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A level set method for particle dissolution in a binary alloy

E. Javierre!, C. Vuik, F.J. Vermolen and A. Segal

Delft Institute of Applied Mathematics, Scientific Computing,
Mekelweg 4, 2628 CD Delft, the Netherlands

Abstract

A mathematical model is proposed for the dissolution of stoichiometric particles in
binary alloys occurring during the heat treatments of as-cast aluminium alloys prior to
hot extrusion. The Level Set method is used to capture the interface location implicitly.
The front velocity, only defined on the moving interface, should be advected to the whole
computational domain. This advection is done in Cartesian or in normal directions. The
numerical solution is carried out by a combination of finite difference and finite element
methods. The cut-cell method is employed to adapt the finite element mesh to the inter-
face position. Two- and three-dimensional results are presented. The numerical solution
is compared with analytical solutions. Conservation of mass is also evaluated.

AMS classification: 35R35; 65M06; 80A22

Keywords: Stefan problem; Phase transformations; Similarity solutions; Level set method;
Cut-cell

1 Introduction

Heat treatment of metals is often used to optimize mechanical properties. During heat treat-
ment, the metallurgical state of the alloy changes. This change can involve the phase present
at a given location or the morphology of the various phases. Whereas equilibrium phases
can be predicted quite accurately from thermodynamic models, there are no general models
for microstructural changes nor for the kinetics of these changes. In the latter cases, both
the initial morphology and the transformation mechanisms have to be prescribed explicitly.
One of these processes, which is both of large industrial and scientific interest and amenable
to modeling, is the dissolution of second-phase particles in a matrix with a uniform initial
composition.

To describe this particle dissolution in solid media, several physical models have been
developed. Long-distance diffusion was incorporated in [1, 2, 3], in which the concentration
of the solute at the interface between the adjacent phases is the solid solubility. The long-
distance diffusion models imply that the processes at the interface proceed infinitely fast.
Nonequilibrium conditions at the interface were incorporated in [4, 5, 6, 7).
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Numerical solution methods for moving boundary problems can be classified in three
categories: front-tracking methods [8, 9, 10, 11], front-capturing methods [12]-[18] and hybrid
methods [19]. Front-tracking methods use an explicit representation of the interface, given
by a set of points lying on the interface location, which must be updated at each time step.
Front-capturing methods choose an implicit representation of the interface, adding an artificial
unknown to the problem. Among other front-capturing methods, the enthalpy method [12, 13]
and the phase field method [14, 15] have been extensively used in phase transformation
problems, whereas the level set method [16] has been exploited for wide range of applications,
as is described in [17, 18]. In the enthalpy method, the enthalpy function is used to measure
the total heat of the system. It has a jump across the interface due to the absorption/release
of heat required for phase change. In the phase field method, the domain is parameterized
by the phase field function. This function equals a fixed constant in each phase and varies
rapidly, but smoothly, between these values in the interface region. Therefore an adaptive
mesh procedure, with a high resolution inside the interfacial region, is required to solve the
governing equations accurately. Finally, in the level set method the interface is captured as
the zero level set of a continuous function. The evolution of the interface is reformulated as
an advection equation for the level set function. Hybrid methods consider a combination of
both front-tracking and front-capturing methods. Crank [20] provides a good introduction to
free boundary problems and presents an elaborate collection of numerical methods.

The present paper is focused on the numerical simulation of particle dissolution in binary
alloys. The level set method, first introduced by Osher and Sethian [16], has been chosen
to determine the interface location. Consequently the front velocity, only defined in the
interface position, is extended into the whole computational domain. Chen et al. [21] use
a set of advection equations to define a continuous extension of the front velocity. Gibou
et al. [22] and Kim et al. [23] use a constant extrapolation in the normal direction for the
same purpose. On the other hand, Adalsteinsson et al. [24] use the fast marching method to
find an extension of the front velocity. In all these references only finite difference schemes
have been used. Chessa et al. [25] use an enriched finite element method to solve a phase
transformation problem. This method is able to deal with discontinuities in the gradient
of the concentration, and requires the update of the enriched nodes as the interface evolves.
Furthermore, stabilization terms should be used in order to prevent oscillations in the solution
of hyperbolic equations. We simplify the ideas of Chen [21] and Gibou [22] to our problem
in order to extend the interface velocity. The hyperbolic equations arising from the level
set formulation, are solved with standard finite difference schemes. However, the diffusion
equation is solved with the finite element method. The triangulation is locally adapted to the
interface position with a cut-cell method, that will be presented. Interpolation between the
finite difference and the finite element meshes is not necessary in our algorithm. A similar
combination has been recently presented by Tan and Zabaras in [26] for the simulation of
dendritic growth.

The outline of the paper is as follows. The governing equations of long-distance diffu-
sion in binary alloys are given in Section 2. The level set method is introduced in Section
3. The numerical solution method is described in detail in Section 4, where several issues
related to the level set method will be discussed: an extension of the front velocity in the
Cartesian directions is compared with an extension in the normal direction in Section 4.1, the
reinitialization of the level set function is presented in Section 4.3 and the cut-cell method
is introduced in Section 4.4.1. A number of numerical results is given in Section 5, and
conclusions are presented in Section 6.



2 The mathematical model

The as-cast microstructure is simplified to a representative cell €2 containing a diffusive phase
QUgp and a particle €24, of constant composition cPet . The particle dissolves due to Fickian
diffusion in the diffusive phase. The concentration at the interface I', separating 2,4+ and
Qgp, is assumed to be given by the constant value ¢, This value is as predicted by thermo-
dynamics. The concentration gradient on the side of {14, at I' causes its displacement. The
governing equations and boundary conditions of this problem are:

%(x,t) = DAc(x,1), x € Qgy(t), t >0, (1)
c(x,t) = cPart, X € Quare(t), >0, (2)

c(x,t) = c¢*, x e (t), t >0, (3)

(cPart — 5N, (x,t) = (x t), x e '(t), t >0, (4)

where x denotes a point in the computational domain €2, D denotes the diffusivity constant,
n is the unit normal vector on the interface pointing outward with respect Qpq,(t) and vy, is
the normal component of the velocity of the interface. The initial concentration ¢(x,0) inside
the diffusive phase is given. We assume no flux of concentration through the boundary not
being a moving interface, i.e.

%(X, t) =0, x € 0Qqp(t) \I'(t) >0, (5)

hence mass is conserved. The above equations constitute a so-called Stefan problem.

3 The level set method

The level set method is used to capture the moving interface as the zero level set of a con-
tinuous function ¢, called the level set function. This method was introduced by Osher and
Sethian [16] and successfully applied to Stefan problems by Chen et al. [21]. The motion of
the interface is related to the level set function by
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which is only valid at the interface location. If the front velocity is continuously extended over
Q) leading to the vector field v, then the above equation can be generalized to an hyperbolic
equation for the level set function

9¢
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In this framework, the normal vector to the interface can be obtained from the level set
function

+vnl| Vol =0,

—(x,t) +v(x,t) - Vo(x,t) =0, xe€, t>0. (6)
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which points into the region of ¢ > 0. The level set function is initialized as a signed distance
function:

+dist(x,I'(0)) if x € Q4,(0),
$(x,0) = { 0 if x € I(0),
—dist(x,I'(0)) if x € Qpare(0).

After advecting the interface using Eq. (6), the level set function is in general not a distance
function at the new time step. It might lead to flat/steep gradients of ¢, leading to inaccurate
approximations of the interface curvature (given by x = V -n) and the normal velocity of the
interface v,,. Therefore, the level set function is reinitialized by solving in pseudo-time 7 the
hyperbolic equation

%2 —s@)(1- Ivel),
@

QD(X, O) = d)(X? t)7

where S denotes the sign function and ¢ the reinitialized level set function. Note that the
zero level set of p(x,7) is the same as that of ¢(x,t), and as 7 — oo, ||Vy|| — 1, which
characterizes a distance function.

4 The numerical solution method

In our model the motion of the interface is determined by the gradient of the concentration,
which can be computed from the solution of the diffusion equation. Local grid refinement and
general interface geometry are conveniently handled by the finite element method. Therefore
we use a finite element method for the Stefan problem (1)-(5). But for the hyperbolic level set
equation (6) finite element methods generate much numerical diffusion (although this might
be alleviated by recent progress, see [27, 28]). Therefore we use a finite difference method for
(6) and (7). A similar idea has been recently applied by Tan et al. [26] to dendritic growth
simulations.

For the numerical experiments presented in this paper we will use a finite difference mesh
with equal and uniform grid spacing in each coordinate direction, although the algorithm is
applicable to general Cartesian meshes. The finite element mesh consists of triangles and
tetrahedra in two- and three-dimensional problems, respectively. We will restrict ourselves to
finite difference and finite element meshes based on the same mesh points, so that interpolation
between meshes is unnecessary. However, the solution method is valid for more general
meshes.

Let the level set function ¢™ and the concentration ¢" be known at time t™. In our
numerical implementation, the level set function and concentration at the next discrete time
will be obtained by the following algorithm:

1. A continuous extension v of the front velocity is obtained from ¢” and ¢".
2. The level set function ¢! at the new time ¢t"*! is obtained by solving Eq. (6).

3. The level set function is reinitialized (if necessary) by means of Eq. (7).



4. The concentration ¢" ! at the new time t"*! is obtained by solving the diffusion equation
(1) in the diffusive phase domain determined by ¢"*! > 0.

5. Set n =n + 1 and go back to 1.

In the next subsections we give details. For simplicity we restrict ourselves to two dimen-
sions. Generalization to three dimensions is straightforward.

4.1 Extension of the front velocity

The front velocity v, is only defined at the interface location, and an artificial continuous
extension of it is required. We present two different extensions. Both require the solution
of hyperbolic equations, which define a velocity field in the whole domain . In the first
extension procedure, the Cartesian components of the front velocity are decoupled during the
extension, as done by Chen et al. [21]. In the second extension procedure, the normal velocity
is extended in the normal direction, see Gibou et al. [22]. These extensions are presented
below in more detail.

4.1.1 Extension in the Cartesian directions

Considering the Stefan condition Eq. (4), and the fact that the concentration equals a constant
at the interface Eq. (3), the normal velocity vector v = v,n of the interface can be rewritten
as

v(x,t) = AVe(x,t), xeI(t),t>0,

with A = ﬁ. Let v = (v1,v2)!. An extension of the front velocity might be obtained

by solving separately

B 1 5(¢¢a) Gt = 0, G2 +S(00y) G2 =0,

(8)
v1(x,0) = )\%(x,t), x € I'(t), va(x,0) = Ag—;(x,t), x € I'(t),

where 7 > 0 denotes a pseudo-time used during the extension of the front velocity, and ¢
is the physical time in the phase transformation. The characteristic lines of (8) point away
from the interface location, which implies that a Dirichlet condition is needed on I'(t) only.
In three-dimensional problems the extension of the z-component of the front velocity is done
similarly.

Let x;; be a node in the diffusive phase which has one of its left/right neighbors inside
the particle. Then v ;; is computed by the following discretization

0 - csol ‘

ol
¢ —c |cij
Vlij = AS ( art sol) ’
cP — C dij

where

T;—Ti_ .
- Pty oo
iy =

Tit1—T4 : 3 .
¢zgm~ if ¢i115 <O,



is an approximation of the distance between x;; and the interface located between x;; and
X;—1; in the first case, and x;; and x;41; in the second case, which has been obtained by linear
interpolation of the level set function. Subsequently, this velocity is also designated to the
left /right neighbor that lies inside the particle. The velocity ve in the adjacent nodes to the
interface, i.e. ¢;j—1 <0 < ¢;; or ¢;; > 0 > ¢;;41 in this case, is obtained analogously.

To solve the equations for the extended velocity numerically, the forward Euler method and
first order upwind discretizations are used. The CFL condition for stability yields AT < Az
(resp. AT < Ay for the extension vy). Since it suffices to extend the velocity only in a band
around the interface to get an accurate update of the moving interface I'(¢), we only compute
a small number of pseudo-time steps.

4.1.2 Extension in the normal direction

Extension of the front velocity in the normal direction is an alternative. If ¢ is a distance
function, the normal velocity v, = )\% can be calculated with

0 sol

c’—cC ‘Cij —
Un,ij = AS ( art sol) ’
Pt —c Dij

in the nodes x;; within the diffusive phase. To extend this velocity into the particle domain
the following equation is solved

Csol ‘

Up,r + min(S(¢),0) n- Vo, =0, xe€Q, 7 >0, (9)

where 7 represents a pseudo-time defined only to carry out the extension. The forward Eu-
ler and first order upwind methods are used here. The normal vector is computed using
central difference approximations of the gradient of ¢. The CFL condition is now given by
AT max ('Z—ﬂ + ‘Z—Qy') < 1, where the normal vector is denoted by n = (n1,n2)". Only a small
number of pseudo-time steps is used to obtain the extension of the front velocity in a suffi-

ciently wide band around the interface.

4.2 Advection of the level set function

The level set equation (6) is solved by forward Euler discretization in time and first order
upwind discretization in space. This scheme leads to a stability condition on the time steps

lui] | [vel
A —+ — 1 1
t max (Ax + Ay <1, (10)

where v = (v, v2)! denotes the continuous extension of the front velocity.

4.3 Reinitialization of the level set function

After moving the interface, Eq. (7) needs to be solved in order to reinitialize the level set
function as a signed distance function. Peng et al. [29] proposed the modified reinitialization
problem:

¢

5 =S (L= 1IVel), 0, (11a)



QO(X’ 0) = (f)(X,t), in Q, (11b)

with pseudo-time 7 > 0 and

¥
O AT Iverae "
in order to maintain the sign of ¢ during the reinitialization procedure. The monotone
Godunov upwind scheme Eq. (13) is used in the numerical solution of (11). The term
1—1|V¢|| of Eq. (11a) (see [29]) is approximated by

1— \/max ) +min(cd,d%), if ¢;; >0,
Glpij) =41 - \/max ) + min(c? 7di) if ;5 <0, (13)
otherwise,

where a = D ;;, b = Dj(pij, ¢c= D,y and d = D;rgoij are used to denote the left/right
sided derivatives of ¢ with respect to x and y respectively, h_ = min(h,0) and h4 = max(h,0).
The time integration is done by a third order accurate TVD Runge-Kutta scheme [29], and
the space derivatives are approximated by a WENO scheme [30].

The reinitialization procedure is terminated when |S(¢;;)G(i;)| is smaller than a pre-
scribed tolerance in a band around the interface location. This criterion is also used to decide
whether reinitialization should be applied or not. The number of iterations required to reini-
tialize the level set function varies during the dissolution process. When the movement of
the interface is fast or leads to the breaking of the interface, more iterations are required to
achieve the termination criterion. However, when the movement of the interface is smooth and
slow, the level set function is only reinitialized after several time steps of the main dissolution
process.

4.4 Diffusion

The diffusion equation is solved by the finite element method. The underlying triangulation
is adapted according to the interface location with the cut-cell method. The backward Euler
method is used for the time discretization. Moreover, the time-stepping has to be adapted
in dissolution problems when the interface crosses a node. To illustrate this point, let x;;
be a node which was inside the particle at time ¢™ and lies in the diffusive phase at time

t"*t1 hence o7 <0< ¢”+1 Notice that there is a jump of the concentration from c¢P** to

c* in such a node. The time tfj at which the interface was exactly at the node x;; can be

approximated by linear interpolation of the level set function:

n+1 n
oo _gn L T
ij iJ ¢n+1 n :

Subsequently, the diffusion equation is discretized for the node x;; as follows:

n+1 sol
it —¢
i _ n+1
715”_1_1 — = DAhCZ'j s
ij

where Ay, denotes the discretized Laplacian operator.



4.4.1 The cut-cell method

We are dealing with linear elements only (i.e. triangles in 2D and tetrahedrons in 3D). In each
vertex a value of the level set function is given. If in an element the level set function changes
sign, we know that the element is intersected by the interface. The intersection of the interface
with the edges of the element is computed by linear interpolation, so these intersections
are uniquely defined. In a triangle we may have between zero and two intersections, in a
tetrahedron between zero and four. We assume that within an element the interface is linear.
We subdivide each element in subelements, based on the number of intersection points of
the edges. For example, if a triangle has one intersection point, it is subdivided into two
triangles and in case of two intersection points into three triangles. One of the edges of the
new triangles coincides with the interface (see Figure 1(a)).

2

(a) Subdivision into three ele- (b) Subdivision into two ele-
ments ments

Figure 1: Subdivision of an element by the cut-cell method

In order to avoid ill-shaped elements, only intersections not too close to the vertices are
taken into account. If the intersection is near a vertex, we move the intersection point to that
vertex, as in Figure 1(b), where the intersection point of edge 2,3 is supposed to be in point
3. Hence, the extra error we make in this way is order O(h), where h denotes the diameter
of the triangulation.

The advantage of the subdivision is that we reconstruct the interface in a relatively simple
way, without destroying the original basic mesh. Prescribing boundary conditions on this
approximated interface is a straightforward task. After one time step the intersection points
are removed and we are back to the basic mesh.
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5 Numerical results

This section contains some numerical experiments. The accuracy of the time integration is
At. The time step is determined by At = min(Atcrr, Atmin), where Atcopy, is given by the
CFL condition Eq. (10) and At,,;, is used to prevent excessively large time steps. We choose
Atin to be proportional to the mesh width, therefore the complete algorithm is first order
accurate in time and space.

The governing equations are such that the mass of the system

m(t) = / c(x,t)dx = cp‘”"t/ dx+/ c(x, t)dx. (14)
Q Qpart(t) de(t)

should be conserved during the complete dissolution process. The numerical computation of
Eq. (14) demands the computation of the percentage of a computational cell occupied by
¢ > 0 (resp. ¢ < 0), which is done as in [31] by means of the VOF (volume-of-fluid) function.
This scheme, equivalent to the trapezoidal rule for continuous functions, provides a second
order accurate approximation of m(t).

First we will compare the numerical solution with a similarity solution. Next we will study
the convergence to the steady state solution, which is determined by the initial concentration
distribution. Mass conservation will be also analyzed. Finally a three-dimensional dissolution
problem will be considered, in which the particle breaks up into several subparticles. The
performance of the level set method will also be compared in the 2D test problems with the
moving grid method [8].

The computational domain 2 will be either the square [0,1]? for the two-dimensional
problems or the cube [0,1]* for the three-dimensional problems. A uniform finite difference
grid will be used, with grid spacing Az = Ay = Az = % The number of iterations used in
the processes involving pseudo-times is as follows. For the extension of the front velocity Eqs.
(8) and (9) we use ten pseudo-time steps. The reinitialization iteration Eq. (11) is terminated
when |S(¢i;)G (i) < 0.05 in a band of width 5Az around the interface.

An estimate of the amount of work and memory usage

The amount of work and memory required for the level set method can be summarized
by analysis of the following subproblems.

e Solve a diffusion equation. This demands the storage of a symmetric matrix, which only
needs to be adapted at the elements adjacent to the moving interface, and the solution
of a linear system of equations.

e Find the front velocity. For the Cartesian extension this requires the storage of two
vectors (for 2D problems) or three vectors (for 3D problems) with the velocities of the
nodes adjacent to the moving interface. For the normal extension this requires the
storage of the normal velocity v,, for the nodes inside the diffusive phase.

e Extension of the front velocity. This requires the storage of a tridiagonal matrix (for the
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Cartesian extension) or a band matrix (for the normal extension) and a fixed number
of matrix-vector multiplications.

e Update of the level set. This requires the storage of a band matrix a matrix-vector
multiplication.

e Reinitialization of the level set. Each iteration requires the storage of an extra vector,
the storage of a band matrix and a matrix-vector multiplication.

Similarly, we may summarize the amount of work and memory required for the moving grid
method as follows:

e Solve a convection-diffusion equation. This requires the storage of a non-symmetric
matrix, which should be adapted in the whole domain, and the solution of a linear
system of equations.

e Compute the velocity of the interface. This requires the storage of a vector with the
normal velocity of the nodes on the moving interface. In addition, the ALE method
also needs a globally defined mesh velocity.

e Eventually remeshing is necessary. This requires the interpolation of the concentration
between the old and the new mesh.

We compared both methods for a set of two-dimensional problems where the movement of the
interface is smooth. Our experience is that the moving grid method is cheaper. If the solution
of the diffusion problem is not considered, the level set method demands more memory and
computational cost. In particular, the reinitialization can be rather time consuming due to
the used numerical scheme (third order Runge-Kutta in time and WENO in space). On
the other hand, the solution of the diffusion equation is cheaper with the level set method.
Furthermore, after some time steps remeshing is necessary in the moving grid method, which
is a time consuming process, especially for three-dimensional problems, and it is difficult to
conserve mass (see [7]). In our opinion it is not straightforward to generalize the moving grid
method to three-dimensional problems, especially if topological changes occur. This motivates
us to use the level set method for three-dimensional problems.

5.1 Planar interface: comparison with a similarity solution

Let us consider an initial rectangular particle ,,,+(0) = [0, s9) x [0, 1], where sg = 0.615, with
concentration cP*"* = 0.45. The concentration on the moving interface is ¢*** = 0.35, the initial
concentration on the diffusive phase Q4,(0) = (so,1] x [0,1] is ¢ = 0.3, and the diffusivity
constant D = 1. The similarity solution [32] is used to smooth out the discontinuous initial
concentration near the interface. Therefore, a time g = 0.01 is used to compute the interface
position and concentration. The final position of the interface, calculated by a balance of
mass, is given by

(Cpart - CO)SO 4 CO o csol
cpart _ psol

Soo =

The interface remains planar during its evolution. Its position as a function of time is pre-
sented in Figure 2 with the similarity solution defined in the infinite domain. Agreement
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between the similarity solution and the numerical results is observed at the beginning of
the phase transformation, and this correspondence is improved under grid refinement. The
boundedness of the computational domain causes divergence of the numerical results from
the similarity solution as time evolves. Linear convergence to the steady solution, i.e. to s,
is observed as time evolves.

T T
—— similarity solution

interface position

. . . . . . .
0.1 0.2 0.3 0.4 0.5 0.6 0.7
time

Figure 2: Movement of the interface as a function of time for the planar interface problem.

In Table 1 the relative error in the mass of the system (given by |m(t) —m(0)|/m(0)) and
the interface position (given by |s(t) — Seo|/|S0o|) at time teng = 0.75 is presented. The results
obtained with the moving grid method are also given in Table 1. For both the level set and
the moving grid methods linear convergence is observed. The meshes for both method have
the same number of nodal points. The mesh in the moving grid method is only defined in
the diffusive phase 24,(t), and the mesh size varies from 38.5% (initially) to approximately
61% (at final time) of the mesh size in the level set method. This explains the differences in
accuracy in Table 1.

Table 1: Relative errors in the interface position and mass for the planar interface problem at
time t¢pqg = 0.75. Initial mass of the system m(0) = 0.39225 and final position of the interface

Soo = 0.4225.

For this easy test problem, the level set and moving grid methods are equally easy to

Level Set Moving Grid
N Interface Mass Interface Mass
16 | 6.483 x 1072 | 7.248 x 1073 || 6.376 x 1073 | 8.239 x 10~*
323318 x 1072 | 3.749 x 1073 || 3.278 x 1073 | 4.867 x 10~*
64 | 1.632 x 1072 | 1.895 x 1072 || 1.867 x 103 | 3.226 x 10~*

apply and their accuracy is comparable.
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(a) Time evolution of the interface (Cartesian (b) Snapshots of the interface with the LSM
extension). (dashed lines) and the MGM (solid lines).

Figure 3: Circular interface. Left: snapshots at intervals of 0.1s, using the Cartesian extension
of the front velocity. Right: interface position at 0.25, 0.5, 0.75 and 1 (from right to left) for
the MGM (solid lines) and the LSM (dashed lines).

5.2 The influence of the outer boundaries

Consider the domain © = [0, 1]? where the particle is initially defined by Qpa.+(0) = { (z,y) €
Q| Va2+y? < so } where sg = 0.615. The concentrations are cP** = 0.45, ¢*°! = 0.33
and ¥ = 0.3. The diffusivity within the diffusive phase is D = 1. If the particle remains
circular during the dissolution process, the radius of the particle at the steady solution can
be computed by

cpart _ psol

\/(Cpart — )82 + (0 — Csol)%
Too = .

However, due to the influence of the outer boundaries this symmetry has not been obtained
in the numerical results. This can be observed in Figure 3(a), where the evolution of the
interface is presented for intervals of 0.1 seconds until the final time t.,4 = 1.25. Note that
a larger displacement of the interface is observed in the diagonal direction. The same effect
is observed with the moving grid method. The interface position computed with the level
set method (LSM) and the moving grid method (MGM) are plotted in Figure 3(b). The
picture has been enlarged in order to see the differences between both solutions. The normal
extension of the front velocity is used in this case. Figure 3(b) shows that the movement of
the interface is faster with the level set method. The front velocity is overestimated due to
larger discretization errors. The discretizations obtained with the moving grid method are
more accurate since the mesh is only defined in the diffusive phase Qg,(t) but has the same
number of mesh points, which leads to smaller mesh sizes.

The outer boundary { (z,y) € 9Q |z =1 or y =1 } causes the non-uniform movement
of the interface. This is more clearly observed in Table 2, where the relative errors in the
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positions of the interface r#=% (tenq) and =) (t,,4) with respect to the radius of the steady
solution 74, are presented. The values 7#=0)(¢) and r¥=%)(t) are defined as follows:

r=01) =Tt)N{ (z,y) €Q|y=01},
=) =T N{ (z,y) €eQ|y=2x}.

The error in the diagonal r¥=%) is always larger than the error in the edge »®=9, indepen-
dently of the method used to extend the front velocity. Furthermore, the errors in the edge
r@=9 and in the diagonal r(¥=*) are larger when the Cartesian extension of the front velocity
is used. The only exception occurs in the error in the edge =% with N = 128. The relative
error in mass is also presented in Table 2, which shows that the normal extension of the front
velocity is more conservative than the Cartesian extension. Furthermore, the errors in r (#=%)
and mass show a linear convergence rate.

Cartesian Extension Normal Extension
N r»=0) ry=2) Mass r®=0) ry=2) Mass
32 | 3.485 x 1072 | 5.655 x 1072 | 4.798 x 1073 || 2.461 x 102 | 4.503 x 102 | 3.846 x 1073
64 | 7.746 x 1073 | 3.092 x 1072 | 2.664 x 1073 || 1.814 x 10~3 | 2.511 x 1072 | 2.160 x 103
128 | 6.381 x 1073 | 1.699 x 102 | 1.526 x 1072 || 1.016 x 10~2 | 1.368 x 1072 | 1.208 x 103

Table 2: Relative errors in the interface position and mass for the circular interface problem
at time t.,qg = 1.25. The equilibrium radius ro, = 0.3930, and the initial mass of the system
m(0) = 0.3446.

5.3 A comparison between Cartesian and normal extensions of the front
velocity

Consider the domain © = [0,1]? where the particle is initially defined by Qe = { (2,y) €
Q| |z] <b and |y| < b} where b = 0.55. The concentrations are cP¥* = 0.45, ¢**! = 0.33
and ¥ = 0.3, and the diffusivity inside the diffusive phase D = 1. The Cartesian and normal
extensions of the front velocity are plotted in Figure 4 together with the interface position at
the initial time.

The evolution of the interface with these extensions of the front velocity is presented in Figure
5(a). Minor differences are observed, although the normal velocity produces a slightly slower
displacement of the interface around the corner of the initial interface, since the distance of
the grid nodes next to the corner in the normal direction is larger than or equal to the distance
in the Cartesian directions, leading to smaller estimate of the front velocity. The interface
evolution with the moving grid method is presented in Figure 5(b). Contrary to the moving
grid method, the level set method handles singularities on the interface in a natural manner.

The relative error in the mass at time t.,q = 2.5 is presented in Table 3. The normal
extension of the front velocity produces slightly better results. The number of iterations
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(a) Cartesian extension of the front ve- (b) Normal extension of the front velocity
locity at t=0. at t=0.

Figure 4: The initial position of the interface with the Cartesian extension (left) and the
normal extension (right) of the front velocity.

(a) Evolution of the interface with the Level (b) Evolution of the interface with the
Set Method using the Cartesian (dashed Moving Grid Method

curves) and the normal (dotted curves) ex-

tensions of the front velocity

Figure 5: Interface position at times 0.005, 0.205, 0.405 and 0.605 using the Level Set Method
(left) and the Moving Grid Method (right).
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required to reinitialize the level set function to a signed distance function is slightly lower for
the normal extension than for the Cartesian extension of the front velocity.

N | Cartesian Extension | Normal Extension
16 7.438 x 1073 5.562 x 103
32 6.082 x 1073 4.741 x 1073
64 2.538 x 1073 1.620 x 1073
128 1.515 x 103 9.490 x 104

Table 3: Relative errors in the mass for the squared interface problem. Initial mass: m(0) =
0.3458.

5.4 A 3D test problem

Consider a cylindrical particle in the cube = [0,1]3. Let us assume that the surface of
this cylindrical particle has been perturbed. The concentrations are cP®* = 0.45, ¢*° = 0.33
and ¥ = 0.3, and the diffusivity constant D = 1. The dissolution of the particle, using the
Cartesian extension of the front velocity, is presented in Figure 6. The particle breaks into
four almost spherical particles, of which the two particles in the extremes dissolve faster, since
the flux of concentration is larger there than in the central part. The change of topology is
handled in a natural manner with the level set method, due to its implicit representation of the
interface. However, it is our experience with the moving grid method that merging/breaking
of interfaces requires an arduous implementation task (although remarkable improvements
have been obtained in this respect, see [11]).

6 Conclusions

We considered the dissolution process in solid state phase transformations. The level set
method was used to model the resulting Stefan problem. A combination of finite difference
and finite element methods has been shown to work. Two alternative extensions of the front
velocity have been used. Both are easy to implement, and their extension to three-dimensional
problems is straightforward. It has been shown that the normal extension of the front veloc-
ity gives slightly more accurate results and requires slightly fewer pseudo time-steps in the
reinitialization than the Cartesian extension. The numerical scheme has been shown to be
first order accurate, since the front velocity and the update of the level set are carried out by
first order accurate schemes. Furthermore, singularities and topological changes are handled
in a natural way, due to the implicit representation of the moving interface, in contrast with
the moving grid method.
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Figure 6: Dissolution of an initially perturbed cylindrical particle. Time evolution follows
from left to right and from up to down.
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