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STUDY REPORT OF IFISS PACKAGE (VERSION 2.1)

M. UR REHMAN, C. VUIK, AND G. SEGAL

Abstract. The main core of this report is to explore the functionality of IFISS
package [1]. IFISS stands for Incompressible Flow Iterative Solution Software
(IFISS) designed in Matlab by David J. Silvester [2], Howard C. Elman [3] and
Alison Ramage [4]. IFISS comprises of discretization and solving schemes for
four type of PDEs (Poisson, Convection diffusion, Stokes and Navier Stokes
equations) . All these schemes along with problem specifications are explored
in this report.
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Introduction

The main feature of the package concerns problem specification and finite element
discretization. The discretized problem is then solved with Krylov iterative solution
method using suitable preconditioners. IFISS is used to solve four types of problems
in fluid dynamics

(1) Poisson Equation
(2) Convection Diffusion Equation
(3) Stokes Problem
(4) Navier Stokes Problem

In each of these problems there are four subproblems solved on different domains
and boundary conditions. We will discuss these problems along with discretization
schemes and preconditioned iterative solvers. At the end, few results were obtained
to have an idea,how IFISS works.

1. The Poisson Equation

The Poisson problem is given as

−∇2u = f in Ω, (1)

u = gD on ∂ΩD,
∂u

∂n
= 0 on ∂ΩN ,

Problem-1: Square domain with Constant Source with zero Dirichlet conditions on
boundary
problem-2: The source function and boundary conditions are the same as above but
here the domain is L-Shaped.
Problem-3: The source function is identically zero and the boundary conditions are
chosen for the problem with analytical solution

u(x, y) =
2(1 + y)

(3 + x)2 + (1 + y)2

in a square domain.
Problem-4: The source function is identically zero and the boundary conditions are
chosen such that the problem having the analytical solution

u(r, θ) = r2/3sin(
2θ + π

3
),

Where r is the radial distance from the origin and θ is the angle with vertical axis.
The problem is solved in an L-shaped domain.

2. Convection-Diffusion Equation

The equation is given as

−ε∇2u + ~w.∇u = 0 in a 2-dimensional domain Ω, (2)

with boundary conditions u = gD on ∂ΩD,
∂u

∂n
= 0 on ∂ΩN

The following problems are solved
(1) For a constant convection velocity vector ~w = (0, 1), the function

u(x, y) = x(
1− e

y−1
ε

1− e−
2
ε

)

satisfies the convection-diffusion equation exactly. Dirichlet conditions on
the boundary satisfy u(x,−1) = x, u(x, 1) = 0, u(−1, y) ≈ −1 u(1, y) ≈ 1,
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the problem has also an option to apply the natural boundary condition at
outflow.

(2) Here ~w = (0, 1+(x+1)2/4), so wind is vertical but increasing in x direction.
The function u is one at inflow and decreases to zero quadratically on the
right wall and cubically on the left wall.

(3) Here ~w = (−sinπ
6 , cosπ

6 ), constant wind at an angle of 30◦ to the left of
the vertical.The Dirichlet conditions are zero on the left and top boundaries
and unity on the right boundary.

(4) The wind ~w = (2y(1−x2),−2x(1− y2)) determines recirculating flow. The
Dirichlet conditions have value one on the right wall and zero every where
else. Applying the Galerkin method to discretize the problem often results
in oscillations. These oscillations are minimized though use of a streamline
diffusion method by adding diffusion in streamline direction [8] [9]. The
resulting discrete equation becomes
ε(∇uh,∇vh) + (~w.∇uh, vh) +

∑
k δk(~w.∇uh, ~w.∇vh)¤k

= 0 ∀vh ∈ Vh where
the sum is taken over all elements in the grid and

δk =

{
hk

2|~w| (1− 1
P k

h

) if P k
h > 1,

0 if P k
h ≤ 1

and P k
h = |~w|hk/(2ε) is so called element Peclet number.

3. The Stokes Equation

The equation is given by

−∇2~u +∇p = ~0, (3)

∇.~u = 0, (4)

with boundary conditions ~u = ~w on ∂ΩD, ∂~u
∂n − ~np = ~0 on ∂ΩN . The variable

~u represents a vector valued function representing the velocity of fluid and scalar
function p represents pressure. The assumption is made that the flow is ’low speed’,
so that convection effects can be neglected. After discretization we come up with
the system

[
A BT

B 0

] [
u
p

]
=

[
f
g

]
(5)

This is the system of dimension nu +np where nu and np are the number of velocity
and pressure basis functions.The matrix A is vector Laplacian matrix and B is npx
nu rectangular matrix. Different discretization schemes are discussed in Section 5.
In the case when velocity and pressure are defined on the same grid points, we may
expect that sometimes there are more pressure unknowns than velocity unknowns
and the system will be either inconsistent or singular. For example in the case of
an enclosed flow problem on a square grid with an even number of elements, the
null space of BT is actually eight-dimensional (chapter 5 of [18]). To get a stable
method, the velocity approximation needs to be enhanced relative to the pressure.
The easiest way of doing this is to use biquadratic approximation for the velocity
components rather than bilinear. In case of unstable discretization, IFISS uses a
stabilization scheme, in which the system given in (5) becomes

[
A BT

B −βC

] [
u
p

]
=

[
f
g

]
(6)

where β > 0 is a stabilization parameter and C is a npx np symmetric positive
definite matrix. The following problems are solved in IFISS
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(1) This problem represents flow in channel, known as Poiseuille flow. The
Dirichlet conditions at inflow x = −1 is given by ~u = (1− y2, 0) and no slip
conditions ~u = 0 are applied at top and bottom boundaries. One can apply
Dirichlet or Neumann conditions at the outflow boundary.

(2) This problem represents flow over a step with L = 5. The inflow, top and
boundary conditions are the same as that in Problem 1, at output Neumann
conditions are applied.

(3) This problem used in fluid dynamics is known as driven cavity flow. It
models a square cavity with lid moving from left to right. Different choices
of non zero horizontal velocity on the lid give rise to different computational
models:

{y = 1;−1 ≤ x ≥ 1| ux = 1}, a leaky cavity;

{y = 1;−1 < x < 1| ux = 1}, a water tight cavity;

{y = 1;−1 ≤ x ≥ 1| ux = 1− x4}, a regularized cavity;

(4) The analytic problem is associated with following solution of Stokes equa-
tion system:

ux = 20xy3; uy = 5x4 − 5y4; p = 60x2y − 20y3 + constant

It is simple model of colliding flow, the Dirichlet conditions on each bound-
ary can be specified from ux and uy.

4. Navier Stokes equations

The steady state Navier-Stokes systme of equations is given as

−ν∇2~u + ~u.∇~u +∇p = ~f, (7)

∇.~u = 0, (8)

where ν > 0 is a given constant called the kinematic viscosity. The boundary
conditions for the 2-dimensional domain Ω is given

~u = ~w on ∂ΩD, ν
∂~u

∂n
− ~np = ~0 on ∂ΩN ,

The discretization leads to
[

F BT

B − 1
ν C

] [
u
p

]
=

[
f
g

]
(9)

in case of stable approximation C = 0. The following Navier Stokes problems are
solved.

(1) The Poiseuille channel flow solution with parabolic inflow and natural out-
flow boundary condition in a square domain Ω¤ = (−1, 1)2,

ux = 1− y2; uy = 0; p = −2νx;

It satisfies the natural outflow boundary condition ν ∂ux

∂x − p = 0 and ∂uy

∂x =
0.

(2) A Poiseuille flow profile is imposed on the inflow boundary (x = −1; 0 ≤
y ≤ 1) and a no flow condition is applied on the walls. The mean outflow
pressure is set to zero by applying Neumann condition at outflow boundary
(x = 5;−1 < y < 1).

(3) The Problem 3 of Stokes flow is now solved with varying Re in a square
domain.
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(4) This problem models boundary layer flow over a flat plate, or Blasius flow.
The problem is equivalent to that of computing the steady flow over a
flat plate moving at constant speed through a fluid that is at rest. The
parallel flow Dirichlet condition ~u = (1, 0) is imposed at the inflow boundary
(x = −1;−1 ≤ y ≤ 1) and also on the top and bottom of the channel
(−1 ≤ x ≤ 5; y = ±1), representing walls moving from left to the right
with speed unity. A no flow condition is imposed on the internal boundary
(0 ≤ x ≤ 5; y = 0), and a Neumann condition is applied at the outflow
boundary (x = 5;−1 < y < 1).

5. Finite Element discretization

IFISS solves the problems with these three physical domains
• A square grid (-1, 1) x (-1, 1) is used in solving diffusion and convection

diffusion problems.
• The L-Shaped region (-1, L) x (-1,1), In case of a diffusion problem, L = 1,

for Stokes problem L = 5 and L can be varied in Navier Stokes.
• The rectangular region (-1, 5) x (-1, 1) with slit along the line where 0 ≤

x ≥ 5 and y = 0; In most of the problems the grid is uniformly divided, but
in some cases there is also an option for stretched grids.

The following options are used for discretization of different problems.
(1) Q1 - Bilinear quadrilateral consists of four basis function where each func-

tion is of the form (ax + b)(cy + d)( four unknowns per element). This
approximation is used in Poisson and convection-diffusion problems.

(2) Q2 - Biquadratic quadrilateral consists of nine basis function each of the
form (ax2 + bx + c)(dy2 + ey + f)(nine unknowns per element). This ap-
proximation is used in Poisson problems.

(3) Q2-Q1: The element from the Taylor Hood family uses continuous approx-
imations for velocity and pressure. Q2 approximation for velocity and Q1

approximation for pressure.
(4) Q2 − P−1: The element from Crouzeix Raviart family uses a Q2 approxi-

mation for velocity and a discontinuous linear pressure. P−1 element has
central node with three associated degrees of freedom, the pressure at the
centroid and its derivatives in both directions.

(5) Q1-Q1: This combination corresponds to velocity - pressure in Stokes and
Navier Stokes problems, in which velocity and pressure both are approxi-
mated by bilinear basis functions.

(6) Q1-P0:This represent bilinear approximation for velocity and constant ap-
proximation for the pressure. Q1 − Q1 and Q1 − P0 are considered to be
unstable pairs of approximation. The stabilization scheme is discussed in
section 4.

Solving the Navier-Stokes equations requires non-linear iterations with a linearized
problem to be solved at each step. In this case initial velocity estimates are required
to start the iterative process. Three iterative procedures are implemented.
Newton Iteration: Suppose we want to compute solution uk+1 at a present iteration
level k + 1. The convective term can be linearized as

uk+1.∇uk+1 = uk+1.∇uk + uk.∇uk+1 − uk.∇uk.

If the initial estimate is good, Newton iteration converges quadratically. However,
if the distance between the estimated and exact solution is too large, then iterations
converges slowly or may diverge.
Picard Iteration: In this method the convection term is approximated by

uk+1.∇uk+1 ' uk.∇uk+1

8



The Picard iteration seems to have larger convergence region, which means that
iterations does not require an accurate initial estimate, however this method con-
verges linearly.
Hybrid Method: This method uses the nice properties of the Newton and Picard
method, some Picard iterations are followed by Newton iterations. Based on Picard
iterations, Newtons method gets a good initial estimate. An initial guess for Picard
is provided by the solution of the Stokes problem.

6. Error Estimations

IFISS computes an error approximation whenever the Q1 velocity approximation
is used. Given a finite element subdivision Th and a solution uh, a local error
estimate ηT is calculated such that ‖∇ηT ‖ approximates the local energy error
‖∇(u−uh)‖T for every element T in Th. We start with the Poisson problem to find
u ∈ H1

E , the weak formulation of Poisson problem leads to∫

Ω

∇u.∇v =
∫

Ω

vf +
∫

∂Ω

vgN for all v ∈ H1
E0

, (10)

We restate the problem as:
Find u ∈ H1

E such that

a(u, v) = `(v) for all v ∈ H1
E0

, (11)

where a(u, v) =
∫
Ω
∇u.∇v and `(v) =

∫
Ω

vf +
∫

∂Ω
vgN , for simplicity it is assumed

that the Neumann boundary condition is homogeneous, so that `(v) =
∫
Ω

vf . The
corresponding discrete problem is then given by: Find uh ∈ Sh

E such that

a(uh, vh) = `(vh) for all vh ∈ Sh
0 , (12)

For an error estimation, subtract a(uh, v) from (11) to give

a(u, v)− a(uh, v) = `(v)− a(uh, v).
An assumption is that Sh

E ⊂ H1
E implies that e = u− uh ∈ H1

E0
and satisfies

a(e, v) = `(v)− a(uh, v) for all v ∈ H1
E0

, (13)

The error equation (13) may be broken up into element contributions T ∈ Th.
∑

T ∈Th

a(e, v)T =
∑

T ∈Th

(f, v)T −
∑

T ∈Th

a(uh, v)T (14)

Integrating by parts elementwise then gives

−a(uh, v)T = (∇2uh, v)T −
∑

E∈ε(T )

〈∇uh.~nE,T , v〉E , (15)

Where ε(T ) denotes the set of edges of element T , ~nE,T is the outward normal with
respect to E, 〈., .〉E is the L2 inner product on E, and ∇uh.~nE,T is the discrete
normal flux. The finite element approximation typically has a discontinuous normal
derivative across inter-element boundaries. So it is convenient to define the flux
jumps across edge or face E adjoining elements T and S as

[
∂u
∂n

]
:= (∇u|T −∇u|S).~nE,T (16)

Putting the expressions (15) and (16) in (14), (14) becomes
∑

T ∈Th

a(e, v)T =
∑

T ∈Th

[
(f +∇2uh, v)T − 1

2

∑
E∈ε(T )〈

[
∂u
∂n

]
, v〉E

]
(17)

The right hand side of (17) shows that e has two distinct components; these are the
interior residual RT := f +∇2uh|T , and the inter-element flux jumps RE :=

[
∂u
∂n

]
.

In the case of Q1 approximation, RE is piecewise linear and RT = f |T can be
9



approximated by a piecewise constant function R0
T by evaluating f at the element

centroid. Consider the higher order correction space

QT = QT ⊕BT ,

so that QT is the space spanned by biquadratic edge bubbles and BT is the space
spanned by interior biquadratic bubbles. The energy norm of the error is estimated
by solving a 5x5 local Poisson problem posed over each element of the grid:

(∇eT ,∇v) = (R0
T , v)T −

∑

E∈ε(T )

〈RE , v〉E ∀v ∈ QT (18)

The local error estimator is given by ηT = ‖∇eT ‖T , and the global error estimator
is given by

η :=
(∑

T ∈Th
η2

T

)1/2 ≈ ‖∇(u− uh)‖
In case of the Navier Stokes problem, the local error estimation in IFISS is given

by the combination of energy norm of the velocity error and the L2 norm of the
element divergence error, that is given as

η2
T = ‖∇ ~eT ‖2T + ‖RT ‖2T (19)

Where ∇~eT is obtained by solving a local Poisson problem (chapter 5 of [18]) [20].

ν(∇ ~eT ,∇~v)T = ( ~RT , ~v)T −
∑

E∈ε(T )

〈~R∗E , ~v〉E for all ~v ∈ ~QT (20)

where

~R∗E =





1
2

[
ν∇ ~uh − ph

~I
]

E ∈ εh,Ω

−(ν ∂ ~uh

∂nE,T
− ph~nE,T ) E ∈ εh,N

0 E ∈ εh,D,

(21)

known as the equidistributed flux jump operator and computed by sampling it at
the mid-point of the edge,

~RT = {~f + ν∇2 ~uh − ~uh.∇ ~uh −∇ph} (22)

and RT = {∇. ~uh}|T . ~RT and RT are the interior residuals. The global error
estimator is given as η = (

∑
T ∈Th

η2
T )1/2. This scheme is for the Navier Stokes

problem only implemented for the Q1− P0 discretization.

7. Iterative Solver and Preconditioners

7.1. Solvers. The following solvers are implemented in IFISS
• Conjugate Gradient Method (CG) [10]: It is an effective method for sym-

metric positive definite systems. The computational work is two inner prod-
ucts, three vector updates and one matrix vector product. Increase in di-
agonal dominance leads to better convergence. The pcg built-in function of
Matlab is used in IFISS.

• Minimum residual method (MINRES) [17]: Minres is a variant of the CG
method satisfying optimality conditions. It is used when the matrix arises
from discretization is symmetric indefinite. IFISS uses the matlab built-in
routine minres.
• Generalized minimum residual method(GMRES) [15]: The GMRES method

is designed to solve nonsymmetric linear systems. These methods have long
recurrences and have certain optimality properties. It uses restarts to con-
trol storage requirement. If no restart, then it converges in n iterations.
IFISS uses a modified routine written by Kelly [12].
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• BICGSTAB(`) [16]: The BiCGSTAB was developed to solve nonsymmetric
linear systems while avoiding the often irregular convergence patterns of
CGS method. In contrast to GMRES this algorithm does not satisfy an
optimality condition but has fixed computational costs at each step. The
BICGSTAB(`) performs additional stabilization by minimizing over spaces
of dimension ` greater than one. In practice ` = 2 is usually sufficient to re-
solve the difficulties caused by complex eigenvalues. Table 3 shows iterative
methods used in various problems with the different choices of precondi-
tioners.

7.2. Preconditioner. The convergence rate of iterative methods depends
on the spectral properties of the coefficient matrix. Hence, one may attempt
to transform the linear system into one that is equivalent in the sense that
it has same solution, but that has more favorable spectral properties. A
Preconditioner is a matrix that effects such a transformation. If M ap-
proximates the coefficient matrix A in some way, the transformed system
M−1Ax = M−1b
has the same solution as the original system Ax = b, but the spectral prop-
erties of its coefficient matrix M−1A may be more favorable. Some of the
preconditioners implemented in IFISS are given below.
(1) Jacobi or Diagonal Preconditioner: In this case the matrix M is a

diagonal matrix whose entries are equal to the system matrix.

mi,j =

{
ai,j if i=j
0 otherwise

M = diag(A), the computing action of M−1 involves n divisions. Such
simple scaling is useful for stretched grids.

(2) Incomplete Cholesky and LU factorization [13]: For a symmetric sys-
tem, incomplete Cholesky factorization is used, for which U = LT .
The basic principle is either preselect some sparsity pattern outside
which any nonzero entry that would arise in L or U are dropped, or
else to specify some threshold magnitude and drop all the entries in
L or U that are smaller than this. The threshold is chosen such that
the preconditioner is not too dense and leads to fast convergence. The
common choice is to select the allowed fill to exactly match the sparsity
pattern of original matrix of A.

(3) Geometric Multigrid [5]: The preconditioner consists of three steps.
– The quickly oscillating component in the error is removed by iter-

ative technique, this step is called pre-smoothing, In IFISS, ILU,
Jacobi and Gauss Seidel methods are used for the pre-smoothing
step.

– The fine grid problem is projected on to a coarser grid to remove
slowly varying component of the error.

– High frequency modes are again removed with the help of the
smoothing step.
IFISS uses a V-cycle of GMG preconditioner.

(4) Algebraic Multigrid [5]: AMG is an extension of the classical idea of
GMG (smoothing and coarse grid correction) to a certain class of alge-
braic systems of equations. AMG is independent of geometric informa-
tion of the problem. IFISS code provides an interface to the algebraic
multigrid solver of the commercial code FEMLAB, which enables the
use of AMG as a preconditioner.

11



Preconditioners used for solving Stokes has the form M =
[

P 0
0 T

]

and for Navier Stokes problems has the form M =
[

P BT

0 T

]

(5) Ideal block Preconditioner: In ideal choice P = A, requires an exact
solution of the Poisson equation for each of the velocity components
and T = Qp, Qp is pressure mass matrix. In the case of a discontinu-
ous pressure approximation like P0 and P−1, the corresponding mass
matrix is diagonal. The idea of T = diag(Qp) still provides a uniform
approximation to Qp.

(6) Diagonal Block preconditioner: in this case P = diag(A) and T =
diag(Qp)

(7) Stokes Multigrid preconditioner: In this case P = A and P−1 is ob-
tained by applying one GMG V-cycle to the Laplacian component, and
T = diag(Qp)

(8) Pressure Convection Diffusion preconditioner(PCD) [11], [14]: For a
system as given in (9), P = F . The optimal choice for T = −S, where
S is the Schur complement operator. In case of (9), S = BF−1BT .
This approximation is not feasible as computation of M−1 is expensive.
We replace S by its approximation S̃ = ApF

−1
p Q where Ap is a pressure

Laplacian matrix , Fp is the convection diffusion operator on pressure
space and Q is mass matrix on pressure space.

(9) Least squares Commutator preconditioning(LSC) [6], [7]: in this case
P = F and T = −S, where S is approximated by
S = (BQ̂−1

v BT )(BQ̂−1
v FQ̂−1

v BT )−1(BQ̂−1
v BT ),

where Q̂v is the diagonal of the velocity mass matrix. In the last two
preconditioners, there is a choice to find inverse of the P with GMG
and AMG approximations. For details on the last two preconditioners,
see Appendix A.

Problem CG MINRES GMRES BICGSTAB(`) Preconditioner
Poission ¯ ¯ − − 1, 2, 3
Conv. Diff. − − ¯ ¯ 1, 2, 3, 4
Stokes − ¯ − − 5, 6, 7
Navier Stokes − − ¯ ¯ 8, 9

Table 1. Iterative methods used for Problems in IFISS
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8. Running the Software (IFISS) and Results

The IFISS package code is distributed in different sub directories to maintain
modularity. The code distribution and installation can be seen in the IFISS man-
ual [19]. Different driver functions are implemented for solving different category
of problems. m files diff testproblem.m for Diffusion Problems, cd testproblem.m for
convection diffusion stoke testproblem.m for Stokes problem and navier testproblem.m
for solving Navier Stokes problems. A sample run is shown here, which has maxi-
mum options.

navier_testproblem

specification of reference Navier-Stokes problem.

choose specific example (default is cavity)
1 Channel domain
2 Flow over a backward facing step
3 Lid driven cavity
4 Flow over a plate

: 2
1 file(s) copied.
1 file(s) copied.

horizontal dimensions [-1,L]: L? (default L=5) :

Grid generation for a step shaped domain.
grid parameter: 3 for underlying 8x4*(L+1) grid (default is 4) :
Q1-Q1/Q1-P0/Q2-Q1/Q2-P1: 1/2/3/4? (default Q1-P0) :
setting up Q1-P0 matrices... done
system matrices saved in step_stokes_nobc.mat ...
Incompressible flow problem on step domain ...
viscosity parameter (default 1/50) :
Picard/Newton/hybrid linearization 1/2/3 (default hybrid) :
number of Picard iterations (default 2) :
number of Newton iterations (default 4) :
nonlinear tolerance (default 1.d-5) :
stokes system ...
Stokes stabilization parameter (default is 1/4) :
setting up Q1 convection matrix... done.
computing Q1-P0 element stress flux jumps... done
computing local error estimator... done.
estimated velocity error (in energy): (5.608605e-001,2.358500e-001)
computing divergence of discrete velocity solution ... done
estimated velocity divergence error: 1.806448e-002
plotting element data... done

initial nonlinear residual is 2.858319e+000
Stokes solution residual is 1.926740e+000

Picard iteration number 1
setting up Q1 convection matrix... done.
nonlinear residual is 2.146864e-002

velocity change is 2.264285e+000
13



Picard iteration number 2
setting up Q1 convection matrix... done.
nonlinear residual is 7.301981e-003

velocity change is 1.106196e+000

Newton iteration number 1
setting up Q1 Newton Jacobian matrices... done.
setting up Q1 convection matrix... done.
nonlinear residual is 7.020365e-004

velocity change is 7.023304e-001

Newton iteration number 2
setting up Q1 Newton Jacobian matrices... done.
setting up Q1 convection matrix... done.
nonlinear residual is 1.155423e-006

velocity change is 3.295976e-002

finished, nonlinear convergence test satisfied

computing Q1-P0 element stress flux jumps... done
computing Oseen local error estimator... done.
estimated velocity error (in energy): (7.225145e-001,3.127542e-001)
computing divergence of discrete velocity solution ... done
estimated velocity divergence error: 1.585456e-002
estimated overall error is 7.874604e-001
plotting 2x2 element data... done

>> it_solve
inflow/outflow (step) problem ...

solving Jacobian system generated by solution from last Newton step
setting up Q1 Newton Jacobian matrices... done.

GMRES/Bicgstab(2) 1/2 (default GMRES) :
stopping tolerance? (default 1e-6) :
maximum number of iterations? (default 100) :
preconditioner:

0 none
1 unscaled least-squares commutator (BFBt)
2 pressure convection-diffusion (Fp)
3 least-squares commutator

default is pressure convection-diffusion : 3
ideal / GMG iterated / AMG iterated preconditioning? 1/2/3 (default ideal) :
ideal least-squares commutator preconditioning ...
GMRES iteration ...
convergence in 21 iterations

k log10(||r_k||/||r_0||)
0 0.0000
1 -0.0159
2 -0.0740
|
|
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|
16 -4.3919
17 -4.7565
18 -5.1692
19 -5.5689
20 -5.9791
21 -6.3791

Bingo!

1.0244e+001 seconds

use new (enter figno) or existing (0) figure, default is 0 :
figure number (default is current active figure) :
colour (b,g,r,c,m,y,k): enter 1--7 (default 1) :
>>

IFISS also provides a batchmode facility via which data may be input from a pre-
prepared file rather than directly from the terminal. These problems are stored in
the specified test problems directory. For example type command batchmode(’P1’)
will use p1 batch.m to generate and solve the discrete Poisson equation. To solve
these problems in another domain, one has to change files containing domain and
boundary conditions. In the whole process IFISS generates three plots containing
grid, error and streamlines. The results are obtained through the Matlab sparse
solver. If the user wants to solve it through an iterative solver, then one has to run
an extra function it solve.m which gives the number of iterations on the command
window and plot of the residual. IFISS also has the facility to solve some of the
problems with the Multigrid Solver mg solve.m.
All the problems in IFISS are solved on a structured grid. Natural horizontal line
ordering is used for nodes numbering. In the case of an L-shaped domain, the re-
gion x < 0, 0 ≤ y ≤ 1 is numbered first and then x ≥ 0,−1 ≤ y ≤ 1. To deal with
singularity and boundary layer, a strecthed grid option is available in most of the
problems in the square domain.
To have an idea of how IFISS solves different kind of problems, Stokes and Navier
Stokes results are plotted . Figure 1, 2 and 3(a) shows different plots associated with
the solution of a problem. Tables 2-6 show mainly different results obtained from
preconditioned solvers. The number of iterations of the solver is effected by many
factors like type of problem, preconditioner, Reynolds number, mesh size, type of
nonlinear iterations etc. We will discuss some of the factors here. Figure3(b) is
obtained to have an idea of the convergence behavior of GMRES with different
preconditioners. Table 2,3 and 4 give an idea of the preconditioned iterative solver
used for solving Stokes problem, which shows that by using block diagonal pre-
conditioner, the number of iterations rises with reduction in h. In case of Ideal
and GMG preconditioner, the iterations remain almost unchanged for the specific
problem. The number of iterations also varies with different discretization scheme.
In case of the Navier Stokes problem, from Table 5, it is evident that an increase in
Reynolds number increases the number of iterations for both preconditioners. From
Table 6 , the iteration counts obtained from pressure convection diffusion precon-
ditioner is almost independent of the grid size, with ten times increase in Reynolds
number, the number of iterations become doubled. For the least square commu-
tator, with smaller Reynolds number the iteration count increases with increase in
h, however the dependence becomes less pronounced on higher Reynolds number.
PCD can be used for both stable and unstable discretization. LSC can only be
used for stable discretization. m-file cg test.m gives you an idea of number of CG
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iterations. With an artificial example, CG shows different convergence behavior for
eigenvalues distribution as shown in Figure 6. CG converges fast for two distinct
eigenvalues. The convergence of CG is fast if the eigenvalues are clustered in differ-
ent groups as compared to the uniform or perfectly distributed eigenvalues.
For seeing the effect of grid stretching, we implemented the domain which can be
strecthed and can get element with high aspect ratio. The stretched grid and re-
sults obtained in the grid are shown in Figure 5 and 6, respectively. The results in
Table 7 shows that iterations remains almost same with ideal block preconditioner
in Stokes problem. In case of Navier Stokes probelm in Table 8, the number of
iterations increases with grid stretching, also the time consumed by an iterative
solver to converge to the solution is large. This is the only last iteration which is
applied to linearized problem, which shows that the both preconditioners are time
and memory consuming for even a small Reynolds number.
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Precond 32x32 64x64 128x128
type Iter/t(sec) Iter/t(sec) Iter/t(sec)
None 226/2.8 437/3.24 878/28.0

Block Diagonal 346/2.64 784/23.4 1922/252
Ideal Block 35/2.28 37/13.9 35/93

GMG - - -
Table 2. No. of iteration for Stokes problem(channel flow) in
square domain with Q1 − P0 discretization

Precond. 32x32 64x64 128x128
Type Iter/t(sec) Iter/t(sec) Iter/t(sec)
None 611/1.14 1121/9.57 1879/69

Block Diagonal 232/1.73 520/14.92 1409/176
Ideal Block 27/2.4 29/13.9 29/85

GMG - - -
Table 3. No. of iteration for Stokes problem(channel flow) in
square domain with Q2 −Q1 discretization

Precond. 32x96 64x192 128x384
Type Iter/t(sec) Iter/t(sec) Iter/t(sec)
None 1066/6.35 2029/52 3779/398

Block Diagonal 464/9 1090/90 2916/1017
Ideal Block 40/11 40/52 40/357

GMG 62/7 67/29 70/135
Table 4. No. of iteration for Stokes problem(Backward facing) in
step domain with Q2 −Q1 discretization

Precond. Re = 50 Re = 150 Re = 250
Type Iter/t(sec) Iter/t(sec) Iter/t(sec)
None 1017/65 1324/109 1483/136

Pressure Convec.Diff 40/18 61/27 84/35
Least Square Comm. 17/10 23/13 35/21

Table 5. Effect on iterations with varying Reynolds number for
Navier Stokes problem in L-shaped domain with Q2−Q1 discretiza-
tion

Precond. Re = 10 Re = 100

Type 16x48 32x96 64x192 16x48 32x96 64x192

- Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec) Iter./t (sec)
PCD 23/1.8 26/12 31/90 47/3.62 52/23 61/175
LSC 12/1.2 16/9.8 20/75 21/2.15 19/11 25/93

Table 6. Effect of grid increase and Reynolds number on itera-
tions for Navier Stokes backward facing problem.
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Grid Ideal block Preconditioner
Type Iter/t(sec)
8x24 28/0.43
16x24 30/0.74
32x24 30/1.74
64x24 30/7.25

Table 7. Effect of grid stretching on iterations with MINRES
(eps = 1e−4) for Stokes problem in L-shaped domain with Q2−Q1

discretization

eps = 1e− 6 BiCGSTAB GMRES

PCD LSC PCD LSC

Grid iter/time(s) iter/time(s) iter/time(s) iter/time(s)

8x24 46/1.3 18/0.73 44/0.67 22/0.46
16x24 60/4.07 16/1.55 45/1.6 22/1.1
32x24 80/12.0 20/4.3 50/4.0 26/2.94
64x24 86/31.0 26/12.0 58/10.0 34/8.1

Table 8. Effect of grid stretching on iterations for Navier Stokes
problem in L-shaped domain with Q2−Q1 discretization and Re =
100
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9. Conclusions

IFISS is a nice package to deal with basic problems in computational fluid dy-
namics. By using this software, one can get an idea of

• Finite element discretization of the different problems.
• Based on the coefficient matrix, a selection of the suitable iterative method.
• Effect of preconditioner on the convergence of iterative methods.
• Features associated with individual problem, like stable and unstable dis-

cretization in the Stokes and Navier Stokes problems etc.
Despite of having so many features, the following drawbacks were noted during
exploring IFISS.

• Running problem with batchmode has problems with Matlab version below
7.0. As some of the Matlab built-in functions are not available in previous
versions.
• There is no iterative solver available for solving Problem-1 and 4 of Navier

Stokes domain.
• Stretched Grid facility is not available for varying length in Navier Stokes

problem.
• In the non-linear iteration loop, there is a need to solve the linear problem

with the help of an iterative solver.
• In the case of Stokes problems, Although the block diagonal preconditioner

converges in less iterations as compared to using MINRES directly, but it
takes more time, which does not justify the property of the preconditioner.
In the case of ideal precontitioner, the time taken also suspects the credi-
bility of the preconditioner.
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Appendix A. Preconditioners forNavierr Stokes Equations

We will consider the preconditioner of the form

M =
[
MF 0
0 MS

]
, (A-1)

for a coefficient matrix of the form

K =
[
F BT

B 0

]
(A-2)

For the moment we take MF = F and explore what is needed for MS . Intuitively, if
M is chosen so that M−1 is an inexpensive approximate inverse of K, then this might
make a good preconditioner; however, it is not necessary for a good preconditioner
to have that M−1 be an approximate inverse of K. A sufficient condition for a good
preconditioner is that the preconditioned matrix M−1K has a low degree minimum
polynomial. We show how preconditioners can be derived for systems of the form
(A-2) based upon exact preconditioner which yields a preconditioned matrix with
exactly three or two distinct eigenvalues. To investigate the eigenvalues of the
preconditioned system with the coefficient matrix (A-2) and preconditioner (A-1),
we start with a generalized eigenvalue problem

[
F BT

B 0

] [
u
p

]
= λ

[
F 0
0 MS

] [
u
p

]

From the first row we get
Fu(1− λ) + BT p = 0. (A-3)

There are two possibilities : λ = 1 corresponds to eigenvector [u 0]T and in case of
λ 6= 1, the equation (A-8) becomes

u =
1

λ− 1
F−1BT p (A-4)

and then eliminating u from the second block equation gives

BF−1BT p = µMSp, (A-5)

where µ = λ(λ− 1). Thus the optimal choice is MS = S, where

S = BF−1BT , (A-6)

is the Schur complement operator. This means that µ = 1 and there are precisely
three eigenvalues. λ = 1, and λ2,3 = 1±√5

2 . This preconditoning strategy would
thus result in convergence to the solution in three GMRES steps. However it is not
feasible to use the Schur complement operator because it is computationally expen-
sive to calculate M−1

S . So we seek good approximations of the Schur complement
operator. Suppose that (A-5) arises from the Stokes equations, then best choice is
MS = Q or even its diagonal, where Q is the pressure mass matrix. In this case µ
will not depend on the discretization step size and λ will be either one or lie in two
intervals , one right to unity and the other is left to zero. MINRES convergence will
be fast. Suppose (A-5) arises from the Navier Stokes Equations. Then MS = 1/µQ
and our goal should be to cluster eigenvalues µ in the small region in complex plane.
If this is done then
λ← 1±√1+4µ

2 ,
The eigenvalues will be tightly clustered on each side of the imaginary axis.
THEOREM 1. The eigenvalues of the generalized Schur complement (A-5) for the
Oseen operator are contained in a rectangular box in the right half plane whose bor-
ders are bounded independently of h.
for proof see [22].
COROLLARY 1. The eigenvalues of the discrete Oseen operator preconditioned by
(A-1) consist of λ = 1 of multiplicity nu − np, together with four sets consisting



of points of the form 1 + (a ± bi) and −a ± bi. These sets can be enclosed in two
rectangular regions that are symmetric with respect to Re(λ) = 1

2 , whose borders
are bounded independenlty of h. for more detail see [22].
In the case of a symmetric matrix it is a good choice to use block diagonal precon-
ditioner as the preconditoned problem retains the symmetry. But in case of Navier
Stokes, we have a nonsymmetric matrix and this restricts our options with respect
to Krylov subspace iteration. We must give up either short recurrence or optimality.
With either choice the advantage of the block diagonal is lost and it turns out that
a slight variation on the structure of the preconditioner yields other improvements.
In particular consider the block triangular matrix.

M =
[

MF BT

0 −MS

]
(A-7)

assume MF = F , the generalized eigenvalue problem is
[

F BT

B 0

] [
u
p

]
= λ

[
F BT

0 −MS

] [
u
p

]

From the first row we get

(1− λ)(Fu + BT p) = 0. (A-8)

This gives λ = 1 and Fu+BT p = 0 or u = −F−1BT p, substituting this into second
equation gives

BF−1BT p = λMSp, (A-9)

with MS = BF−1BT , µ = λ in (A-5), the eigenvalues of the preconditioned
operator derived from the block triangular preconditioner consists of unity together
with the eigenvalues of (A-5). It will give a more rapid convergence as the eigenval-
ues of the preconditioned system lie on one side of the imaginary axis. The more
general form of the coefficient matrix is given by

K =
[
F BT

B −C

]
(A-10)

We consider the block LU decomposition
[
F BT

B −C

]
=

[
I 0

BF−1 I

] [
F BT

0 −(BF−1BT + C)

]
(A-11)

If the upper triangular matrix is viewed as preconditioner, then the eigenvalues of
the preconditioned matrix are identically one, and this operator contains Jordan
blocks of dimensions at most 2, and consequently that at most two iterations of
a preconditioned GMRES iteration would be needed to solve the system, for any
discretization and mesh size h and Reynolds number [21]. The preconditioning
strategies are derived by making an approximation to an upper triangular matrix.
Now S = BF−1BT + C, is the Schur complement of the stabilized discrete oper-
ator. We describe two ways to approximate the Schur complement operator, both
of which can be used for MS in the preconditioner. The good choice of MS for
Stokes problems is the pressure mass matrix Q. With choice MS = ( 1

ν Q), this idea
has also merits inNavierr-Stokes with low Reynolds number (Re < 10) and shows
mesh independent convergence. However it does not take the effect of convection
into account. The aim is to develop an approximation which reflects the balance of
convection and diffusion in the problem and leads to improved convergence rates at
high Reynolds numbers.



A.1. Pressure Convection Diffusion equation. We will start with an operator
which contains as a component a discrete version of convection-diffusion operator.

L = −ν∇2 + ~wh.∇. (A-12)

Let us suppose that the commutator of the convection diffusion operator with the
gradient operator is small in some sense:

ε = (−ν∇2 + ~wh.∇)∇−∇(−ν∇2 + ~wh.∇)p, (A-13)

The term with the p subscript indicates that the operator is defined on the pressure
space. Let Q denote the velocity mass matrix. The matrix representation of the
discrete gradient operator is Q−1BT , discrete negative divergence operator is Q−1B
and for discrete convection diffusion operator is Q−1F . The discrete operators
in this case are scaled with velocity mass matrix Q. The discrete version of the
commutator becomes

εh = (Q−1F )(Q−1BT )− (Q−1BT )(Q−1Fp) (A-14)

premultiplying (A-14) by BF−1Q and postmultiplying by F−1
p Q and assuming that

the commutator is small gives

BF−1BT ≈ BQ−1BT F−1
p Q, (A-15)

Since BQ−1BT is computationally expensive, it is replaced by its spectral equivalent
matrix Ap known as the pressure Laplacian matrix, so

MS = BF−1BT ≈ ApF
−1
p Q (A-16)

With this choice of MS , the preconditioner is known as the pressure convection
diffusion Preconditoner. This preconditioner is also effective for stabilized approxi-
mations.

MS = BF−1BT + C ≈ ApF
−1
p Q (A-17)

For more details see(chapter 8 of [18]).

A.2. The Least Square Commutator. This approach for the Schur complement
operator is only applicable when the mixed approximation is uniformly stable with
respect to the inf-sup condition.

min
qh 6=constant

max
~vh 6=~0

|(qh,∇. ~vh)|
‖ ~vh‖1,Ω‖ ~qh‖0,Ω

≥ γ (A-18)

Rather than deriving an approximation to the Schur complement from the contin-
uous version of the commutator, we will instead define an approximation to the
matrix operator Fp that makes the discrete commutator small. The L2 norm of the
commutator, viewed as an operator defined on the pressure space Mh, is

sup
ph 6=0

‖[(−ν∇2 + ~wh.∇)∇−∇(−ν∇2 + ~wh.∇)p]ph‖
‖ph‖ (A-19)

= sup
p 6=0

‖[(Q−1F )(Q−1BT )− (Q−1BT )(Q−1Fp)]p‖Q
‖p‖Q (A-20)

where ‖v‖Q = 〈Qv, v〉1/2. We now try to construct Fp so that the norm is small.
One way to do this is to minimize the individual vector norms of the columns of the
discrete commutator one by one, that is by defining the jth column of Fp to solve
the weighted least square problem.

min‖[Q−1FQ−1BT ]j −Q−1BT Q−1[Fp]j‖Q (A-21)

The j in the expression [Q−1FQ−1BT ]j represents the jth column of the corre-
sponding matrix. The associated normal equations are

Q−1BQ−1BT Q−1[Fp]j = [Q−1BQ−1FQ−1BT ]j



which leads to the following definition of Fp:

Fp = Q(BQ−1BT )−1(BQ−1FQ−1BT )

Substituting this expression into (A-6) gives an approximation of the Schur com-
plement matrix:

BF−1BT ≈ (BQ−1BT )(BQ−1FQ−1BT )−1(BQ−1BT ) (A-22)

In contrast to the pressure convection diffusion, this preconditioner does not require
the explicit construction of the matrix Ap and Fp. Also it is not practical to work
with Q−1, since it is a dense matrix. A Good idea is to replace Q by Q̃ = diag(Q).
So (A-6) becomes

MS = BF−1BT ≈ (BQ̃−1BT )(BQ̃−1FQ̃−1BT )−1(BQ̃−1BT ) (A-23)

The main advantage of this preconditioner is that it is fully automated and it does
not require the construction of operators Ap and Fp that is needed in the pressure
convection diffusion preconditioner.


