
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 06-05

Solution of the incompressible Navier Stokes equations with
preconditioned Krylov subspace methods

M. ur Rehman, C. Vuik G. Segal

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2006

Copyright  2006 by Department of Applied Mathematical Analysis, Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior written permission from Department of Applied
Mathematical Analysis, Delft University of Technology, The Netherlands.

SOLUTION OF THE INCOMPRESSIBLE NAVIER STOKES

EQUATIONS WITH PRECONDITIONED KRYLOV SUBSPACE

METHODS

M. UR REHMAN, C. VUIK, AND G. SEGAL

Abstract. In this report, using SEPRAN [1], the incompressible Stokes and
Navier Stokes problems are solved in a square and L-shaped domain with a
varying grid size and Reynolds number. Both problems are solved with it-
erative solvers using an ILU preconditioner. Different ordering techniques of
the grid points and the unknowns are used to avoid breakdown of the LU de-
composition. These ordering techniques used with ILU preconditioning makes
that the iterative methods applied to the system of equations converge rapidly.
With the reordering techniques, a direct solver can be used to solve the coupled
system without pivoting. Numerical experiments are performed in a 2-D and
3-D domain using various finite element discretization schemes.

1

Contents

List of Figures 3
List of Tables 3
1. Introduction 5
2. Incompressible Navier Stokes Equations 5
2.1. Discretization 6
3. Solution Strategies 10
3.1. Direct method 10
3.2. Iterative methods 11
3.3. Krylov subspace methods 12
4. Preconditioning 15
4.1. ILU Preconditioner with mesh renumbering and unknowns reordering 16
5. Numerical Experiments 19
6. Conclusions 28
References 29
Appendix A. Mesh Numbering Schemes 30
A.1. Sloan’s Algorithm 30
A.2. Cuthill and McKee’s Algorithm 31
Appendix B. SEPRAN Introduction 32

List of Figures

1 Taylor Hood family elements (Q2−Q1), (P2−P1) elements and (Q2−Q1)
grid 9

2 Crouzeix Raviart family elements (Q2 − P0), (P2+ − P1) elements and
(P2+ − P1) grid 9

3 Taylor Hood family mini elements Q+
1 −Q1 element, P+

1 − P1 element 9

4 Profile of matrix 11

5 (a)-Lexicographic mesh numbering, (b)-Sloan mesh renumbering 16

6 Cuthill McKee renumbering 18

7 A (2x2) Q2-Q1 mesh 18

8 Sparsity pattern of Stokes matrix with (a)-Lexicographic numbering,
(b)-Sloan renumbering with p-last reordering (c) Sloan renumbering with
P-last per level reordering 18

9 Sparsity pattern of Stokes matrix with (a)-Lexicographic numbering,
(b)-Cuthill McKee renumbering with p-last reordering (c) Cuthill McKee
renumbering with P-last per level reordering 18

10 Backward facing step or L-shaped domain 19

11 (a)-Channel flow, (b)- 3-D plot for pressure in channel flow 22

12 Flow in Backward facing step or L-shaped domain with Re = 250 22

13 Generalized hexahedron (a) Tri-linear (b) Tri-Quadratic 23

List of Tables

1 Different ordering schemes of unknowns for mesh shown in Figure (7) 16

2 Solution of Stokes Problems with Q2 − P1 discretization in square domain
with eps = 1e− 6 23

3 Solution of Stokes Problems with Q2−Q1 discretization in a square domain
eps = 1e− 6 23

3

4 Effect of mesh renumbering on convergence of BiCGSTAB for various
discretizations in backward facing step Stokes problem with P-last per
level and eps = 1e− 6 23

5 Effect of mesh renumbering on a direct solver for various discretization in
backward facing step Stokes problem using p-last-level ordering 24

6 Effect on iterations with varying Reynolds number for Navier Stokes
backward facing step problem(16x48) with Q2 − Q1 discretization with
eps = 1e− 3 using p-last-level reordering 24

7 Effect of grid increase and Reynolds number on iterations for Navier
Stokes backward facing step problem with eps = 1e− 3 using p-last-level
reordering 24

8 The effect of Reynolds number on non-linear iterations in Navier Stokes
backward facing step problem with BiCGSTAB using p-last-level reordering
for Q2-Q1(16x48) grid 24

9 The number of outer iterations for various Reynolds number in Navier
Stokes backward facing step problem with a direct Solver using p-last-level
reordering for Q2-Q1(16x48) grid 24

10 Effect of stretched grid on convergence of preconditioned BiCGSTAB
method in Stokes backward facing step problem 25

11 3-D Stokes backward facing step problem using k2-k1(Taylor Hood family)
elements 25

12 3-D Stokes backward facing step problem using k2-k0(Crouzeix Raviart
family) elements 25

13 Accumulated inner iterations for 3-D Navier Stokes backward facing step
problem with p-last-level reordering 25

14 (I)-Solution of Stokes problem in a stretched backward facing step with
Bicgstab 26

15 (II)-Solution of Stokes problem in a stretched backward facing step with
Bicgstab 26

16 Comparison of preconditioners used in IFISS and SEPRAN implemented
in MATLAB 27

4

1. Introduction

In this report, the incompressible Navier Stokes equations are first discretized
by a finite element method. One obtains a nonlinear system having two or three
velocity unknowns and pressure. The nonlinear system arising from the discretiza-
tion is first linearized, which gives rise to a nonsymmetric indefinite linear system
of equations. The linear system is then solved with a direct or iterative solver both
in 2-D and 3-D.
In Section 2, we discretize the Navier Stokes equations by a finite element method.
The techniques used in linearization of Navier Stokes equations are discussed. The
number of rows of the continuity equation is determined by the the number of pres-
sure unknowns, more velocity unknowns than pressure unknowns are demanded to
avoid dependent or inconsistent systems of equations. The choice of the element
determines whether this requirement is satisfied. This issue is also discussed in this
section.
In Section 3, we discuss solution strategies for a linear system like direct, classical
iterative method and Krylov subspace methods. We give a general overview of these
methods while some of them which are specific to our problem are discussed.
In section 4, we describe a preconditioning strategy, which is based on a renumber-
ing of the finite element grid and reordering of the velocity and pressure unknowns.
This scheme is helpful for both direct and iterative methods. In a direct method,
it avoids the break down in the LU decomposition due to zeros at the main diag-
onal and reduces fill-in. When using an ILU preconditioner with these reordering
schemes, the convergence of Krylov subspace method is in general enhanced.
In Section 5, based on the given scheme, we perform some numerical experiments
both in 2-D and 3-D. For a some small problems direct methods are more efficient
than iterative methods, but for medium and large problems a preconditioned Krylov
subspace method gives faster results in CPU time than a direct method.

2. Incompressible Navier Stokes Equations

In this chapter we are concerned with the basic equations of fluid dynamics and
its discretization. We start with the steady state Navier Stokes equations governing
the flow of a Newtonian, incompressible viscous fluid. The equations are given by

−ν∇2~u+ ~u.∇~u+ ∇p = ~f in Ω (1)

∇.~u = 0 in Ω. (2)

Where Ω ⊂ Rd(d = 2 or 3) is the flow domain with piecewise smooth boundary
∂Ω, ~u is the fluid velocity, p is the pressure field, ν > 0 is the kinematic viscosity
coefficient (inversely proportional to Reynolds number Re), ∆ is the Laplace oper-
ator, ∇ denotes the gradient and ∇. is the divergence.
Equation (1) represents conservation of momentum, while equation(2) represents
the incompressibility condition, or mass conservation. The boundary value prob-
lem that is considered is the system (1,2) posed on a two or three dimensional
domain Ω, together with boundary conditions on ∂Ω = ∂ΩD ∪ ∂ΩN given by

~u = ~w on ∂ΩD, ν
∂~u

∂n
− ~np = ~s on ∂ΩN .

Here we will restrict ourselves to the simplest case, that is no external force:
~f = 0 and fixed wall boundary conditions, ~u = 0 on ∂Ω.
The presence of the convective term ~u.∇~u in the momentum equation makes the
Navier Stokes system non-linear. It can be linearized with Picard or Newton’s
method. We will discuss this later. In the limiting case when the convection is

5

negligible (ν → ∞), the Navier Stokes equations reduce to the Stokes equations
given by

−∇2~u+ ∇p = ~f in Ω (3)

∇.~u = 0 in Ω, (4)

with boundary condition

~u = ~w on ∂ΩD,
∂~u

∂n
− ~np = ~s on ∂ΩN .

2.1. Discretization. The discretization of the Navier Stokes equations is done
through the finite element method. The weak formation of the Navier Stokes equa-
tions ia given as:

ν

∫

Ω

(∇2~u).~v +

∫

Ω

(~u.∇~u).~v −

∫

Ω

(∇p).~v = 0, (5)

∫

Ω

q(∇.~u) = 0, (6)

where ~v and q are the test functions. Applying the Gauss divergence theorem and
substituting the boundary conditions in (5) and (6), it reduces to

ν

∫

Ω

∇~u : ∇~v +

∫

Ω

(~u.∇~u).~v −

∫

Ω

p(∇.~v) =

∫

∂ΩN

~s.~v, (7)

∫

Ω

q(∇.~u) = 0. (8)

A discrete weak formulation is defined using finite dimensional subspaces Xh
0 ⊂ H1

E0

and Mh ⊂ L2(Ω), given a velocity solution space Xh
E , the discrete version of (7)

and (8) is: find uh ∈ Xh
E and ph ∈Mh such that

ν

∫

Ω

∇ ~uh : ∇ ~vh +

∫

Ω

(~uh.∇ ~uh). ~vh −

∫

Ω

ph(∇. ~vh) =

∫

∂ΩN

~s. ~vh for all ~vh ∈ Xh
0 , (9)

∫

Ω

qh(∇. ~uh) = 0 for all qh ∈Mh. (10)

We see in the relations (9) and (10) that no derivative of ph and qh are used.
It is sufficient that ph and qh are integrable. For ~uh and ~vh, the integral of first
derivative must exist. So we do not need the continuity of ph and qh in the weak
formulation and that plays an important role in the element selection.
In the standard Galerkin method we define two basis functions, ψi(x) for pressure
and φi(x) for velocity. So the approximation for ~uh and ph is defined as

ph =
m

∑

j=1

pjψj(x), (11)

and

~uh =
n

∑

j=1

u1jφj1(x) + u2jφj2(x) =
2n
∑

j=1

ujφj(x), (12)

where uj is defined by uj = u1j , j = 1, ..n, uj+n = u2j , j = 1, ...n and φj in the same
way. In order to get the standard Galerkin formulation we substitute ~vi = φi(x),
q = ψi(x). Find ph and ~uh, such that

ν

∫

Ω

∇ ~uh : ∇φi +

∫

Ω

(~uh.∇ ~uh).φi −

∫

Ω

ph(∇.φi) =

∫

∂ΩN

~s.φi for i = 1, ..2n, (13)

∫

Ω

ψi(∇. ~uh) = 0 for i = 1, ..,m, (14)

6

Formally the system of equations can be written as

Au +N(u) −BT p = F (15)

Bu = 0. (16)

Where u denotes the vector of unknowns u1i and u2i, p denotes the vector of un-
knowns pi. Au is the discretization of the viscous term and N(u) the discretization
of the nonlinear convective term, Bu denotes the discretization of of the divergence
of u and BT p is the discretization of the gradient of p. The right hand side vector
F contains all the contributions of the source term, the boundary integral as well
as the contribution of the prescribed boundary conditions.
Since only linear systems of equations can be solved directly, equations (13,14) have
to be linearized and combined with some iteration process. Commonly used schemes
are Picard iteration and Newton iteration.

Picard iterations. In the Picard iteration method, the velocity in the previous step
is substituted into the convective term. The convective term at the new level is
given as

uk+1.∇uk+1 ≈ uk.∇uk+1,

starting with initial guess u(0) for the velocity field, Picard’s iteration constructs a
sequence of approximate solutions (u(k+1), p(k+1)) by solving a linear Oseen problem

−ν∆u(k+1) + (u(k).∇)u(k+1) + ∇p(k+1) = f in Ω, (17)

∇.u(k+1) = 0 in Ω, (18)

k = 1, 2, No initial pressure is required to be specified. Setting u(k) = 0 corre-
spond to the Stokes equations as given in (3) and (4).

Newton iterations. Newton’s method is characterized by the fact that it is a quadrat-
ically converging process. Once it converges, it requires only few iterations. Suppose
we write the solution at new level as the sum of the preceding level and a correction:

un = un−1 + δun−1,

If the nth iteration un is in the neighborhood of u , δu is small. The convective
terms can be written as:

un.∇un = (un−1 + δun−1).∇(un−1 + δun−1)

= un−1.∇un + (un − un−1).∇(un−1 + δun−1)

= un−1.∇un + un.∇un−1 − un−1.∇un−1 + δun−1.∇δun−1.

Neglecting the quadratic term in δu, the linearized form of (1)(2) become:

ν∆un + un.∇un−1 + un−1.∇un + ∇pn = f + un−1.∇un−1, (19)

∇.un = 0. (20)

Equations (19) and (20) are known as the Newton linearization of the Navier Stokes
equations and continuity equation. The Stokes equations can be used as an initial
guess. Since Newton iteration largely depends upon the initial guess, for high
Reynolds number, the method does not converge due to a bad initial guess. In such
a case few Picard iterations are suggested initially. Another good starting guess
can be achieved by starting with a smaller Reynolds number, compute the solution
and use this solution as an initial guess for large Reynolds number. This method is
known as a continuation method.
After linearization the system can be again written as

Au+N(uk)u+BT p = F,

Bu = 0,
7

where uk is the solution of the previous iteration.

Element selection conditions. Now that the problem of the nonlinear term is solved,
the linear system arising from (1) and (2) can be written as

[

F BT

B 0

] [

u
p

]

=

[

f
g

]

(21)

where F = A+N(uk).
Another problem arises due to the zeros at the main diagonal of (21), which shows

the absence of the pressure in the continuity equation. In (14) we see that the num-
ber of equations for velocity unknowns is determined by the pressure unknowns. If
the number of pressure unknowns is larger than the number of velocity unknowns,
the coefficient matrix in (21) becomes rank deficient, so we infer that number of
pressure unknowns should never exceed the number of velocity unknowns irrespec-
tive of the grid size. To meet this criterion, the pressure must be approximated by
interpolation polynomials that are at least one degree less than the polynomials for
the velocity. But experiments show that this condition is not sufficient when the
number of elements in a grid are small. However, it has been observed that even
in case of an increase in number of elements, the matrix still remains singular. An
exact conditions that elements must satisfy is known as Brezzi-Babuska condition
(BB condition). The condition states that, for BBT in (21) to be invertible it is
necessary that
kernel(BT)= 0, where BT is nxm.
kernel(BT)= 0 means that BT has rank m, and is equivalent to requiring

max
v

(Bv, p) = max
v

(v,BT p) > 0, ∀p. (22)

The above relation in the framework of finite element method is

max
v∈Vh

(∇.vh, qh)

‖vh‖Vh
‖qh‖Qh

> 0. (23)

The above condition (23) allows the family of matrices to degenerate towards a
singular system as h→ 0. The strict Brezzi Babushka condition ensures that BBT

not degenerates towards zero as h decreases. The modified form of (23) is given as

inf
q∈Qh

sup
v∈Vh

(∇.vh, qh)

‖vh‖Vh
‖qh‖Qh

≥ γ ≥ 0. (24)

It is very difficult to verify if the BB condition is satisfied or not. Fortin [3] has
given a simple method to check the BB condition on a number of elements, which
state that
an element satisfies BB condition, whenever given a continuous differentiable vector
field u, one can explicitly build a discrete vector field ũ such that

∫

Ω

ψi div ũ dΩ =

∫

Ω

ψi div u dΩ for all basis functions ψi.

Note that all elements used in this report satisfies the BB condition. The elements
used in a finite element discretization of the Navier Stokes equations are usually
subdivided in two families, one having continuous pressure unknown (Taylor Hood
family) and the Crouzeix Raviart family having a discontinuous pressure unknown.
In Figure (1) and (2), some of the commonly used elements of these families in
2-D are shown. Both quadrilateral and triangular elements are used with different
combinations of velocity and pressure polynomials. In the Crouzeix Raviart family
the elements are characterized by a discontinuous pressure; discontinuous on ele-
ment boundaries. For output purposes, these discontinuous pressures are averaged
in vertices for all the adjoining elements. For details see [4].

8

Figure 1. Taylor Hood family elements (Q2 − Q1), (P2 − P1)
elements and (Q2 −Q1) grid

Another class of elements from the Taylor Hood family which satisfies the BB con-
dition is known as mini-element, in which the velocity is defined by a bi-linear
interpolation polynomial for the vertices with a bubble function at centroid and
pressure is defined as a bi-linear polynomial. The bubble function is 1 in the cen-
troid and zero on the node and therefore on the edges. It is necessary to prevent an
overdetermined system of equations for the continuity equation. Since the bubble
function is strictly local for an element,the centroid only contributes to the ele-
ment matrix and vector for the specific element it is lying in. The rectangular and
triangular mini elements are shown in Figure 3.

Figure 2. Crouzeix Raviart family elements (Q2−P0), (P2+ −
P1) elements and (P2+ − P1) grid

Figure 3. Taylor Hood family mini elements Q+
1 −Q1 element,

P+
1 − P1 element

9

3. Solution Strategies

The linear system arising from the system of equations can be written in the
form of

Ax = b

with A a nonsingular n by n matrix. This kind of systems can be solved in two
ways, either a direct method such as a Gaussian elimination or an iterative method.

3.1. Direct method. In a direct method, a matrix A can be written in the form

A = LU,

where L is a lower triangular matrix and U is an upper triangular matrix. We have
to solve LUx = b, which can be done in the following steps
first solve Ly = b,
then solve Ux = y.
A direct method can be used when the matrix is dense. However, a sparse linear
system with suitable sparsity structure is often solved with a direct method, because
a direct method leads to more accurate solution and a fixed amount of work. For
sparse matrices, sparseness can be used to reduce the computing time and memory
during elimination process. An example of such kind of matrices is the band matrix
in which nonzero elements are only on the main and some adjacent diagonals.

A =





















x x 0 0 0 0 0
x x x 0 0 0 0
x x x x 0 0 0
0 x x x x 0 0
0 0 x x x x 0
0 0 0 x x x x
0 0 0 0 x x x





















(25)

In (25), matrix A is a band matrix with the lower bandwidth p, if i > j+p⇒ aij = 0
and upper bandwidth q if j > i+ q ⇒ aij = 0 and having bandwidth p+ q+1. The
system arising from finite element and finite difference methods are such that p and
q are equal. Each entry within the band can be either zero or nonzero and all the
elements outside the band are zero and remain zero during the elimination process,
due to which L and U inherits the lower and upper bandwidth of A. The cost of
the banded solution methods is governed by bandwidth, that is why these schemes
may be inefficient for sparse matrices which contain a significant number of zeros
inside the band. One alternative to the bandwidth strategy involves discarding all
leading zeros in each row and column and storing only the profile of a matrix. The
method is known as profile or envelope method.
Let A be square matrix, the lower envelope of A is the set of all the ordered pairs
(i, j) such that i > j and aik 6= 0 for k ≤ j. The upper envelope of A is the
set of ordered pairs (i, j) such that i < j and akj 6= 0 for some k ≤ j. Thus the
upper envelope is the set of all the elements above the main diagonal excluding
leading zeros in each column. If a matrix is symmetric and positive definite then
A = LLT , where L is the lower triangular matrix. This is known as the Cholesky
factorization. In Cholesky factorization, L has the same envelope as A and we can
save computer storage by employing a data structure that stores only the half band
(lower or upper) of A and L can be stored over A. Both band and profile schemes
depends on the order in which the equations and unknowns are numbered. We will
discuss some of the renumbering schemes later, which minimize the envelope.
In a direct method, The LU factorization is the costly part of the computational
process and the solution of the two steps is usually of minor cost. The elimination
process fills the non-zero entries of a sparse matrix within a band or profile. So
large number of entries has to be stored and the CPU time increases. Generally,

10

Figure 4. Profile of matrix

the system arising from the discretization of the finite element method has a sparse
structure, which means that it contains a large number of zeros. The aim of a sparse
direct solvers is to avoid doing operations on zero entries and therefore to try to
minimize the number of fill-ins. We may save the computational cost and CPU time
with an efficient reordering strategy which can be used to modify the structure of
the matrix.

3.2. Iterative methods. Suppose we want to solve a linear system

Ax = b. (26)

A is a non-singular square matrix and b is given. An iterative method constructs a
sequence of vectors xk, k = 0, 1, ..., which is expected to converge towards x which
is the solution of (26) and x0 is given. The method is said to be convergent if
limk→∞‖x− xk‖ = 0. Usually, the matrix A is splitted into two matrices

A = M −N.

The sequence xk can be defined as

Mxk+1 = Nxk + b. (27)

Let ek = x− xk is the error at the kth iteration. Then (27) can be written as

M(x− xk+1) = N(x− xk)

ek+1 = M−1Nek

ek+1 = (M−1N)ke0.

The method converges if limk→∞(M−1N)k = 0.

Theorem 1. The iterative method (27) converges to x = A−1b if σ(M−1N) < 1
where σ(M−1N) = max{|λ|, where λ is spectrum of M−1N}, the set of eigen-
values of M−1N is said to be the spectrum of M−1N .

It is not easy to check the spectrum, since for most of the problems the eigenvalues
of (M−1N) are not explicitly known. For more details see ([9], chapter 5). The
variants of (27) are known as classical iterative methods. Gauss Seidel, Gauss Jacobi
and SOR(successive over relaxation) are various types of classical methods. Some
of the advantages of the iterative methods are:

• they need no modification of a given matrix, so no fill-in is generated and
they do not need additional space for new elements which require additional
time on inserting these elements into a complicated data structure,

• they need very little additional memory,
• they are usually faster than direct methods, especially when we do not need

very good accuracy offered by direct method,
• they are easy to implement efficiently.

11

However, the iterative methods have some disadvantages too, we do not know the
time needed to achieve the required accuracy. Moreover, sometimes one has prob-
lems with convergence when the required accuracy is high.
We will discuss another class of iterative method known as Krylov subspace meth-
ods.

3.3. Krylov subspace methods. In the iterative method in (27), we replace N =
M −A, then it can be written as

xk+1 = xk +M−1rk, (28)

where rk = b − Axk known as residual, if we start with x0, the next steps can
written as

x1 = x0 + (M−1r0)

x2 = x1 + (M−1r1)

replacing x1 from previous step and r1 = b−Ax1, the above equation leads to

x2 = x0 + 2M−1r0 −M−1AM−1r0

.

.

.
this implies that

xk ∈ x0 + span{M−1r0,M
−1A(M−1r0), ..., (M

−1A)k−1(M−1r0)}

The subspace Kk(A; r0) := span{r0, Ar0, ..., A
k−1r0} is called the Krylov subspace

of dimension k corresponding to matrix A and initial residual r0. It means that
the Krylov subspace is spanned by the initial residual and by vectors formed by
repeated multiplication of the initial residual and system matrix.
The Krylov subspace is constructed by basis v1, v2, ..., vj . The basis is computed by
the Arnoldi [7] algorithm. We start with v1 = r0/‖r0‖2, then compute Av1, make it
orthogonal to v1 and normalize it, this gives v2. The general procedure to form the
orthonormal basis is as follows: assume we have an orthonormal basis v1, v2, .., vj

for Kj(A; r0), this basis is expanded by computing w = Avj and orthonormalize
this with respect to previous basis. The most commonly used algorithm is Arnoldi
with modified Gram-Schmidt procedure as shown in Algorithm 1 [8]. Let the matrix
Vj be given as

Vj = [v1, v2, ..., vj] ∈ Kj

The columns of Vj are orthogonal to each other. It follows that

AVm−1 = VmHm,m−1.

The m by m − 1 matrix Hm,m−1 is upper Hessenberg, and its elements hi,j are
defined by the Arnoldi algorithm [7].

The Arnoldi algorithm is composed of a matrix vector products, inner products
and vector updates. If A is symmetric, then Hm−1,m−1 = V T

m−1AVm−1 is also
symmetric and tridiagonal and leads to a three term recurrence in the Arnoldi
process. Each new vector has to be orthogonalized with respect to previous two
vectors only. The algorithm is known as the Lanczos algorithm. Krylov subspace
methods are developed on the bases of these algorithms. We will discuss some of
the Krylov subspace methods which are used in numerical simulations.

12

Algorithm 1 Arnoldi algorithm with modified Gram-Schmidt procedure

v1 = r0/‖r0‖2;
For j = 1 to m− 1

w = Avj ;
For i = 1 to j,

hi,j = vT
i w;

w = w − hi,jvi;
end
hj+1 = ‖w‖2;
vj+1 = w/hj+1,j ;

3.3.1. GMRES. The generalized minimal residual algorithm is developed by Saad
and Schultz [10]. The method is based on long recurrences and satisfies optimality
property. The method is used for nonsymmetric nonsingular matrices. GMRES is
based on a modified Gram-Schmidt orthonormalization procedure and uses a restart
to control storage requirements. From the algorithm, it is clear that Arnoldi algo-

Algorithm 2 GMRES algorithm

1. Compute r0 = b−Ax0, β := ‖r0‖2, and v1 = r0/β
2. For j = 1 to m
3. Compute w = Avj ;
4. For i = 1 to j
5. hij := (wj , vi)
6. wj := wj − hijvi

7. End
8. hj+1,j = ‖wj‖2. if hj+1,j = 0 set m := j and exit for
9. vj+1 = wj/hj+1,j

10. End
11. Define the (m+ 1)xm Hessenburg matrix H̄m = {hij}1≤i≤m+1,1≤j≤m

12. Compute ym, the minimizer of ‖βe1 − H̄my‖2, and xm = x0 + Vmym

rithm is followed by a minimum least square problem.

J(y) = ‖b−Ax‖2 = ‖b−A(x0 + Vmy‖2

by using r0 = b − Ax, AVm = Vm+1H̄m, e1 = [1, 0, ..., 0]T the above relation leads
to minimization of

J(y) = ‖βe1 − H̄my‖2.

GMRES is a stable method and no breakdown occurs, if hj+1,j = 0 then xm = x
reached the solution. It can be seen that work per iteration and memory require-
ments increase for an increasing number of iterations. In order to avoid the problem
of excessive storage requirement and computational costs for the orthogonalization,
GMRES is usually restarted after m iterations which uses the last iteration as start-
ing vector for next restart. The restarted GMRES is denoted as GMRES(m). Now
the problem arises which are suitable choices of m. There is no rule for the choice of
m. A disadvantage in this approach is that the convergence behavior in many cases
seems to depend quite critically on the choice of m. The property of superlinear
convergence is lost by throwing away all the previous information of the Krylov
subspace. If no restart is used, GMRES (like any orthogonalizing Krylov subspace
method) will converge in no more than N steps(assuming exact arithmetic). For
more details on the GMRES convergence see [15].

13

Theorem 2. Suppose that A is diagonalizable so that A = XDX−1 and let

ǫ(m) = min
p∈pm
p(0)=1

max
λi∈σ

|p(λi)|

then the residual norm of the m-th iterate satisfies

‖rm‖2 ≤ K(X)ǫ(m)‖r0‖2

where K(X) = ‖X‖2‖X
−1‖2. If furthermore all eigenvalues are enclosed in a circle

centered at C ∈ R with C > 0 and having radius R with C > R, then
ǫ(m) ≤ (R

C
)m.

3.3.2. GMRESR. This method is a variant of GMRES developed by Vuik and van
der Vorst [11]. The idea is that the GMRES method can be effectively combined
with other iterative schemes. The outer iteration steps are performed by GCR, while
the inner iteration steps can be performed by GMRES or with another iterative
method. In GMRESR, inner iterations are performed by GMRES. For m = 0,

Algorithm 3 GMRESR algorithm

1. x0 is an initial guess and ro = b−Ax0

2. For j = 1, 2, 3...
3. si = Pm,i−1(A)ri−1,

si be the approximate solution of As = ri−1

obtained after m steps of an iterative method
4. vi = Asi

5. For j = 1 to i− 1
6. α = (vi, vj),
7. vi = vi − αvj ,si = si − αsj ,
8. End
9. vi = vi/‖vi‖2,si = si/‖vi‖2

10. xi = xi−1 + (ri−1, vi)si;
11. ri = ri−1 − (ri−1, vi)vi;
12. End

we get GCR and for m → ∞ we get GMRES. The amount of work and required
memory for GMRESR is much less than GMRES. The choice of m in GMRESR
is not critical. The proper choice of m and amount of work has been discussed
in [11]. In some cases, when the iterative method is close to the solution (satisfy
stopping criteria), the m inner iterations of GMRES at that point will lead to high
accuracy which is not required at that point. So it is never necessary to solve the
inner iterations more accurately than the outer one [11].

3.3.3. Bi-CGSTAB. Bi-CGSTAB [14] is a variant of the Bi conjugate gradient(Bi-
CG) [12] algorithm. If the matrix A is symmetric and positive definite then CG
algorithm converges to the approximate solution. The CG method is based on
Lanczos algorithm. For nonsymmetric matrices Bi-CG algorithm was introduced
which is based on Lanczos biorthogonalization. The algorithm not only solves the
original system Ax = b but also a linear system ATx∗ = b. In the Bi-CG method,
the residual vector can be written in as rj = φj(A)r0 and r̄j = φj(A

T)r̄0, Son-
neveld [13] observed that we can also construct the vectors rj = φ2

j (A)r0, using
only the latter form of the innerproduct for recovering the bi-conjugate gradients
parameters(which implicitly define the polynomial φj). With the CGS method,
the formation of vector r̄j and multiplication with AT can be avoided. However,

14

CGS shows irregular convergence behavior in some cases. To remedy this difficulty
Bi-CGSTAB(Bi-conjugate gradient stabilized) is developed by van der Vorst [14].
Bi-CGSTAB produces iterates with residual vectors of the form

rj = ψj(A)φj(A)r0,

ψj is the new polynomial defined recursively at each step for stabilizing or smoothing
the convergence. The advantage of this method is a short recurrence. It is always

Algorithm 4 Bi-CGSTAB algorithm

1. x0 is an initial guess and ro = b−Ax0

2. Choose r̄0 is an arbitrary vector, for example r̄0
3. ρ−1 = α−1 = ω−1 = 1
4. v−1 = p−1 = 0
5. For i = 0, 1, 2, 3...
6. ρi = (r̄0, r0);βi−1 = (ρi/ρi−1)(αi−1/ωi−1)
7. pi = ri + βi−1(pi−1 − ωi−1vi−1)
8. vi = Api

9. αi = ρi/(r̄0, vi)
10. s = ri − αivi

11. if ‖s‖ is small enough then xi+1 = xi + αipi, exit For
12. t = As
13. wi = (t, s)/(t, t)
14. xi+1 = xi + αipi + wis
15. if xi+1 is accurate enough then exit For
16. ri+1 = s− wit
17. End For

necessary to compare the norm of the updated residual to exact residual as small
changes in algorithm can lead to instabilities.

4. Preconditioning

Preconditioning is a technique used in iterative methods for solving large linear
systems, which influence an iterative method such that it converges rapidly. Instead
of solving a system Ax = b, one solves a system M−1Ax = M−1b, where M is the
preconditioner. A good preconditioner must have a variety of properties. First, the
preconditioned system should converge quickly. This generally means that M−1A
has a small condition number. Secondly, it should be easy to solve systems of
the form My = z. The construction of the preconditioner should be efficient in
both time and space. In Krylov subspace methods, the convergence depends on the
eigenvlaues distribution, so a preconditoned system must have a favorable spectrum
(clustered around 1).
Some of the above properties can be acheived by reducing the profile or bandwith of
the matrix. In order to reduce the band or profile, several algorithms for reordering
rows and columns exist, that minimizes the amount of fill-in and thus computa-
tion time. We will use some of these methods in combination with reordering of
unknowns. The scheme will work for a direct method and will be used in the pre-
conditoner for an iterative method to enhance the convergence.
Most of the preconditioners are application-specific which exploits the problem in-
sight. We will discuss here such kind of preconditioner designed for Navier Stokes
equations, which we will use with GMRES(m), GMRESR and BiCGSTAB.

15

Figure 5. (a)-Lexicographic mesh numbering, (b)-Sloan mesh renumbering

unknowns ordered per nodal points
u1v1p1 u2v2 u3v3p3,, u5v5p5 u6v6 u7v7 u8v8,u25v25p25

unknowns ordered p-Last
u1v1 u2v2 u3v3... u25v25 p1 p3 p5 p11 p13 p15..p25

unknowns ordered p-last per level
u1v1 u2v2... u15v15 p1 p3...p15 u16v16 u17v17...u25v25 p21 p23.. p25

Table 1. Different ordering schemes of unknowns for mesh shown
in Figure (7)

4.1. ILU Preconditioner with mesh renumbering and unknowns reorder-

ing. From the discretization of the Stokes or Navier Stokes equation, we come up
with a system of equations that can be written as:

[

A BT

B 0

] [

u
p

]

=

[

f
0

]

(29)

In the case of Navier Stokes, A denotes the discretization of the stress tensor and
the linearized convective terms (in Stokes the convective term is absent), BT p is
the discretization of the pressure gradient and Bu = 0 is the discretization of the
continuity equation. The vectors u and p represent velocity and pressure unknowns,
respectively.
In the case of a direct solver, the ordering of the unknowns suggested in (29), that
is, first all velocity unknowns and then all pressure unknowns appears to be very
inefficient, since the corresponding profile is very large. A much smaller profile can
be achieved if the velocity and pressure unknowns are intermixed, which can be
obtained by ordering all the unknowns per point. Due to boundary conditions it
may be possible that the first diagonal element in the coefficient matrix is zero,
due to which the LU decomposition fails. Partial pivoting can change the profile
or bandwidth of the matrix so we do not use this technique. In fact one would like
to have some a priori numbering of nodal points and unknowns that prevents the
presence of a zero diagonal element during the elimination process and produces an
optimal profile. This numbering must be such that the first unknowns are velocities
independent of the type of boundary conditions. For this purpose the grid points
are renumbered using various numbering schemes. We will discuss (see Appendix
A) two renumbering schemes here.

(1) Sloan’s algorithm [16].
(2) Cuthill McKee’s algorithm [17].

16

A small profile can be achieved by the Cuthill McKee or Sloan renumbering algo-
rithm. Figure 5 shows the Sloan’s renumbered grid. Figure 6 reflects how the grid is
numbered levelwise using the Cuthill McKee numbering scheme. The sparsity pat-
tern of the coefficient matrix with Sloan and Cuthill McKee numbering using p-last
per level reordering is shown in Figure 8) and 9. Both methods produce a nearly
optimal profile. The new numbering is known as renumbering per level. The idea is
as follows, in each step of the algorithm a new level of elements is created, by a new
set of neighbors. In this new level we reorder the unknowns such that the velocity
unknowns are followed by pressure unknowns. With this the local bandwidth is
hardly effected. We call this: p-last per level. Usually, the first level contains more
nodal points than the other levels. For example the levels defined for 8x8 Q2 −Q1
grid is given as

levels= [50 13 18],

% first level= 50 nodal points,

% second level= 13 nodal points,

% third level= 18 nodal points.

In p-last, all the velocity unknowns are followed by pressure unknowns in the
grid. Both orderings are shown in Table 1.
Using renumbering of the unknowns(preferably per level), in combination with ILU
preconditioning increases the convergence of the non-symmetric CG-type methods
like BiCGSTAB and GMRES. In our method, first the mesh grid points are renum-
bered then the unknowns per grid point are reordered by the p-last, or the p-last
per level reordering method. After reordering, the ILU decomposition of the coeffi-
cient matrix is constructed and used as preconditioner [18]. Preconditioned Krylov
subspace methods are then used to approximate the solution.
For the ILU decomposition, the coefficient in matrix (29) is decomposed into the
following matrices: L a lower triangular matrix, D a diagonal matrix, U an upper
triangular matrix, where diag(L) = diag(U) = D. The decomposition is made such

that L̂Û ≈ LD−1U and the following rules are used:
li,j = 0 if aij = 0 for i > j,
ui,j = 0 if aij = 0 for i < j,

(L̂Û)i,j = ai,j if aij 6= 0.
The system of equations in (29) can also be represented as:

M

[

u
p

]

=

[

A BT

−B 0

] [

u
p

]

=

[

f
0

]

(30)

The rate of convergence of Krylov subspace iterative methods depends on the spec-
trum of the coefficient matrix. In the case of a Stokes problem the spectrum of (29)
contains positive and negative eigenvalues, whereas (30) has a spectrum containing
complex eigenvalues, but the real parts of all eigenvalues are positive. In gen-
eral, a preconditioner is constructed such that the eigenvalues of the preconditioned
matrix are clustered. If a matrix has eigenvalues with positive part, no problem
is expected. However, in other cases when the matrix has positive and negative
eigenvalues, difficulties may occur, because it is possible that negative eigenvalues
become eigenvalues of the preconditioned matrix very close to zero, which leads to
bad convergence [18]. In our case such problems have not been seen. However,
although (29) is symmetric, the preconditioner can not be used for MINRES or
SYMMLQ [19] algorithms, since the preconditioner is not positive definite which is
the requirement for these two methods. The diagonal elements of the pressure part
of the preconditioner appear to be negative.

17

Figure 6. Cuthill McKee renumbering

Figure 7. A (2x2) Q2-Q1 mesh

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

(a)
0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

(b)

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

(c)

Figure 8. Sparsity pattern of Stokes matrix with (a)-
Lexicographic numbering, (b)-Sloan renumbering with p-last re-
ordering (c) Sloan renumbering with P-last per level reordering

0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

(a)
0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

(b)
0 20 40 60 80 100 120 140 160 180

0

20

40

60

80

100

120

140

160

180

(c)

Figure 9. Sparsity pattern of Stokes matrix with (a)-
Lexicographic numbering, (b)-Cuthill McKee renumbering with p-
last reordering (c) Cuthill McKee renumbering with P-last per level
reordering

18

5. Numerical Experiments

The Stokes and Navier Stokes problems are solved in two domains

(1) The Poiseuille channel flow in a square domain (−1, 1)2 with a parabolic
inflow boundary condition and natural outflow condition having the analytic
solution: ux = 1 − y2; uy = 0; p = 2νx. In the case of Stokes flow ν = 1.

(2) The L-shaped domain (−1, L)x(−1, 1) known as backward facing step shown
in Figure 10. A Poiseuille flow profile is imposed on the inflow (x = −1; 0 ≤
y ≤ 1) and zero velocity conditions are imposed on the walls. Neumann
conditions are applied at outflow which automatically sets the mean outflow
pressure to zero.

The streamline plot for Stokes and Navier Stokes problems in the channel and
backward facing step are shown in Figure 11 and Figure 12.

In the case of Stokes problem as can be seen from Table 2, a direct method gives
the solution faster than iterative methods with the ILU preconditioner for small
problems. However, memory requirements for the direct method are large as com-
pared to the iterative solution methods [18] and at a certain point the time required
to solve the Stokes equations by a direct method increases considerably as the mesh
size increases. The mesh node numbering is carried out by a default renumbering
scheme(Sloan) used in SEPRAN. The convergence of an iterative method depends
on the mesh numbering, reordering of the unknowns and the ILU preconditioner. In
absence of anyone of these, the iterative solver may not converge fast or may even
diverge. From Table 2 and 3, it is clear that the p-last per level reordering gives
much faster results than the p-last ordering both in iterations and time. The time
taken by the convergence of BiCGSTAB and GMRESR is less than GMRES(m).
Also BiCGSTAB uses less iterations as compared to GMRES(m). Note that one it-
eration of BiCGSTAB costs two matrix vector multiplications. The Preconditioned
GMRES does not converge with increased number of grid points. If the number of
iterations is small and a matrix vector product is expensive(which means a large
number of non zero elements per row) then GMRES is the best method [18].

The effect of reordering the mesh by the Sloan or the Cuthill McKee algorithm is
shown in Table 4. The Sloan reordering gives faster convergence than Cuthill Mc-
Kee if the equation is discretized by the Q2 −Q1(velocity defined as bi-quadratic
field and pressure defined as bi-linear per element) or Q2−P1 (velocity bi-quadratic
and pressure and its gradients discontinuous at element boundaries). But in the

case of
+

Q1 − Q1(velocity and pressure are continuous and velocity at centroid is

Figure 10. Backward facing step or L-shaped domain

19

eliminated at element level, thus reducing number of unknowns) discretization, the
Cuthill McKee renumbering gives much better convergence results than the Sloan
renumbering. In Table 5, the time elapsed in solving Stokes problem with a direct
solver shows that it has also the same kind of results for both kind of renumbering
schemes for various discretizations. In the case of the Navier Stokes problem, the
number of inner and outer iterations increases with the increase in the Reynolds
number and in grid points. The number of iterations shown in Table 6 and 7 are
the total number of inner iterations taken by the iterative solver in the approxi-
mation of the linear problem. The results of Table 7 are also done with the ILU
preconditioner with Sloan numbering and p-last per level reordering.

The non-linear problem can be linearized by two methods, Picard’s method or
Newton’s method. As is well known, Newton’s method is quadratically convergent
in some cases, whereas Picard iteration has only a linear convergence rate. On the
other hand, Newton’s method is convergent only if the initial iterate is close enough
to the solution. Also the cost of solving linear problems for non-linear iterations
tend to be higher when Newton’s method is used than for Picard iteration. So for
Newton’s method, the cost and convergence both depends upon the initial iterate
and that can be improved by performing a few initial steps with Picard and then
switch to Newton’s method to get faster convergence. From Table 8, it is clear
that an increase in Reynolds number increases the number of inner and outer it-
erations for both methods. One Picard step followed by Newton’s method gives
faster convergence results than the Picard method, but at high Reynolds number,
because of a bad initial estimate, Newton’s method diverges, so it is good to use
only Picard iterations after the Stokes equations at high Reynolds number or few
Picard iterations followed by Newton iterations. Though Picard method converges
in more outer iterations, the average inner iteration required by Picard’s method is
less than Newton’s method. Table 9 shows a very interesting result, the solution of
the linearized problem with a direct solver has no impact on the outer iterations.
Comparing the results of Table 8 with 9, the direct solver seems more expensive
than the iterative solver. From these results we can conclude that it is not neces-
sary to solve the linearized system to high accuracy, because the results from the
direct solver reveals that the exact solution of linearized problem has no impact
on the convergence behavior of both Picard and Newton iteration schemes. So the
accuracy of eps = 1e−2 will be enough for the inner iterations if an iterative solver
is used.

The effect of grid stretching is shown in Table 10. We increased the number of
elements in one direction only, so that the aspect ratio of the element increases.
For both kind of reordering schemes the number of iterations increases, but there is
a clear difference between Sloan and Cuthill McKee renumbering. Cuthill McKee
may sometimes diverge, while Sloan in combination with p-last per level converges
always. Furthermore, we see a sharp dip(minimum) in the number of iterations for
64x24 grid. For this behavior we do not have an explanation. This observation has
been found for cells with an 8:3 ratio in the backward facing step.

The Stokes and Navier Stokes equations are also solved in a 3-D backward facing
step. A tri-linear and a tri-quadratic hexahedron elements from the Taylor Hood
family are shown in Figure 13. In the 3-D Taylor Hood family, velocity is defined as
tri-quadratic field and pressure as tri-linear field per element denoted as k2-k1. In
the 3-D Crouzeix Raviart family, the pressure and gradients of pressure are defined
in the centroid of an element denoted as k2-k0. Results with k2-k1 elements for
Stokes problem are shown in Table 11, a 3-D Cuthill McKee numbering shows faster
convergence than Sloan numbering with both p-last and p-last per level reordering
schemes. A Stokes problem is also solved with a direct solver in a 8x8x8 grid with

20

p-last per level ordering, it gives the solution in 20 seconds with Sloan number-
ing and 52 seconds with Cuthill McKee numbering consuming a huge amount of
memory. In the k2-k0 elements, Sloan renumbering gives faster convergence than
Cuthill McKee for both kind of reordering. Results given in Table 12 suggest that
the Krylov subspace method converges in the same number of iterations with both
orderings for Cuthill McKee renumbering. Table 13 shows that the results obtained
from the solution of Navier Stokes problem, this reveals that the preconditioned
Krylov methods have the same convergence behavior for different Reynolds number
and grid size, as we have observed in the Stokes problem for various 3-D elements.

In Table 14 and 15, some fill-in and lumping is introduced in the preconditioner
for a stretched grid. This shows improved convergence of an iterative method.
However, the CPU time and memory usage increases. So it suggests that fill-in and
lumping should only be used when the iterative method is not converging to the
solution. In ILU(2) , all unknowns in the neighbour points of the unknown in a row
matrix are also supposed to be the part of the nonzero structure, so the number of
iterations decreases at the cost of extra memory and time per iteration. We have
extended the continuity equation with a factor ǫp, which discretized form is equal
to ǫMp. ǫ is a small number. So the incompressibility condition is violated by a
small amount, with hardly no influence on the solution. In the case of a Q2 − P1
discretization for a certain value of ǫ, the convergence improves. However, it is very
difficult to find suitable value of ǫ for better convergence.

In Table 16, we compare our preconditioner(p-last per level with Sloan renum-
bering) with the preconditioners implemented in IFISS (PDC- pressure convection
diffusion [20], [21], LSC -least squares commutator [22], [23]) for Navier Stokes equa-
tions. Note that IFISS uses BICGSTAB(ℓ) [24] and GMRES (with modifications
from Kelly [25]) for their preconditioners. Whereas in our report, we have used GM-
RES(20) and BICGSTAB. The number of iterations taken by an iterative solver in
the last step of the outer loop are shown in Table 16. Our preconditoner seems
more efficient in CPU time than both PDC and LSC preconditioners.

21

Figure 11. (a)-Channel flow, (b)- 3-D plot for pressure in channel flow

Figure 12. Flow in Backward facing step or L-shaped domain
with Re = 250

22

Figure 13. Generalized hexahedron (a) Tri-linear (b) Tri-Quadratic

Solver. Precon. Renumber it/sec(16x16) it/sec(32x32) it/sec(64x64)
Direct - p-last-level -/0.072 -/0.64 -/10.32

GMRES(20) ILU p-last 84/0.140 226/1.140 579/12.98
GMRES(20) ILU p-last-level 59/0.136 163/0.840 450/10.07
GMRESR ILU p-last 13/0.148 25/0.824 62/7.57
GMRESR ILU p-last-level 11/0.108 20/0.652 39/5.01

BiCGSTAB ILU p-last 36/0.112 92/0.912 224/7.34
BiCGSTAB ILU p-last-level 30/0.108 64/0.656 145/4.96

Table 2. Solution of Stokes Problems with Q2 −P1 discretization
in square domain with eps = 1e− 6

Solver. Precon. Renumber it/sec(16x16) it/sec(32x32) it/sec(64x64)
Direct - p-last-level -/0.052 -/0.55 -/9.7

GMRES(20) ILU p-last 58/0.104 201/0.98 708/14
GMRES(20) ILU p-last-level 41/0.08 99/0.55 362/7.33
GMRESR ILU p-last 12/0.1 26/0.764 58/6.42
GMRESR ILU p-last-level 10/0.09 18/0.57 37/4.15

BiCGSTAB ILU p-last 39/0.095 74/0.648 190/5.95
BiCGSTAB ILU p-last-level 24/0.092 49/0.48 118/3.768

Table 3. Solution of Stokes Problems with Q2−Q1 discretization
in a square domain eps = 1e− 6

Grid Q2 − Q1 Q2 − P1
+

Q1 − Q1

- Sloan Cuthill-McKee Sloan Cuthill-McKee Sloan Cuthill-McKee

- Iter. Iter. Iter. Iter. Iter. Iter.
8x24 9 15 29 97 17 10
16x48 22 32 40 288 35 18
32x96 59 65 73 1300 75 37

Table 4. Effect of mesh renumbering on convergence of
BiCGSTAB for various discretizations in backward facing step
Stokes problem with P-last per level and eps = 1e− 6

23

Grid Q2 − Q1 Q2 − P1
+

Q1 − Q1

- Sloan Cuthill McKee Sloan Cuthill McKee Sloan Cuthill McKee

- Time(sec) Time(sec) Time(sec) Time(sec) Time(sec) Time(sec)
8x24 0.03 0.06 0.04 0.09 0.06 0.04
16x48 0.25 0.56 0.33 1.25 0.57 0.19
32x96 4 11 5.6 27.8 7.17 2.78

Table 5. Effect of mesh renumbering on a direct solver for various
discretization in backward facing step Stokes problem using p-last-
level ordering

Reynolds no. GMRES(20) GMRESR BiCGSTAB
- iterations/time(sec) iterations/time(sec) iterations/time(sec)

Re = 50 323/1.30 69/1.46 139/1.09
Re = 150 372/1.48 77/1.60 165/1.22
Re = 250 578/2.21 114/2.31 246/1.77

Table 6. Effect on iterations with varying Reynolds number for
Navier Stokes backward facing step problem(16x48) with Q2 −Q1

discretization with eps = 1e− 3 using p-last-level reordering

it-solver Re = 10 Re = 100

Type 8x24 16x48 32x96 8x24 16x38 32x96

- Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec)
GMRES(20) 92/0.17 276/1.1 1505/18.83 128/0.21 366/1.46 1639/21
GMRESR 25/0.18 59/1.23 132/9.97 36/0.23 74/1.58 164/12.63

BiCGSTAB 54/0.14 130/0.94 350/8 81/0.21 162/1.24 431/10.21

Table 7. Effect of grid increase and Reynolds number on it-
erations for Navier Stokes backward facing step problem with
eps = 1e− 3 using p-last-level reordering

eps = 1e − 2 Picard’s Method Newton’s method

Reynolds Out. iter in. iter. time(sec) out. iter in. iter time(sec)

50 7 106 1.04 5 73 0.75
100 9 135 1.28 5 80 0.77
150 10 148 1.46 6 104 0.968
200 12 163 1.63 7 126 1.124
250 14 188 1.86 7 145 1.224
400 28 352 5.5 - - -

Table 8. The effect of Reynolds number on non-linear iterations
in Navier Stokes backward facing step problem with BiCGSTAB
using p-last-level reordering for Q2-Q1(16x48) grid

Picard’s Method Newton’s method

Reynolds Out. iter time(sec) out. iter time(sec)

50 7 1.5 5 1.124
100 9 1.9 5 1.132
200 12 2.6 7 1.55

400 28 5.9 - -

Table 9. The number of outer iterations for various Reynolds
number in Navier Stokes backward facing step problem with a di-
rect Solver using p-last-level reordering for Q2-Q1(16x48) grid

24

eps = 1e − 4 Q2-Q1 Q2-P1

Grid Sloan (iter.) Cuthill McKee(iter.) Sloan(iter.) Cuthill McKee(iter.)

p-last p-last-level p-last p-last-level p-last p-last-level p-last p-last-level

8x24 22 13 25 12 36 23 135 149
16x24 44 30 50 39 55 47 226 269
32x24 538 226 113 92 387 339 277 277
64x24 - 40 321 135 - 58 >3000 2757
128x24 - 265 1116 >3000 - 278 - -

Table 10. Effect of stretched grid on convergence of precondi-
tioned BiCGSTAB method in Stokes backward facing step problem

Sloan numbering Cuthill McKee numbering

BiCGSTAB, eps = 1e − 4

Grid p-last(it./time(s)) p-last-level(it./time(s)) p-last(it./time(s)) p-last-level(it./time(s))

8x8x8 39(2.5) 38(2.46) 33(1.76) 30(1.72)
8x8x16 40(6.2) 36(6) 36(4.8) 24(4)

12x12x12 85(16) 89(17) 67(10.3) 54(9)

Table 11. 3-D Stokes backward facing step problem using k2-
k1(Taylor Hood family) elements

Sloan numbering Cuthill McKee numbering

BiCGSTAB, eps = 1e − 4

Grid p-last(it./time(s)) p-last-level(it./time(s)) p-last(it./time(s)) p-last-level(it./time(s))

8x8x8 56(2.9) 52(2.8) 66(2.6) 66(2.6)
8x8x16 51(6.9) 47(6.6) 60(6.2) 60(6.2)

12x12x12 91(16.7) 87(16.3) 124(15.2) 123(15.2)

Table 12. 3-D Stokes backward facing step problem using k2-
k0(Crouzeix Raviart family) elements

Picard’s method k2-k1 k2-k0

Reynolds number = 75, GMRES, eps = 1e − 2

Grid Sloan(iter.) Cuthill McKee(iter.) Sloan(iter.) Cuthill McKee(iter.)

8x8x8 294 179 578 744
8x8x16 230 127 505 667

Reynolds number = 50, BiCGSTAB, eps = 1e − 2

8x8x8 149 100 254 323
12x12x12 322 163 359 444
16x16x16 718 257 486 621
16x16x32 371 194 450 977

Table 13. Accumulated inner iterations for 3-D Navier Stokes
backward facing step problem with p-last-level reordering

25

Q2 − P1 Sloan renumbering, eps = 1e − 4

Grid p-last p-last-level

ILU(0) ILU(2) Lumped ILU(2),Lumped ILU(0) ILU(2) Lumped ILU(2),Lumped

8x24 36(0.8) 14(1.5) 41(.8) 17(1.5) 23(.7) 8(1.2) 27(.8) 8(1.2)
16x24 55(1.6) 27(3.2) 71(1.7) 33(3.2) 47(1.7) 16(2.7) 52(1.7) 19(2.6)
32x24 364(4.9) 138(7.8) 295(4.7) 89(7.4) 159(4.7) 72(6.3) 456(5.3) 54(6.2)
64x24 - - >3000(*1) 237(19)*2 58(7.2) 18(11.2) 217(8.7) 66(12.7)
128x24 - - - 780(60)*3 293(19.3)*4 - 808(29) 224(29)

Cuthill McKee renumbering, eps = 1e − 4

8x24 158(0.9) 14(2.0) 140(0.9) 17(2.0) 148(0.9) 7(2.05) 175(0.9) 9(2.0)
16x24 281(2.1) 26(4.6) 231(2.0) 36(4.5) 287(2.1) 20(4.5) 258(2.0) 21(4.7)
32x24 277(4.4) 50(9.7) 520(5.5) 71(9.9) 276(4.5) 45(9.8) 568(5.7) 50(9.9)
64x24 >3000 586(39) - 209(26.3)*5 >3000 14(19.8) - 51(20.8)
128x24 - - - 727(90)*6 - 17(40) - 120(48)

*1: with ǫ = 1e− 10, 229(8.8 sec) , *2: with ǫ = 1e− 10, 171(14.3 sec)
*3: with ǫ = 1e− 9, 405(39 sec) , *4: with ǫ = 1e− 10, 261(18.7 sec)

*5: with ǫ = 1e− 10, 137(23.0 sec), *6: with ǫ = 1e− 10, 313(59.0 sec)

Table 14. (I)-Solution of Stokes problem in a stretched backward
facing step with Bicgstab

Q2 − Q1 Sloan renumbering, eps = 1e − 4

Grid p-last p-last-level

ILU(0) ILU(2) Lumped ILU(2),Lumped ILU(0) ILU(2) Lumped ILU(2),Lumped

8x24 22(0.7) 11(1.2) 22(0.8) 12(1.2) 13(0.8) 5(1.04) 14(0.8) 8(1.1)
16x24 44(1.7) 19(2.6) 38(1.6) 24(2.5) 30(1.7) 13(2.4) 29(1.6) 15(2.5)
32x24 538(5.5) 82(5.8) 115(3.6) 67(5.6) 226(4.1) 38(5.7) 156(3.8) 38(5.0)
64x24 - 150(13) 292(9.3) 145(12.5) 40(6.6) 15(9.5) 72(7.3) 44(9.9)
128x24 - - 1420(41) 407(35) 265(18) - 241(17.3) 91(21)

Cuthill McKee renumbering, eps = 1e − 4

8x24 25(0.7) 11(1.7) 25(0.7) 13(1.6) 12(0.7) 7(1.6) 15(0.7) 8(1.6)
16x24 50(1.6) 19(3.7) 58(1.6) 26(3.6) 39(1.6) 9(3.3) 39(1.6) 12(3.4)
32x24 113(3.5) 36(7.6) 190(3.8) 46(7.7) 92(3.5) 18(7.2) 102(3.6) 30(7.2)
64x24 321(9.2) 142(19) 448(10.3) 140(19) 135(7.5) - 609(11.9) 254(20)
128x24 1116(33) - - 398(51) >3000 - - -

Table 15. (II)-Solution of Stokes problem in a stretched backward
facing step with Bicgstab

26

Q2-Q1 BICGSTAB GMRES

Re=100 PCD p-last-level(Sloan) LSC PCD p-last-level(Sloan) LSC

- IFISS SEPRAN IFISS IFISS SEPRAN IFISS

- Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec)
8x24 32-0.9 10-0.1 12-0.5 32-0.5 16-0.03 15-0.33
16x24 44-3 14-0.11 10-1.1 33-1.21 21-0.08 15-0.76
32x24 56-8.8 39-0.67 12-3.1 37-3.16 68-0.67 18-2.1
64x24 58-21 33-1.21 16-7.7 45 - 8.3 61-1.13 25-9.1

Re = 200
8x24 64-1.83 28-0.09 20-0.81 45-7.26 60-0.1 23-0.5
16x24 80-5.6 23-0.17 20-1.98 50-1.9 37-0.15 22-1.14
32x24 110-17.5 42-0.7 20-4.5 52-4.3 83-0.75 24-2.73
64x24 126-45 31-1.1 26-12.5 60-11 41-0.8 29-7

Table 16. Comparison of preconditioners used in IFISS and
SEPRAN implemented in MATLAB

27

6. Conclusions

In this report, an approximate solution of the Stokes and Navier Stokes equa-
tions with iterative solvers is carried out using the ILU preconditioner. From the
results it is clear that renumbering of mesh points and unknowns prevent the break
down of the ILU preconditioners and lead to faster convergence with Krylov sub-
space methods. In the Stokes problem, the number of iterations increases with the
increase number of elements in the grid, In the case of Navier Stokes equations,
the convergence of preconditioned GMRESR and BiCGSTAB is better than pre-
conditioned GMRES(m), especially when using high Reynolds numbers and large
mesh size. For non-linear iterations, it is better to use a few Picard’s iterations
followed by Newton’s iterations. It is a good idea to use an iterative solver with
low accuracy for the linearized problem, because of a high accuracy has no effect
on the convergence of the outer iterations. A direct solver works efficiently in 2-D
for small problems, but it is not good idea to solve large 2-D or 3-D problems at
the cost of large memory and time requirement. Note that our preconditioner has
been used in IFISS for stabilized finite element and the results are comparable with
results mentioned in this report. Vary stretched grids may have a negative influence
on the convergence behavior. This subject requires future research.

28

References

[1] http://ta.twi.tudelft.nl/sepran/sepran.html
[2] G. Segal. SEPRAN Introduction. Leidschendam, NL: Ingenieursbureau Sepra; 1995.
[3] M. Fortin. Old and new finite elements for incompressible flows. Int. J. Num. Meth. in fluids.

1,347-364,1981.
[4] C. Cuvelier, A. Segal, A.A. van Steenhoven. Finite Element Methods and Navier Stokes Equa-

tions. Reidel Publishing Company, Dordrecht, Holland, 1986.
[5] C. Taylor, P. Hood. A numerical solution of the Navier Stokes equations using the finite element

technique. Comput. Fluids. 1. 73-100, 1973.
[6] H. C. Elman, D. Silvester, A. J. Wathen. Finite Elements and Fast iterative solvers with

applications in incompressible fluids dynamics. Oxford University Press, Oxford, 2005.
[7] W. E. Arnoldi. The principle of minimized iteration in the solution of the matrix eigen problem.

Quart. Appl. Math. , 9,17-29,1951.
[8] G. H. Golub, C. F. Van Loan. Matrix Computations. The John Hopkins University Press,

Baltimore, 1996.
[9] G. Meurant. Computer solution of large linear systems. In Studies in Mathematics and its

Applications, Vol. 28, Lions JL , Papanicolaou G , Fujita H , Keller HB (eds). Elsevier: Ams-
terdam, 1999.

[10] Y. Saad, M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM J. Sci. Stat. Comput. 7,856-869, 1986

[11] H. A. Van Der Vorst, C. Vuik. GMRESR: a family of nested GMRES methods. Num. lin.

Alg. Appl. , 1,369-386,1994.
[12] R. Fletcher. Factorizing symmetric indefinite matrices. Lin. alg. and its Appl. , 14,257-

277,1976.
[13] P. Sonneveld. CGS: a fast Lanczos-type solver for nonsymmetric linear systems. SIAM J. Sci.

Stat. Comput. 10,36-52,1989.
[14] H. A. Van Der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for

solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 13,631-644,1992.
[15] H. A. Van Der Vorst, C. Vuik. The superlinear convergence behaviour of GMRES. J. Comput.

Appl. Math. 48,327-341,1993.
[16] S. W. Sloan. An algorithm for profile and wave front reduction of sparse matrices. Int. J. for

Num. Meth. in Engng. 23,239-251,1986.
[17] E. Cuthill, J. McKee. Reducing the bandwidth of sparse symmetric matrices. Proc. ACM

Nat. Conf. Association of Computing Machinery, New York, 1969.
[18] G. Segal,C. Vuik. A simple iterative linear solver for the 3D incompressible Navier Stokes

equations discretized by the finite element method. Technical Report TUDelft; 95-28.
[19] C. C. Paige, M. A. Saunders. Solution of sparse indefinite system of linear equations. SIAM

J. Num. Anal. 12,617-629,1975.
[20] D. Kay, D. Loghin, A. Wathen. A preconditioner for the steady state Navier Sotkes equations.

SIAM J. Sci. Comput. 24, 237-256, 2002.
[21] D. Silvester, H. Elman, D. Kay, A. Wathen. Efficient preconditioning of the linearized Navier-

Stokes for the incompressible flow. J. Comp. Appl. Math. 128, 261-279, 2001.
[22] H. C. Elman. Preconditioning for the steady-state Navier Stokes equations with low viscosity.

SIAM J. Sci. Comput. 20, 1299-1316, 1999.
[23] H. C. Elman, V. E. Howle, J. Shadid, D. Silvester, R. Tuminaro. In preparation, 2006. Block

preconditioner based on approximate Commutators. Tech. rep., Institute for Advanced Studies,
University of Maryland.

[24] G. L. G. Sleijpen, D. R. Fokkema. BICGSTAB(ℓ) for linear equations involving unsymmetric
matrices with complex spectrum.Elec. Numer. Math. 1, 11-32, 1993.

[25] T. Kelley. Iterative Methods for linear and nonlinear equations, SIAM, Philadelphia, 1995.

29

Appendix A. Mesh Numbering Schemes

Before going into detail of algorithm, it is appropriate to state some basic defi-
nitions. A graph G is defined to be pair (N(G), E(G)) where N(G) is a non-empty
finite set of members called nodes, and E(G) is a finite set of unordered pairs, com-
prised of distinct members of N(G), called edges. A graph comprises of unordered
pairs is called undirected graph. The degree of node i in G is defined as the number
of edges incident to i. A path in G is defined by a sequence of edges such that
consecutive edges share a common node. A graph G is connected if each pair of
distinct nodes is connected. The distance between i and j is denoted d(i, j), and is
defined as the number of edges on the shortest path connecting them. The diameter
of G is defined as the maximum distance between any pair of nodes. Nodes which
are at the opposite ends of the diameter are called peripheral nodes. A rooted level
structure is defined as the partitioning of N(G) into levels l1(r), l2(r),, lh(r) such
that:

• l1(r) = r where r is the root node of the level structure
• for i > 1, li(r) is the set of all the nodes not yet assigned level, which are

adjacent to nodes in li−1(r).

The depth h is defined as total number of levels. The width of a level is defined
as total number of nodes in one level. A width of the level structure is defined as
maximum number of nodes in level structure.

w = max
1≤i≤h

|li(r)|

A.1. Sloan’s Algorithm.

A.1.1. STEP 1 (Selection of pseudo diameter).

(1) Choose a node s with minimum degree.
(2) build a level structure L(s) = L0(s),, Lk(s),
(3) sort the nodes of Lk(s) by increasing degree, let m be the number of the

elements in Lk(s) and Q be the [m+2
2] first elements of the sorted set,

(4) Let wmin = inf and kmax = k. For each node i ∈ Q in order of as-
cending degree, generate L(s) = L0(s),, Lk(s). if k > kmax and w =
maxi≤j≤k |Lj(i)| < wmin, then we set s = i and go to step 3. Otherwise, if
w < wmin, we set e = i and wmin = w

We exit this algorithm with a starting node s and an end node e which define a
pseudo diameter.

A.1.2. STEP 2(node labeling). The nodes are classified in four catogories according
to their status. Node which are been already assigned label are postactive. Nodes
which have not been assigned a number but are adjacent to the postactive nodes
are active . Nodes without a number adjacent to active nodes are preactive . All
other nodes are inactive . The current degree ni of a node i is defined as
ni = mi − ci + ki,
where mi is the degree of i, ci is the number of the postactive or active nodes
adjacent to i and ki = 0 if i is active or postactive and ki = 1 otherwise. The input
to the following algorithm are the two nodes s and e selected in STEP 1.

(1) for all nodes, compute the distance d(e, i) from i to e, initialize all nodes as
inactive and set

Pi = (nmax − ni) ∗W1 + d(e, i) ∗W2,

where nmax = max1≤i≤N ni. For convenience nmax may be set equal to
N(since the maximum current degree in any graph with N nodes is N . W1

and W2 are integer weights. The queue of eligible nodes is initialized with
s which is assigned a preactive status.

(2) as long as the queue is not empty,
2.1 select the node i with highest priority(nodes with low current degree

and large distance to the end have high priorties, ties are broken arbi-
trarily),

2.2 delete i from the queue. If it is not preactive, go to 2.3. Else, consider
each node j adjacent to i and set Pj = Pj +W1. If j is inactive, insert
j in the queue and declare it preactive,

2.3 label node i and declare it postactive,
2.4 Examine every node j adjacent to i. If j is preactive, set Pj = Pj +W1,

declare j as active and examine each node k adjacent to j. If k is
active or preactive, set Pk = Pk + W1, otherwise if k is inactive, set
Pk = Pk +W1, insert k in the queue and declare it as preactive.

recommended values of W1 and W2 are 2 and 1, respectively.

A.2. Cuthill and McKee’s Algorithm. The Cuthill Mckee(CMK) algorithm is
a local minimization algorithm whose aim is to reduce the profile of matrix. The
starting level can be a node or number of nodes which constitutes boundary of cer-
tain region.
ALGORITHM:

(1) Choose the starting node.
(2) for i = 1,, n−1 number all the non-numbered neighbors of xi in increas-

ing order of degree.
(3) Update the degrees of the remaining nodes

Appendix B. SEPRAN Introduction

SEPRAN is developed at “Ingenieursbureau SEPRA” and Delft University of
Technology [2]. It is a general purpose finite element package. It enables the
simulation of a wide variety of problems in fluid mechanics, structural mechanics and
electromechanics. Two-dimensional, axi- symmetric and three-dimensional steady
state or transient simulations in complex geometries can be carried out without any
problem. The size of the problems is only limited by the computer time available
and the capacity of the secondary storage devices. SEPRAN provides a wide range
of possible analysis, for example:

• Potential problems (potential flow, ground water flow, electromagnetism)
• Second order elliptic equations (diffusion, convection-diffusion) both linear

and nonlinear.
• Isothermal or nonisothermal Newtonian or non-Newtonian incompressible

flow governed by the Navier-Stokes equations
• Free boundary and moving boundary problems
• Helmholtz-type equations
• structural analysis
• Lubrication analysis (compressible, incompressible) - Solidification prob-

lems
• Heat equations (i.e. time-dependent nonlinear second order equations)
• Stability analysis

