, 1, 2, . . . . (3.4)

The above defined parameters µk and Ck[xk, xk−1] are determined as in the
standard derivation of the CG method (see for instance Golub & Van Loan
[14]) 1.

Next, we modify (3.3) by ‘deflating’ certain constituents from the residual
rk+1, i.e., by minimizing rk+1 in some sense. Let Z denote a fixed n× r matrix
whose columns are a basis for an r-dimensional subspace of R

n and consider
iterations:

x0 = 0;
xk+1 = Ck[xk, xk−1] + µk(rk − Zck), k = 0, 1, 2, . . . ,

(3.5)

with the still undefined vector sequences ck. It follows that

rk+1 = Ck[rk, rk−1] − µkA(rk − Zck), k = 0, 1, 2, . . . . (3.6)

Now, we define the vector sequences ck by choosing minck
||rk −Zck||A for all k.

This leads to minimizing

(A(rk − Zck), rk − Zck) , (3.7)

which is equivalent with solving ck from:

d

dck

(
rT
k Ark − 2cT

k ZT Ark + cT
k ZT AZck

)
= 0. (3.8)

This yields
−2ZT Ark + 2ZT AZck = 0. (3.9)

We can rewrite the latter expression in

Eck = ZT Ark → ck = E−1ZT Ark, (3.10)

with E ≡ ZT AZ. Now, Equation (3.6) becomes

rk+1 = Ck[rk, rk−1] − µkA(rk − ZE−1ZT Ark), (3.11)

and, since the identity APT = PA holds, it yields

rk+1 = Ck[rk, rk−1] − µkPArk, (3.12)

with
P ≡ I − AZE−1ZT . (3.13)

In the latter expression, P denoted the projection matrix required in the defla-
tion method.

1By using the notation Ck [xk, xk−1] = ωkxk + (1 − ωk)xk−1 with 0 ≤ ωk ≤ 1 and ω0 = 1

and by setting µk = αkωk, we obtain αk = (rk, rk)/(rk , Ark) and the recursion w−1
k =

1 − w−1
k−1 [αk(rk, rk)] / [αk−1(rk, Ark)] by direct calculations.



12 Chapter 3. CG Method, Preconditioning and Deflation Techniques

Thus, P is constructed in such a way that it minimizes rk in each iterate.
Notice that Z is arbitrarily chosen above. We interpret the columns of Z as
being a basis for a subspace of certain slowly varying residual components.
Expression (3.7) is used to ‘deflate’ such components form each residual. As
earlier mentioned, the behavior of the residuals are related to the condition
number of A, so that in fact we have to deflate some eigenvalues of A. This is
called ‘eigenvalue deflation’, where we choose Z such that it approximates the
eigenvectors of small eigenvalues in some sense.

Finally, we remark that it might be the case that the defined projection
matrix P even minimizes ||rk+1||A where rk+1 = Ck[rk, rk−1] − µkA(rk − Zck),
stronger than ‘only’ minimizing ||rk − Zck||A, see Saad et al. [32].

3.3 Deflation Technique

We have seen that the projection matrix P is defined by

P = I − AZE−1ZT , E = ZT AZ, Z ∈ R
n×r, (3.14)

where I is the n×n identity matrix and where the column space of Z is the so-
called ‘deflation subspace’, i.e., the space to be projected out of the residual. We
assume both r � n and Z having rank r, so that it guarantees E to be SPD and,
moreover, E−1 exists and is relatively cheap to compute. Note that the inverse
of E is never determined in practice. Instead, the system Ey = z with arbitrary
vector z is solved at low cost, for instance with a Cholesky decomposition.

Note further that projector P in (3.14) appears also in the multigrid setting.
If Z is chosen to be a coarse-to-fine prolongation operator, then P is normally
referred to as a coarse-grid correction operator. This is somewhat misleading
since also the operator:

PC = I − ZE−1ZT , E = ZT AZ, Z ∈ R
n×r, (3.15)

is often denoted by the coarse grid correction operator.
However, in other literature (see e.g. Giraud & Gratton [13]), two families

are splitted depending on whether the extreme eigenvalues are moved exactly
to one or are shift to close to one. The first class is referred to the deflation
approach, while the latter is referred to the class of coarse grid preconditioners.
In this case, it depends on the choice of Z whether we deal with deflation or
coarse grid correction.

Recently, Waisman et al. [45,46] proposed the generalized global-basis (GBB)
method. This GBB method is based on the global basis (GB) method which
constructs an auxiliary coarse model from the largest eigenvalues of the iteration
matrix. The GBB method projects these modes which would cause slow con-
vergence to a coarse problem which is then used to eliminate these modes. This
stabilizes and accelerates the iterative process, and yields rates of convergence
similar to the application of the unaccelerated multigrid method applied to a
positive definite system. It appears that this projection approach is identical to
the original deflation method.

To avoid ambiguity in this report, we call PC the coarse-grid correction op-
erator and P the projection/deflation operator for arbitrary Z. An iterative
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method using P is called a ‘deflation method’ rather than a coarse-grid correc-
tion or global-basis method. A comparison between P and PC will be made in
Section 3.6.

3.3.1 Properties of P

Using (3.14), a set of properties of P can be derived. These properties are
summarized in Theorem 3.1 and their proofs can be found in for instance [38].

Theorem 3.1. Let A be an n×n SPD matrix, let I be an n×n identity matrix
and let P be the projection matrix as defined in (3.14). Then the following
properties hold:

1. PT Z = PAZ = ZT P = 0;

2. APT = PA;

3. (I − PT )Z = Z;

4. P 2 = P ;

5. PA is SPSD and therefore PA is singular.

If Z consists of arbitrary vectors, then

6. PA has exactly r zero-eigenvalues.

If Z consists of orthogonal eigenvectors, then even the following properties hold:

7. for j > r PA and A have the same eigenvalues λj;

8. for j ≤ r the corresponding eigenvalues λj of A are all zero for PA.

If Z consists of orthonormal eigenvectors, then also the following property holds:

9. P = I − ∑r
i=1 ziz

T
i , where zi are the columns of Z.

The elimination of the small eigenvalues of A, i.e., projecting the small eigen-
values of A to zero, takes place by using projection matrix P . Therefore, we
have to solve

PAx̃ = Pb (3.16)

instead of Ax = b. In this sense, P can be interpreted as a preconditioner
matrix. However, PA is singular (Property 5 of Theorem 3.1), resulting in a
solution x̃ which is not uniquely determined. This does not cause problems,
since Kaasschieter [16] concludes that the singular system can be solved by the
CG method as long as the deflated system (3.16) is consistent, i.e., as long as
Pb ∈ Col(PA).

Theorem 3.2 (cf. [38], Thm. 5) can now be applied to find the unique solution
of Ax = b from PAx̃ = Pb.

Theorem 3.2. Let x be the unique solution of the SPD system Ax = b. Let
x̃ be an arbitrary solution of the SPSD system PAx̃ = Pb which satisfies Pb ∈
Col(PA). Then, x can be determined by x = ZE−1ZT b + PT x̃.
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Since ZE−1ZT b can be immediately computed, we need only to determine
PT x̃ to construct the solution x. Therefore, we solve x̃ from (3.16) using the
CG method and premultiply this solution with PT and add it to ZE−1ZT b.

Note that, due to Properties 6 and 7 of Theorem 3.1 and the observation
(zero-eigenvalues do not contribute to the convergence of the CG method) of
Kaasschieter [16], we obtain indeed a smaller condition number κ after deflation,
i.e.,

κ̃(PA) =
λn

λr+1
≤ λn

λ1
= κ(A), (3.17)

where κ̃(PA) is called the effective condition number of PA. When there is no
ambiguity, we omit the tilde and therefore, we write κ(PA) instead of κ̃(PA) .

3.3.2 Bounds for κ(PA)

As mentioned above, a nice feature of the deflation method is that the con-
vergence rate depends on the effective condition number κ(PA) = λn/λr+1.
Nicolaides [26] proved the following bounds:

λn(PA) = sup
x⊥Col(Z)

xT x

xT A−1x
, λn(PA) = inf

x⊥Col(Z)

xT x

xT A−1x
. (3.18)

In fact, Z is a rectangular matrix constructed in such a way that the ‘inverse’
Rayleigh quotient xT x/xT A−1x should not take extremely small/large values
on the subspace orthogonal to the column space of Z. 2

In Frank & Vuik [11], rather sharp bounds of a different flavor are introduced
for κ(PA), see Theorem 3.3.

Theorem 3.3. Let A and P as defined above. Suppose there exists a splitting
A = C + R such that C and R are SPD with the null space of C equal to the
span of Z, i.e., Null(C) = span{Z}. Then

λi(C) ≤ λi(PA) ≤ λi(C) + λmax(PR). (3.20)

Moreover, the effective condition number of PA is bounded by

κ̃(PA) ≤ λn(A) + λr+1(C). (3.21)

Proof. The proof can be found in Section 2 of [11].

The bounds given in Theorem 3.3 provide direction in choosing the deflation
vectors such that it optimizes the convergence property. When we consider a
discretized domain Ω divided in subdomains, we get the following result. If grid
refinement is performed on Ω, keeping the grid resolution of each subdomain
fixed, then the condition number is insensitive to the grid size. In this case, the
convergence is governed by the ‘worst’ conditioned subdomain problem.

Other kind of bounds of the eigenvalues and the effective condition number
of PA are given in Nabben & Vuik [24], see Theorem 3.4 and Corollary 3.1.

2In general, if H is symmetric and the vector p �= 0, then the scalar 〈p,Hp〉
〈p,p〉 is known as

the Rayleigh quotient of p. The Rayleigh quotient is important because it has the following
property:

λmin(H) ≤ 〈p, Hp〉
〈p, p〉 ≤ λmax(H). (3.19)

See also Golub & Van Loan [14], Section 5.2.3.
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Theorem 3.4. Let A as defined above. Let Z1 ∈ R
n×r and Z2 ∈ R

n×s with rank
Z1 = r and rank Z2 = s. Define again E1 := ZT

1 AZ1 and E2 := ZT
2 AZ2. Define

also: P1 := I − AZ1E
−1
1 ZT

1 and P2 := I − AZ2E
−1
2 ZT

2 . If Col(Z1) ⊆ Col(Z2)
then:

λn(P1A) ≥ λn(P2A), λr+1(P1A) ≤ λs+1(P2A). (3.22)

The latter theorem states that the effective condition number of PA de-
creases if we increase the number of deflation vectors, see also Corollary 3.1.

Corollary 3.1. Let A, P1, P2 be as in Theorem 3.4. Then:

κ̃(P1A) ≤ κ̃(P2A). (3.23)

3.3.3 Combined Preconditioning and Deflation Techniques

It is also possible to combine both a standard preconditioning and a deflation
technique. Instead of solving PAx̃ = Pb, we solve:

M−1PAx̃ = M−1Pb. (3.24)

If the IC decomposition is applied as preconditioner M , then this leads to the
DICCG method which is described in the next section. This method is rather
efficient relative to other general preconditioners. For instance, Theorem 2.11
and numerical experiments of [24] show that the DICCG method converges
always faster than ICCG preconditioned by the coarse grid correction.

3.4 DICCG Algorithm

The linear system Ax = b can be solved with DICCG as aforementioned. Then
we solve actually the preconditioned-deflated linear system (3.24). Below the
algorithm of is given in detail (cf. Algorithm 1 of [43]). Note that in the stan-
dard IC-decomposition the lower triangular matrix L and diagonal matrix D
are used such that A ≈ LD−1LT is satisfied 3.

The algorithm is described in more detail in Appendix A. Note that if
Z = 0, we obtain P = I so that DICCG results in ICCG, i.e., the non-deflated
ICCG method.

Moreover, notice that zj in the above algorithm is the ‘preconditioned’ resid-
ual, i.e., zj = (LD−1LT )−1rj . This gives no ambiguity in the context, because
the columns of Z (= z1, z2, . . . , zr) are not mentioned explicitly in the algorithm.

In literature, more variants of DICCG are known, see for instance Saad
et al. [32] and Kolotilina [18]. These variants differ slightly from the above
algorithm but they are mathematically equivalent.

3More detailed, lower triangular matrix L as given in the algorithm is determined with the
IC decomposition such that it satisfies (cf. [22]):

• Lij = 0 when Aij = 0;

• (LD−1LT )ij = Aij when Aij �= 0 and Lii = Dii.
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Algorithm 1 DICCG Algorithm
1: Compute r̂0 := Pb, z1 := L−T DL−1r̂0 and p1 := z1.
2: for j := 1, . . . , until convergence do
3: wj := PApj

4: αj := (r̂j,zj)
(pj ,wj)

5: x̃j+1 := x̃j + αjpj

6: r̂j+1 := r̂j − αjwj

7: zj+1 := L−T DL−1r̂j+1

8: βj := (r̂j ,zj)
(r̂j−1,zj−1)

9: pj+1 := zj+1 + βjpj

10: end for

3.5 Choice of the Deflation Space

The deflation technique and the DICCG method are presented in the previous
section. Recall that P = I − AZE−1ZT where Z is an n × r matrix as defined
in (3.14). Now, the remaining part left is to define the deflation space, i.e., the
columns of Z.

3.5.1 Eigenvalue Deflation

We have earlier mentioned that deflation is applied to get rid of (extremely)
small eigenvalues that delay the convergence of the iterative method. Due to
Properties 6 and 7 of Theorem 3.1, the most natural choice of the columns of
Z is exactly the eigenvectors corresponding to those small eigenvalues of A. We
denote this choice of deflation by eigenvalue deflation (EV-Def). However, this
is not applicable in practice because in general

• the involved eigenvectors are unknown. Therefore, these eigenvectors have
to be approximated, which can be very expensive;

• Z is not sparse, leading to large work to construct E and computing with
P in the DICCG method.

Hence, we have to look for other choices of Z instead of EV-Def. Generally,
favorable requirements for the choice of Z are

• r � n;

• columns of Z can be constructed relatively easy;

• Z is sparse;

• the columns of Z represent approximately the eigenvectors of the small
eigenvalues so that Properties 6 and 7 of Theorem 3.1 still hold ‘in some
sense’.

Many authors have proposed methods to approximate the eigenvectors, see e.g.
Vuik et al. [43], Chapman & Saad [5], Burrage et al. [3] and Saad et al. [32].
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Vuik et al. [43] proposed a scheme based on physical deflation (P-Def) in
which the deflation vectors are continuous and satisfy the original partial differ-
ential equation on a subdomain. In this case, Z is more sparse than Z obtained
with EV-Def.

Chapman & Saad [5] found approximate eigenvectors in the deflated-GMRES
algorithm from the data generated during the GMRES iterations. Three projec-
tion techniques have been presented to obtain such approximations. The har-
monic projection method (H-Def), originally suggested by Morgan [23], yielded
the best results in finding eigenvalues nearest zero. The H-Def approach uses
Ritz values and relies on solving generalized eigenvalue problems with a much
lower dimensions than A. Note that this approach is successful to solve effi-
ciently SPD systems with multiple right-hand sides of the form Ax(s) = bs, s =
1, 2, . . . , ν, see Section 5 of Saad et al. [32] for details. However, the deflation
matrix obtained with H-Def is not sparse in general resulting in possible heavy
computations with P and huge memory requirements.

Burrage et al. [3] have used a deflation technique applied on standard itera-
tive methods (like Gauss-Seidel or Jacobi methods) based on

My(k+1) = Ny(k) + b, (3.25)

with A = M − N where M is non-singular. The deflation technique relies on
computing so-called orthogonalized difference vectors and determining Schur
vectors of a matrix with lower dimensions. This deflation technique provides
a distinct advantage for ill-conditioned systems where the underlying scheme
would either diverge or converge very slowly. Several numerical experiments
demonstrated the efficiency of the method in [3]. However, for systems where
the iterative scheme is already converging reasonably well, the accelerated con-
vergence provided by deflation is not worth by considering the required extra
work (see Section 6 of [3]).

In the next subsection we introduce another class of deflation techniques
which is based on choosing subdomains rather than approximating eigenvectors.

3.5.2 Subdomain Deflation

A different variant involves the so-called algebraic deflation (A-Def) with discon-
tinuous deflation vectors, see for instance Vuik et al. [38,42] and Nicolaides [26].
In fact, A-Def is a domain decomposition method and therefore it is often called
subdomain deflation.

It appears that A-Def is favorable relative to P-Def and H-Def due to the
following observations:

• Z of A-Def is sparser than Z defined in P-Def and especially in H-Def;

• in numerical experiments, it has been shown that A-Def speeded the con-
vergence up compared to P-Def.

A-Def is constructed in the following more mathematical sense. Let the
computational domain denoted by Ω. This can be divided in open subdomains
Ωj , j = 1, 2, . . . , r, such that Ω = ∪r

j=1Ω̄j where Ω̄j is Ωj including its bound-
aries, i.e., Ω̄j = Ωj ∪ Γ . Let zj , j = 1, 2, . . . , r be the columns of Z. For each
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subdomain Ωj we introduce a deflation vector zj as follows:

zj(x, y) =
{

0, (x, y) ∈ Ω \ Ω̄j ;
1, (x, y) ∈ Ωj .

(3.26)

Notice that we have not judged the value of zj(x, y) in any possible interface
points inside Ω. A graphically representation of the deflation vectors can be
found in Figure 3.1.
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Figure 3.1: Representation of the subdomain deflation vectors with r = 4 in a square
domain Ω.

Detailed treatment of interface points for Ω consisting high and low perme-
ability regions has been done in [38]. In that case the A-Def technique appears
to succeed when averaged or no overlap is applied in the deflation vectors. The
worst variant is to choose total overlap deflation vectors.

Constant and Linear Deflation Vectors

When we consider a 1-dimensional case with two subdomains where n grid
points are taken per subdomain, we obtain:

ZCD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 0
...

...
1 0
0 1
0 1
...

...
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.27)

Therefore, the deflation vectors in the A-Def method are also called constant
deflation (CD) vectors. In this case, we add the underscript ‘CD’ to Z. Note
that each column of Z can be scaled since the matrix PA only depends on
span{Z}.

The underlying idea of choosing CD vectors was to approximate eigenvectors
belonging to the smallest eigenvalues. Since the eigenvectors represent normally
components of the solution which is often not-linear, these CD vectors give only a
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rough approximation. This motivates several authors, among others Verkaik [36]
and Fischer [10], to augment the subspace spanned by the CD vectors with linear
deflation (LD) or even quadratic deflation (QD) vectors. In our 1-dimensional
example with n grid points a subdomain, we obtain (cf. Eq. (3.28)):

ZLD =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0
1 2 0 0
...

...
...

...
1 n 0 0
0 0 1 1
0 0 1 2
...

...
...

...
0 0 1 n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.28)

for Z constructed with LD vectors. Hence, we have two deflation vectors per
subdomain. Note that the values of the linear deflation vectors does not matter
as long as the vector is linear, since only span{Z} counts.

Generalization to 2-D and 3-D cases is straightforward for the CD vectors.
For each subdomain, the elements of the vectors can simply be taken constant
in the grid nodes. However, in contrast to these CD vectors, generalization to
2-D and 3-D cases of LD vectors is not trivial. In two dimensions one can take
three vectors per subdomain: one constant and two linear vectors in each of
the two dimensions. In similar way one needs four vectors per subdomain in
three dimensions. When the number of subdomains are large, this can lead to
proportionally many LD vectors making the deflation technique less cheap. Nev-
ertheless, using LD or QD vectors can accelerate significantly the convergence
of the iterative method, especially when the solution has a linear or quadratic
form. This is left for further research.

3.5.3 Solution Deflation

Another class of deflation has been proposed by Clemens et al. [6]. They intro-
duced a subspace projection extrapolation scheme for the starting vector gen-
eration of linear systems from implicit time integration schemes for electromag-
netic discrete field formulations. The scheme yields optimal linear combinations
from multiple available starting vectors. Similar to eigenvalue deflation, spec-
tral components of the exact solution contained therein are optimally resolved
which reduces the effective condition number.

Suppose {u1, u2, . . . , uk−1} are solutions of the linear systems at time steps
1, 2, . . . , k − 1. Then, to find solution uk we use the deflation matrix:

Z = [u1 u2 · · · uk−1]. (3.29)

Note that Z is dense in general. Therefore, k should be sufficiently small to
preserve an efficient deflation method. This method is successful when

uk ≈ span{Z}. (3.30)

Numerical experiments in [6] emphasized the improved convergence of the
CG method combined with the solution deflation.
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3.6 Comparison of Deflation and Some Other

Preconditioners

Comparisons have been made between deflation and the well-known coarse grid
correction (CGC) and the balancing Neumann-Neumann (BNN) preconditioner
in Nabben & Vuik [24, 25], respectively. The results are summed up below,
where we denote the deflation projection matrix by PD instead of P to avoid
ambiguity.

3.6.1 Deflation versus CGC preconditioner

The CGC preconditioner is defined by

PC ≡ I − ZE−1ZT , (3.31)

and in preconditioned case:

PCM−1 ≡ M−1 − ZE−1ZT . (3.32)

which have originally been introduced by Bramble et al. [2] and Dryja & Wid-
lund [8]. They have showed, under mild conditions, that the convergence rate
of the PCG method is independent of the grid sizes.

A more abstract analysis and further extension of this preconditioner have
been given recently by Padiy et al. [28]. They note that instead of deflating the
small eigenvalues as in original deflation methods, PC ‘moves’ the small eigen-
values to the vicinity of the largest eigenvalue and using a preconditioner, which
results in PCM−1 , bounds the largest eigenvalues. One of the main advantages
of the proposed algorithm is the possibility of avoiding exactly solving systems
with E. This relaxes the restrictions posed on the choice of Z and often leads
to more efficient implementations of the solver.

In the multigrid (MG) or domain decomposition (DDM) language, the matri-
ces Z and ZT are known as restriction and prolongation/interpolation operator,
respectively. Moreover, the matrix E ≡ ZT AZ is called the Galerkin operator.
In DDM, M−1 is the sum of the local solves in each domain, obtained by a direct
or iterative way. To speed up convergence, a coarse grid correction ZE−1ZT is
added.

It can be proved that the effective condition number of the deflated precon-
ditioned system M−1PDA is always below the condition number of PCM−1A,
i.e., the system preconditioned by CGC, see also Theorem 3.5.

Theorem 3.5. Let A, M ∈ R
n×n be SPD matrices. Let Z ∈ R

n×r with
rank Z = r. Then:

λn(M−1PDA) ≤ λn(PCM−1A),
λr+1(M−1PDA) ≥ λ1(PCM−1A). (3.33)

Proof. See the proof of Theorem 2.11 of Nabben & Vuik [24].

As a consequence, for all matrices Z ∈ R
n×r and for all positive definite

preconditioners M−1, the CG method applied to the deflated preconditioned
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system converges always faster than the CG method applied to the CGC pre-
conditioned system, since

κ(PCM−1A) ≥ κ̃(M−1PDA). (3.34)

Numerical results for porous media flows and parallel preconditioners empha-
sized the theoretical results (see Section 4 of [24]). Note that in the above analy-
sis we assume that systems with E are solved exactly since this is a requirement
for the deflation method. In the CGC preconditioner the inner iterates with
respect to E can be solved inaccurately. In this case, the iterative method
needs more iterations to converge in general, but the required CPU time can be
significantly lowered since the inner iterates can be computed cheap.

3.6.2 Deflation versus BNN preconditioner

The BNN preconditioner is given by

PB ≡ (I − ZE−1ZT A)M−1(I − AZE−1ZT ) + ZE−1ZT , (3.35)

where M is an SPD so-called Neumann-Neumann preconditioner and therefore
PB is also SPD. This preconditioner is originally proposed by Mandel [19].

The effective condition number of M−1PDA is always below the condition
number of PCM−1A, see Theorem 3.6.

Theorem 3.6. Let A, M ∈ R
n×n be SPD matrices. Let Z ∈ R

n×r with
rank Z = r. Then:

λn(M−1PDA) ≤ λn(PB−1A),
λr+1(M−1PDA) ≥ λ1(PB−1A). (3.36)

Proof. See the proof of Theorem 2.7 of Nabben & Vuik [25].

As a consequence,
κ(PBA) ≥ κ̃(M−1PDA), (3.37)

so the convergence bound based on the effective condition number implies that
preconditioned deflated CG converges faster than CG preconditioned by the
BNN preconditioner. However, the differences between both approaches are rel-
atively small considering numerical experiments in [25], which can be explained
by Theorem 3.7.

Theorem 3.7. Suppose that the spectrum σ of M−1PDA is given by:

σ(M−1PDA) = {0, . . . , 0, λr+1, . . . , λn} , (3.38)

then
σ(PBA) = {1, . . . , 1, λr+1, . . . , λn} . (3.39)

Proof. See the proof of Theorem 2.8 of Nabben & Vuik [25].

Thus both preconditioners lead to almost the same spectra with the same
clustering: the zero eigenvalues of the deflation preconditioned system are re-
placed by eigenvalues which are one if the BNN preconditioner is used.
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3.7 Examples

Various examples of A-Def can be found in [11, 38, 42–44]. Most of them are
considering 2-dimensional geological applications with porous media, where the
earth underground consists of layers with very large differences in permeability.
The prediction of the fluid pressure history of this underground can be mod-
elled by a time-dependent diffusion equation, leading to an SPD matrix A after
discretization. Due to the large permeability differences, A has a very large
condition number and the IC preconditioned matrix L−1AL−T has a few very
small eigenvalues near zero (cf. Thm. 2.2 of [44]). Several experiments have
successfully been done with P-Def and A-Def for this type of problems. In most
cases, A-Def gives the best results.

In this section we give two extra examples to illustrate the technique of defla-
tion. In Example 1, we consider a 1-dimensional variant of the above mentioned
geological application. In Example 2, a 2-dimensional Poisson equation on a
homogeneous domain Ω is treated, where A-Def is applied to artificially layers
and blocks in Ω.

Example 1: 1-D Layer Problem

The following diffusion problem with 9 layers is considered:⎧⎨
⎩

−∇ · (σ(x)∇u(x)) = f(x), x ∈ (0, 1),

ux(0) = 0, u(1) = 1.
(3.40)

We denote the region with sand and shale by Ωsand and Ωshale, respectively.
Now, we take f(x) = 1 and σ such that

σ(x) =
{

1 x ∈ Ωsand,
ε x ∈ Ωshale,

(3.41)

for some constant ε satisfying 0 < ε � 1.
Note that when f(x) = 1 is taken, then it can easily be verified that the

solution is equal to the constant function u(x) = 1 for all ε.
By central differences, we obtain the following linear system:

Au = f, (3.42)

where A is a symmetric positive definite (SPD) matrix with sizes n×n, u is the
unknown vector of size n and f is the source vector and some elements due to
the boundary conditions.

The linear system (3.42) has been solved with the diagonal-preconditioned
CG (DCG) and the deflated diagonal-preconditioned CG (DDCG) method with
tolerance ε = 10−6. Note that in a 1-dimensional problem, the Incomplete
Cholesky decomposition is identical to the standard Cholesky decomposition.
Therefore, it makes no sense to apply this as preconditioner. Instead of this, we
use the standard diagonal preconditioner D defined by

D = diag(A) (3.43)

and hence,
Ã = D− 1

2 AD− 1
2 . (3.44)
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In fact, we take L = D
1
2 in Algorithm 1. Furthermore, eigenvectors of Ã are

chosen as deflation vectors.
We take 10 grid points in each layer, resulting in n = 90. Solution u of this

problem can be seen in Figure 3.2.
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Figure 3.2: Solution of Example 1 (ε = 10−6) with 9 layers and 10 gridpoints per layer.

The results of using CG, DCG and DDCCG can be found in Table 3.1.

Method # Iterations
CG 516

DCG 107
DDCG (k = 1) 94
DDCG (k = 2) 73
DDCG (k = 3) 44
DDCG (k = 4) 25
DDCG (k = 5) 21
DDCG (k = 6) 21

Table 3.1: Number of iterations for CG, DCG and DDCG with different values of k.

First we note that the number of iterations of CG (516) is very large with
respect to the number of grid points (91). Moreover, it can be observed in Table
3.1 that DDCG with sufficient large k is more than twice as fast as DCG. In
Figure 3.3, one can find the four eigenvectors which are used in DDCG with
k = 4. It can be seen that the eigenvectors are constant in the sand layers.

Considering Table 3.1, we can also note that increasing k leads to less it-
erations and from k = 5 the decrease of iterations is relatively restricted. The
explanation is given in [38].

In Figure 3.4, one can find the residuals (inside the iterative method) of each
iterate for CG, DCG and DDCG. It can be concluded that the erratic behavior,
observed in CG and DCG, has been disappeared in DDCG.

Example 2: Poisson Problem

The 2-dimensional Poisson equation is considered with constant density ρ:

∆u = 1, (3.45)
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We solve this problem with the grid sizes nx = ny = 64 by applying a
standard finite difference stencil and DICCG. The plot of the solution can be
found in Figure 3.7.
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Figure 3.5: Solution of Example 2.

In DICCG, we apply A-Def where artificially horizontal layers and thereafter
blocks with equal sizes are taken as subdomains Ωj .

Deflation with Horizontal Layers as Subdomain Vectors

We start with a deflation technique where we take horizontal layers as subdo-
mains. The results can be found in Table 3.7. We observe some improvements
in the results by enlarging the number of layers, but these results are not satis-
factory.

# Deflation Vectors # Iterations
0 85
2 65
4 61
16 60
64 60

Table 3.2: Number of DICCG-iterations using ‘horizontal layers deflation’ in Example
2.

Deflation with Blocks as Subdomain Vectors

The results of deflation with blocks as subdomain vectors are given in Table
3.3. From this table, we notice a relatively large improvement by enlarging the
number of deflation blocks. The number of iterations is reduced by over 80%
comparing the first and last row, while the amount of work to construct P is
still sufficiently small. However, the efficiency of block deflation is not only
determined by the number of iterations. To illustrate this we look also at the
number of flops needed in the method. In Appendix B, an estimate is given of
the number of flops required in both methods. The total number of flops using
ICCG and DICCG are denoted by Ficcg and Fdiccg, respectively. The value φ
is defined by φ = Fdiccg − Ficcg.
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# Block Deflation # Iterations Ficcg (×103) Fdiccg (×103) φ (×103)
No 85 198 198 –
1 77 198 201 3
4 58 198 153 −45
16 38 198 107 −91
64 25 198 103 −95
256 17 198 298 100

Table 3.3: Number of DICCG-iterations and φ using ‘block deflation’ in the Poisson
problem at unit domain with Neumann and Dirichlet boundary conditions.

Obviously, it can be concluded that DICCG performs (much) better than
ICCG by applying r = 4, 16, 64. For the case of r = 64, DICCG seems to be
optimal in this example.



Chapter

4
Parallel Computing and Do-

main Decomposition Methods

4.1 Introduction

In Chapter 1 we have considered the Poisson equation. After discretization this
has led to a linear system which can be huge, especially in the 3-D case. The
required work to solve this with an iterative solver can be enormous and the
available memory can be insufficient, even when a supercomputer is used.

Parallel computing is fast becoming an inexpensive alternative to the stan-
dard supercomputer approach for solving large linear problems that arise from
PDE’s like the Poisson equation. Much recent literature with wide overviews
is available, see for instance Demmel et al. [7], Duff & Van der Vorst [9] and
Petersen & Arbenz [29].

The iterative techniques can be parallelized by dividing the work over a set
of computers in a certain way. Several forms of parallelism are available (see
e.g. Saad [31], Chapter 11). A well-known implementation of parallelism is
that shared memory computers are implemented with a switching network, see
Figure 4.1. In this setup, no ‘master-computer’ is required controlling the ‘slave-
computers’. Main benefits of shared memory models are that access to data
depends very little on its location in memory and that a large global memory is
readily accessible to any processor.

m mm m

p p p p

switching network

Figure 4.1: Parallel implementation with a switch based shared memory system. ‘p’
= processor, ‘m’ = memory.

27
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The DICCG method has been introduced in the previous chapter to solve
problems like the Poisson problem. To do this in a parallel environment, we
have to distinguish the main types of operations in DICCG, which are:

(a) matrix-vector multiplications;

(b) vector updates;

(c) dot products;

(d) preconditioning setup and operations;

(e) deflation setup and operations;

In the above list, the potential bottlenecks are setting up the preconditioner and
solving linear systems with the preconditioner (step (d)). On the other hand,
deflation setup and operations (step (e)) can be parallelized well, which can be
seen in the next section. Moreover, we note that the dot product operation (c)
may be troublesome in computational applications, since all the processors must
synchronize and perform communication before computations can be continued,
see Section 6 of Hagger [15].

Since step (d) is the most complicated one in the parallel approach, we have
to pay attention to this. In Section 4.3 we consider preconditioners based on
the Schur complement and based on non-overlapping additive Schwarz (also
known as the additive Schwarz with minimum overlap), which have attracted a
lot of attention in the numerical analysis community. Equivalently, instead of
DICCG we consider the deflated CG method preconditioned with a block-Jacobi
preconditioner:

Mjac =

⎛
⎜⎜⎜⎝

M11 ∅

M22

. . .
∅ Mss

⎞
⎟⎟⎟⎠ . (4.1)

In Section 4.4 we treat the preconditioner in more detail. Practically, solving the
linear system Mjacz = y accurately is algebraically equivalent to the Schur com-
plement approach. However, each submatrix Mii can be extremely large, so that
accurately solving can be expensive. Instead, solving Mjacz = y inaccurately,
by applying an iterative method, becomes attractive. This latter approach is
algebraically equivalent to the additive Schwarz preconditioner. Since there is
no overlap, the linear subsystems Miizi = yi for all i = 1, 2, . . . , s can be solved
in parallel.

In fact, these parallel ideas are all based on domain decomposition methods
(DDM), see also Smith et al. [35] and Wilders et al. [47] for a wide overview of
these methods.

4.2 Parallel Deflation

The n × n projection matrix as given in the previous chapter has been defined
as:

P = I − AZE−1ZT , E = ZT AZ, Z ∈ R
n×r, (4.2)
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where we take r the number of subdomains (i.e., r = s). Recall that Ωm, m =
1, 2, . . . , s are non-overlapping subdomains such that ∪s

m=1Ωm = Ω.
As in the coarse grid correction methods, the columns zm of Z can be chosen

in the following way:

zm(i) =
{

1, i ∈ Ωm;
0, i /∈ Ωm,

(4.3)

for all m = 1, 2, . . . , s. Consequently, Z is a sparse matrix where each row
consists of one non-zero element.

In parallel, first the unknowns have to be distributed according to subdomain
across available processors. For convenience, one subdomain per processor is
assumed. The coupling with neighboring domains is realized by the use of
virtual cells added to the local grids. In this way, a block-row of Ax = b
corresponding to the subdomain ordering

A =

⎛
⎜⎝

A11 · · · A1s

...
...

As1 · · · Ass

⎞
⎟⎠ (4.4)

can be represented locally on one processor: the diagonal block Aii represents
coupling between local unknowns of subdomain i and the off-diagonal blocks of
block-row i represent coupling between local unknowns and the virtual cells.

For the operations with deflation in parallel (see also Vuik et al. [41] and
Frank & Vuik [11]), first we compute and store successively the matrices E and
E−1 on each processor, whereas locally AZ is computed and stored. Use of the
projection matrix P within a Krylov subspace method involves premultiplying
a vector p by PA:

x ≡ PAp = (I − AZE−1ZT )Ap. (4.5)

Then, to compute x = PAp, the following operations have to be done:

• the matrix-vector multiplication w := Ap, requiring nearest neighbor com-
munications;

• the local contribution to the restriction x1 := ZT w which has to be dis-
tributed to all processors;

• a coarse grid operation x2 := E−1x1, which is locally determined;

• finally x := I − AZx2 which is also locally determined.

The total communications involved in the matrix-vector multiplication and de-
flation are a nearest neighbor communication of the length of the interface.

From a 2-D problem (with a five-point discretization), it can be verified that
the added iteration expense of deflation to be less expensive than an ILU(0)
factorization and that the method will parallelize efficiently on a distributed
memory computer (see Frank & Vuik [11], Section 5). Moreover, the overlapping
of subdomains makes the parallel iterative method more or less independent of
the subdomain grid size, but overlapping is not easy to implement on top of an
existing software package. To make the parallel iterative method robust, one
can also apply the deflation technique, since only a slow increase of the number
of iterations can be observed when the subdomain grid size is constant and the
number of subdomains increases (see also Vuik & Frank [39]). Additionally,



30 Chapter 4. Parallel Computing and Domain Decomposition Methods

for a fixed global grid, it appears that the number of iterations decreases when
the number of processors increases. This result has also been obtained in the
numerical experiments of the previous chapter.

4.3 Domain Decomposition Methods

Before we treat preconditioners based on DDM’s, first some of these DDM’s
are described shortly in this section to gain insight. Domain decomposition
techniques are distinguished by four features (Saad [31], Chapter 13):

• type of partitioning;

• degree and way of overlap;

• processing of interface values;

• accuracy of subdomain solution.

In this report we consider only two DDM approaches:

1. Schur complement methods (SCM);

2. additive Schwarz methods (ASM).

These methods are related to each other, since they algebraically leads to the
(accurate and inaccurate, respectively) block-Jacobi preconditioner.

4.3.1 Schur Complement Method (SCM)

Let Ax = b be an n× n linear system derived from the Poisson equation which
holds in domain Ω. Assume that Ω can be partitioned into s subdomains Ωi, i =
1, 2, . . . , s. This linear system, associated with the problem, has the following
structure: ⎛

⎜⎜⎜⎜⎜⎝

B1 ∅ G1

B2 G2

∅
. . .

...
Bs Gs

F1 F2 . . . Fs C

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...
xs

y

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

f1

f2

...
fs

g

⎞
⎟⎟⎟⎟⎟⎠ , (4.6)

where each xi represents the subvector of unknowns that are interior to subdo-
main Ωi and y represents the vector of all interface unknowns. Assume further
that x ≡ (x1; x2; . . . ; xs) has dimension n1 and y has dimension n2 = n−n1, i.e.,
we assume that Ω consists of n2 interface points and n1 non-interface points.
To facilitate we express the above system in the simpler form:(

B G
F C

) (
x
y

)
=

(
f
g

)
. (4.7)

Thus, G represents the subdomain to interface coupling seen from the subdo-
mains, whereas F can be associated with the interface to subdomain coupling
seen from the interface nodes. From the first block row, the unknown vector x
can be computed from

Bx = f̃ , (4.8)
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with f̃ ≡ f − Gy. Upon substituting this into the second block equation, the
following reduced system is obtained

Sy = g̃, (4.9)

with S ≡ C−FB−1G and g̃ ≡ g−FB−1f . The latter system (4.9) is also known
as the Schur complement system. If the components of this Schur complement
system can be formed and the solution exists, all the interface variables y will
become available. Once these variables are known, the remaining unknowns can
be computed via (4.8).

The above described method of decoupling interior and interface equations is
called the Schur complement method. Matrix S is called the Schur complement
matrix associated with the variable y. One possible solution method for solving
the Schur complement system is the deflation method applied by Mansfield [21].

A practical implementation of the whole solution method based on this SCM
approach can be obtained with a Block-Gaussian elimination, see for instance
Saad [31] (Section 13.2, Algorithm 13.1). Each subsystem, which has to be
solved, can be treated in a direct or iterative way, depending on the size of
the subproblems and interfaces. Because of the particular block structure of B,
observe that any linear system solution with it decouples in s separate systems
which is obviously well-parallelizable.

The above described method of decoupling into block equations is only suc-
cessful when the number of interface points is limited, i.e., n1  n2. Therefore,
the configuration of the subdomains determines the attractiveness of the SCM.
In our 3-D bubbly-flow applications, the method may fail by assuming that each
bubble corresponds to a subdomain. This is a consequence of the possible ap-
pearance of many bubbles and a possible finer grid around the interfaces. On the
other hand, by taking an alternative configuration, where the subdomains are
considered to be fixed parts of Ω not depending on the location of the bubbles,
can be more attractive to apply the SCM. Note that in the latter approach, each
subdomain can consist of several bubbles. Both configurations are graphically
given in Figure 4.2.

(a)

Ω1 Ω1

Ω2

Ω2

(b)

Figure 4.2: Simple problem with one bubble: (a) subdomains based on the bubble and
(b) fixed subdomains independent of the bubble.

4.3.2 Additive Schwarz Method (ASM)

The additive Schwarz method is a variant of the original alternating procedure
described by Schwarz in 1870. It consists of three parts:
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• alternating between two overlapping domains;

• solving the Dirichlet problem on one domain at each iteration;

• taking boundary conditions based on the most recent solution obtained
from the other domain.

This procedure is also called the multiplicative Schwarz procedure which is
strongly related to the block Gauss-Seidel iterations. The analogue of the block-
Jacobi procedure is known as the additive Schwarz procedure which is described
below.

Let Aii be the corresponding submatrix of the subdomain Ωi with certain
boundary conditions which holds for all i = 1, 2, . . . , s. Moreover, let Ri an
ni × n restriction matrix formed by some rows of the identity matrix related
to subdomain Ωi. The transpose RT

i is a prolongation operator which takes
a variable from Ωi and extends it to the equivalent variable in Ω. With this
interpretation we can write:

Aii = RiART
i , (4.10)

where Aii is of dimension ni × ni and defines a restriction of A to Ωi. A
problem associated with Aii can be solved which would update the unknowns
in the domain Ωi.

The ASM consists of updating all the new block components from the same
residual. It differs from the multiplicative procedure only because the compo-
nents in each subdomain are not updated until a whole cycle of updates through
all domains are completed. The basic additive Schwarz iteration would therefore
be as follows (Saad [31], Section 13.3.3):

1. For i = 1, 2, . . . , s Do

2. Compute δi := RT
i A−1

ii Ri(b − Ax)

3. EndDo

4. xnew := x +
∑s

i=1 δi

Each instance of the loop redefines different components of the new approxima-
tion xnew and there is no data dependency between the subproblems involved
in the loop. Consequently, the subproblems are well-parallelizable.

It can be easily verified that the above described basic additive Schwarz
iteration is equivalent with the block-Jacobi iteration (cf. Algorithm 4.1 of
Saad [31]).

Analogous to the SCM, when the bubbles are chosen to be the subdomains,
the additive Schwarz method may also be difficult applicable in problems of 3-D
bubbly flows, due to the possibly large number of bubbles (i.e., s  1) and the
non-stationary position of the bubbles. However, the ASM can be still useful
by considering fixed subdomains (cf. Figure 4.2(b)).

4.4 Parallel Preconditioners

In DICCG the incomplete Cholesky preconditioner MIC = LD−1LT is used
as preconditioner. However, this preconditioner is difficult to parallelize, since
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linear systems with the preconditioner can only be solved sequentially due to
the triangular form of L.

Alternatively, many parallel preconditioners are proposed, see e.g. Demmel
et al. [7] for a survey. A number of approaches to obtain parallelism in the
preconditioning part are (cf. [7], Section 8.1):

1. reordering the computations;

2. reordering the unknowns;

3. forcing parallelism.

We restrict ourselves to the latter class: we force parallelism by simply neglect-
ing couplings to unknowns residing in other processors. This is like variants
of the ILU preconditioner and the block Gauss-Jacobi (briefly: block-Jacobi)
preconditioner. The latter preconditioner is treated in more detail below.

4.4.1 Block-Jacobi preconditioner

In the previous section we have mentioned that the SCM and ASM lead to
the preconditioning matrix, which is the block-Jacobi matrix Mjac. In case
of the SCM approach, the linear system Mjacz = y is solved accurately, since
this can theoretically be reduced to a system only involving unknowns near the
interfaces.

However, since the subdomain problems have often a similar non-zero struc-
ture as the original matrix and since they may still be quite large, it is reasonable
to solve them (called: the inner iterations) using a Krylov subspace method like
the CG method. In this case, this is the second iterative method because the
outer iterations are also obtained with a Krylov subspace method. A ques-
tion which arises naturally, address the tolerance to which the inner iterations
should converge . It seems senseless, for example, to solve the subdomain prob-
lems with a much smaller tolerance than is desired for the global solution. The
influence of the accuracy of the subdomain solution on the convergence has been
investigated in e.g. Brakkee et al. [1]. Although the number of outer iterations
increased, a large gain in CPU time has been observed on a sequential computer,
when the subdomain accuracy is relatively low.

The inaccurate solving of subdomain problems is in fact the ASM approach.
Algebraically, the ASM preconditioner MASM satisfies

M−1
ASM =

s∑
i=1

RT
i Ã−1

ii Ri, (4.11)

where Ã−1
ii is the inaccurate solution of Ãiizi = yi obtained with the CG method.

Equivalently, we can write:

M−1
SC2 =

⎛
⎜⎜⎜⎝

Ã−1
11 ∅

Ã−1
22

. . .
∅ Ã−1

ss

⎞
⎟⎟⎟⎠ , (4.12)

which is suitable for parallelization due to the block-diagonal structure of the
preconditioner. It is known from numerical experiments that the number of
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outer iterations decreases compared by applying the standard incomplete Choles-
ky preconditioner. However, the overall computational time can be (drastically)
lower by using the parallel inaccurate block-Jacobi preconditioner.

Note that since the number of inner iterations may vary in each outer iter-
ation, the effective preconditioner (4.12) is non-linear and varies in each outer
iteration. In this case we have to be careful with applying the preconditioned
CG method, see e.g. Notay [27]. He introduced flexible CG to overcome the
slightly varying preconditioner in each iterate. The main difference with the
standard CG method lies in the explicit orthogonalization of the search direc-
tion vectors. More concretely, let pi be the search direction in the i-th iterate.
Then pi is orthogonalized with respect to the (·, ·)A inner product against the
previous vectors p1, . . . , pi−1. Restarting and truncation techniques have also
been proposed in [27] to avoid memory problems.

From Vuik et al. [40] one can conclude that the block-Jacobi preconditioner is
perfectly parallel applicable and gives better performance than a simple diagonal
scaling. However, the convergence rate degrades substantially as the number of
blocks increases. Fortunately, recently several remedies have been proposed to
overcome this and are shortly described below.

The first remedy is applying a deflation technique as described in Section
4.2. In fact, this is a form of coarse grid technique leading to a two-level ASM
preconditioner MASM2:

M−1
ASM2 = RT

HÃ−1
H RH +

s∑
i=1

RT
i Ã−1

ii Ri, (4.13)

where RT
HÃ−1

H RH is the coarse grid correction or a form of deflation, see e.g. [39]).
Other remedies are based on overlap are proposed to make the block-Jacobi

preconditioner more robust, see e.g. Cai & Sarkis [4]. However, drawbacks
of methods with overlapping subdomains is that the amount of work increases
proportionally to the overlap and that these methods are not easy to implement
on top on existing software packages ( [39], Section 3). Therefore, in this report
we restrict ourselves to the non-overlapping approaches of coarse grid correction
and deflation and neglect overlapping methods.

4.5 Example

We consider an n × n SPD linear system Ax = b derived from the 2-D Poisson
equation:

∇ ·
(

1
ρ
∇φ

)
= f, φ = φ(x) ∈ Ω, (4.14)

where implicitly Neumann conditions are imposed on ∂Ω. This means that so-
lution φ is uniquely determined up to a constant vector. The equation (4.14),
the source term f and the artificially boundary conditions are derived from the
pressure-correction method which is applied on the Navier-Stokes (NS) equa-
tions, see Chapter 2. In this case, ρ is piecewise constant with a relatively high
contrast ε:

ρ =
{

ρ0 = 1, x ∈ Λ0,
ρ1 = ε � 1, x ∈ Λ1,

(4.15)
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where Λ0 is the main fluid of the flow around the bubbles and Λ1 is the region
inside the bubbles. The geometry of the problem can be seen in Figure 4.3 where
plots are shown with different number of bubbles. We start with one bubble
with radius γ in the middle of the 2-D unit domain. In future more bubbles will
be treated.
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(a) Flow with one bubble.
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(b) Flow with five bubble.

Figure 4.3: Two examples of bubbly flows.

Since artificial Neumann conditions holds on ∂Ω, matrix A and therefore also
E are singular. The singularity of A does not cause problems for the CG method
since it can deal with singular systems provided that b ∈ Col(A). However, E−1

should be determined with a direct solver. Therefore, E has to be modified such
that it is invertible. For the sake of simplicity, we assume temporarily that A is
non-singular which can easily be achieved by doubling the first diagonal element
of A. In this case E−1 can be determined in a direct way.

We take 64 grid poins each direction, i.e., n = nx ×ny = 64× 64. Moreover,
the zero starting vector, contrast ε = 10−3 and CG-tolerance ||M−1Prk||2/
||M−1Pb||2 < 10−7 are chosen.

Next, some MATLAB experiments are presented for the 2-D bubbly flows.
We compare the original and deflated block-Jacobi preconditioner with the orig-
inal and deflated diagonal and incomplete Cholesky preconditioners. The non-
deflated versions are denoted by BJCGj , DCG and ICCG, respectively. Fur-
thermore, the deflated versions are denoted by DBJCGj − k, DDCG−k and
DICCG−k, respectively. Parameter j is the number of blocks and k the num-
ber of deflation vectors.

Results

Some results considering the above problem setting can be found in Table 4.1.
The number of iterations and the CPU time are given to find the solution. Note
that the CPU time measured in MATLAB is only a rough indication of efficiency.
Note that the computations have been done on a sequential computer. Later
on we will switch to a parallel environment.

For the non-deflated methods, we conclude from the table that BJCG4 needs
the fewest iterations, but ICCG is the most efficient method considering the
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Method # Iterations CPU Time (sec)
DCG 394 2.1
DDCG−4 286 2.3
DDCG−16 115 0.9
DDCG−64 58 0.5
DDCG−256 31 0.3
ICCG 127 1.4
DICCG−4 100 1.3
DICCG−16 54 0.7
DICCG−64 28 0.4
DICCG−256 17 0.3
BJCG4 75 4.8
BJCG16 142 7.5
BJCG64 292 2.3
DBJCG4 − 4 56 3.9
DBJCG4 − 16 39 2.6
DBJCG4 − 64 26 1.8

Table 4.1: Number of iterations for (D)DCG, (D)ICCG and (D)BJCG in the Poisson
problem with one bubble.

CPU times. For the deflated methods, the most efficient results are achieved by
the DICCG method while the fewest iterations are reached with DBJCG.

Obviously, the number of iterations of (D)BJCG increases when the num-
ber of blocks j in the BJ-preconditioner grows. Moreover, the CPU times of
(D)BJCG are somewhat disappointing but later on these can be lowered when
parallel computers are used.

The main conclusion we can draw is that incorporating subdomain deflation
accelerates the convergence of the iterative methods DCG, ICCG and BJCG
significantly and these deflated versions are relatively efficient considering the
CPU times. The largest differences can be observed by comparing DCG with
DDCG−k.

Varying the grid sizes

We vary nx and ny and investigate the influence on the number of iterations.
Moreover, the number of deflation vectors is chosen equal to the number of grid
points in nx(= ny) The results can be found in Table 4.2.

nx, ny, k DCG DDCG ICCG DICCG BJCG4 DBJCG4

16 90 33 34 19 38 29
64 394 115 127 28 75 39
256 > 1000 464 529 53 – –

Table 4.2: Number of iterations for the iterative methods where nx = ny = k, i.e.,
where the number of deflation vectors is equal to the number of grid points in each
direction. Note that ‘–’ means ‘out of memory’.

From the non-deflated methods of the table one observes that the number of
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iterations grows very fast when the grid sizes are increased. The deflation tech-
niques remedy this partially, since the number of iterations of DDCG, DICCG
and DBJCG increases slowly by enlarging the grid sizes.

Note that the deflated variants of DCG and ICCG for m > 16 and nx =
ny = 64 converge with more or less the same CPU time (see also 4.1). However
by enlarging the grid sizes, DICCG becomes much more attractive.

We end with the remark that (D)BJCG can be made more robust (i.e.,
independent of the grid sizes) by increasing the number of blocks proportionally
to nx and ny. This is left for future.
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Chapter

5

Conclusions & Outlook

In this report we have presented an overview of the literature considering the
parallel deflated-preconditioned CG method applied to moving boundary prob-
lems. Some main results are listed below.

• The Navier-Stokes equations can be treated with the pressure-correction
method. The Poisson equation with piecewise-constant density is the dif-
ficult one to solve in this method.

• Many variants and namings of deflation/projection methods are available
which are comparable with each other.

• Also many methods are available to choose the deflation vectors which
are based on approximate eigenvectors, solutions at previous time steps
or divided subdomains.

• The original CG method and the deflation technique are well-parallellizable.
In a parallel environment the block-Jacobi preconditioner is frequently em-
bedded in the deflated CG method rather than preconditioners based on
incomplete Cholesky decomposition.

Moreover, in the examples of the overview, we have also given results of some
small numerical experiments. The conclusions of these results are drawn below.

• Applying the subdomain deflation technique (resulting in the DICCG
method) in the 2-D Poisson problem with constant density leads to fa-
vorable results. Choosing blocks as subdomains give namely a significant
decrease of the number of iterations and also the CPU time compared
with ICCG.

• In the 1-D layer problem (1-D Poisson problem with piecewise constant
density) we have used algebraic vectors to investigate the deflation method.
A few algebraic vectors have been required to reduce the number of iter-
ations significantly.
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• The 2-D Poisson problem with two densities in the domain derived from
the pressure correction method has been tested. Again, the subdomain
deflation technique has performed very well in combination with diagonal,
incomplete Cholesky or block-Jacobi preconditioners in the CG method.

We have ideas for further research. Some of these main ideas are given below.

• The examples will be generalized to the 3-D case. Also, the parallel aspects
will be considered.

• In the subdomain deflation approach we have chosen for constant defla-
tion vectors. We will investigate the possibilities of embedding linear and
quadratic vectors in this approach.

• The different variants of the deflation techniques will be compared in more
detail.

• More research will be done in applying deflation techniques in moving
boundary problems.
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Appendix

A

DICCG Algorithm

The DICCG with M = LD−1LT is described in more detail below.

Algorithm 2 DICCG Algorithm
1: Choose x0 arbitrarily;
2: r0 := b − Ax0;
3: Make Z;
4: E−1 := (ZT AZ)−1;
5: P := I − AZE−1ZT ;
6: u := ZE−1ZT b;
7: r̂0 := Pr0;
8: Make L and D so that A ≈ LD−1LT ;
9: Solve z0 from LD−1LT z0 = r0;

10: p1 := z0;
11: j := 0;
12: Choose ε and Itmax;
13: while j < Itmax and ||zj ||2 > ε do
14: j := j + 1;
15: wj := PApj ;
16: αj := (r̂j−1,zj−1)

(pj ,wj)
;

17: x̃j := x̃j−1 + αjpj ;
18: r̂j := r̂j−1 − αjwj ;
19: Solve zj from LD−1LT zj = rj ;
20: βj := (r̂j ,zj)

(r̂j−1,zj)
;

21: pj+1 := zj + βjpj ;
22: end while
23: x := u + PT x̃j .
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Appendix

B

Comparison of Flops

To compare the number of flops between DICCG and ICCG we assume that:

• A has sizes n × n and consists of 5 non-zero diagonals (derived from e.g.
the 2-D Poisson or Helmholtz problem);

• b has length n;

• Z has sizes n × r;

• Z consists of vectors such that each row has exactly one non-zero element
and each column has approximately n/r non-zero elements. Thus in total
there are n non-zero elements in Z. In this appendix, we consider Z which
is obtained with subdomain deflation with blocks.

As a consequence, Z and AZ have approximately the same form and the same
number of non-zeros. Moreover, considering the latter assumption, we note that
Z consists of orthogonal columns, i.e.,

ZT Z = αI, (B.1)

where α = n/r and I is the identity matrix, whereas

E ≡ ZT AZ, (B.2)

with E is an SPD matrix with five diagonals and E has bandwidth
√

r. When
we want to solve x from the system Ex = y with y a known vector, we can do
that by applying a band Cholesky algorithm instead of computing the inverse
E−1. Since E is SPD, we can write E = LD−1LT . Therefore a careful flop
count of the steps:

E = LD−1LT , Lx1 = y, D−1x2 = x1, LT x = x2, (B.3)

reveals that
r
(
r + 8

√
r + 1

)
flops (B.4)
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are required (see Golub & Van Loan [14], p. 156, by taking p =
√

r and n = r).
We make some assumptions with respect to the (approximated) number of

flops in the table below, where x, y, z1, z2 are vectors of length n. In the analysis,
we shall neglect O(1) terms.

Operation # Flops Explanation
(a) (x, y) 2n
(b) x + y n
(c) Ax 9n A consists of 5 non-zero diagonals.
(d) Making 8n Constructing L and D as in the standard IC-

L and D decomposition.
(e) Solving x from 11n First solving LT x = z1 (5n flops), thereafter

LD−1LT x = y D−1z1 = z2 (n flops), and Lz2 = y (5n flops).

Now we can derive the number of flops for constructing E−1 and AZ.

Operation # Flops Explanation
(f) AZ 9n Z is sparse and consists of n non-zeros.
(g) E := ZT (AZ) 2n AZ has almost the same form as Z.
(h) E−1 r (r + 8

√
r + 1) Note: the inverse is not computed explicitly.

Expression (B.4) is used.

In total there are
11n + r

(
r + 8

√
r
)

flops (B.5)

required in preparation for creating P . However, in practice the projection ma-
trix P is never computed. The operation Px for arbitrary vector x is computed
in the following sense.

Operation # Flops Explanation
(i) x1 := ZT x 2n Each row-vector product costs 2n/r flops
(j) x2 := E−1x1 (2

√
r + 1)r Ex2 = x1 is solved with (h) using

Choleski decomposition.
E has a band structure with bandwidth

√
r.

(k) x3 := (AZ)x2 n AZ has already computed
and is almost of the same form as Z.

(l) Px := x − x3 n

Thus, computing Px costs in total

2r
√

r + 4n + r flops. (B.6)

Extra Flops Applying Deflation in ICCG

Compared to ICCG, DICCG requires a few extra computations, namely:

Operation # Flops Explanation
(m) Make Z n
(n) u := ZE−1ZT b 4n + (2

√
r + 1)r Using (i), (j) and u := Zx2 costs 2n flops.

(o) r̂0 := Pr0 2r
√

r + 4n + r Using Expression (B.6).
(p) x := u + PT x̃j 2r

√
r + 4n + r Using (B.6).
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Define Fdef to be the extra flops required in the computations when we apply
deflation in ICCG, i.e., Fdef is the summation of the flops of the latter table
and including the preparation flops (B.5). Then:

Fdef = 23n + (11r + 2)
√

r + r2 + 3r. (B.7)

Basis Flops

Before entering the WHILE-loop, the following steps are required in both DICCG
and ICCG:

Operation # Flops Explanation
(q) Set x0 n
(r) r0 := b − Ax0 10n Using (c).
(s) Make L and D 8n Using (d).
(t) Solve z0 11n Using (e).
(u) p1 := z0 n
(v) j := 0 –
(w) Set ε and Itmax –

Fbasis is the summation of the flops of the latter table. Then:

Fbasis = 31n. (B.8)

Flops in each iterate of ICCG and DICCG

We compute the number of flops required in each iterate of the WHILE-loop of
both ICCG and DICCG.

Operation # Flops Explanation
j < Itmax and ||zj||2 > ε 2n
j := j + 1 –
wj := PApj 9n Note that PA = A in ICCG.

DICCG: 13n + 2r
√

r + r Using (c) and (B.6).
αj := (r̂j−1,zj−1)

(pj ,wj)
4n

x̃j := x̃j−1 + αjpj 2n
r̂j := r̂j−1 − αjwj 2n
Solve zj 11n Using (e).
from LD−1LT zj = rj+1

βj := (r̂j,zj)
(r̂j−1,zj)

4n

pj+1 := zj + βjpj 2n

Therefore, DICCG needs approximately 40n+2r
√

r flops each iterate, while
ICCG needs 36n flops each iterate. We denote the number of iterates of ICCG
and DICCG by Iiccg and Idiccg, respectively. Then the total number of flops
in and outside the WHILE-loop (Lines 1–10 in DICCG algorithm) is approxi-
mately:

Ficcg = 36nIiccg + Fbasis and Fdiccg = (40n + 2r
√

r)Idiccg + Fdef + Fbasis,
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where in Fdiccg the extra flops Fdef from the computations with deflation (B.7)
are added. Moreover, in both variants the basis steps Fbasis are also added. We
obtain:

Ficcg = 36nIiccg + 31n

and
Fdiccg = (40n + 2r

√
r)Idiccg + 54n + (11r + 2)

√
r + r2 + 3r.

Comparison ICCG and DICCG

A comparison of the number of flops between ICCG and DICCG can be made
in the following way. Therefore, we define φ(r, n) as follows 1

φ(r, n) = Fdiccg − Ficcg, (B.9)

resulting in:

φ(r, n) = (40n + 2r
√

r)Idiccg + 25n + 7r2 + r
(
8
√

r + 1
) − 36nIiccg. (B.10)

This function φ(r, n) determines the difference in flops between the DICCG and
ICCG, for given r and n. If φ(r, n) > 0, then ICCG requires less computational
work relative to DICCG, while φ(r, n) < 0 means that DICCG is more efficient
than ICCG. 2

1We can also choose for φ̃(r, n) = Fdiccg/Ficcg. In this case, the deflation technique is

efficient when φ̃(r, n) < 1.
2Note that if Idiccg � 1, then (40n + 2r

√
r)Idiccg � 25n + 7r2 + r

`
8
√

r + 1
´
. As a

consequence:
φ(r, n) ≈ (40n + 2r

√
r)Idiccg − 36nIiccg. (B.11)


