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Abstract

This paper utilizes the saddlepoint approximation as an efficient tool to estimate
the portfolio credit loss distribution in the Vasicek model. Value at Risk(VaR), the risk
measure chosen in the Basel IT Accord for the evaluation of capital requirement, can
then be found by inverting the loss distribution. VaR Contribution(VaRC), Expected
Shortfall(ES) and ES Contribution(ESC) can all be calculated accurately.

Saddlepoint approximation is well known to provide good approximations to very
small tail probabilities, which makes it a very suitable technique in the context of
portfolio credit loss. The portfolio credit model we employ is the Vasicek one factor
model, which has an analytical solution if the portfolio is well diversified. The Vasicek
asymptotic formula however fails when the portfolio is dominated by a few loans. We
show that saddlepoint approximation is able to handle such exposure concentration.

We also point out that the saddlepoint approximation technique can be readily
applied to more general Bernoulli mixture models(possibly multi-factor). It can
further handle portfolios with random LGD.
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1 Introduction

The integral issues in the portfolio credit loss modeling are the determination of Value
at Risk(VaR) and VaR contribution. VaR is the risk measure chosen in the Basel II Ac-
cord (Basel Committee on Bank Supervision, 2004) for the evaluation of capital require-
ment. The VaR contribution measures how much each obligor in a portfolio contributes
to the total VaR. It is equally important as VaR because it is necessary for loan pricing
and it can provide limits on large credit exposures. It may also be useful for profitability
assessment, asset allocation and portfolio optimization. There are several forms of risk
contribution in the literature and we adopt the marginal contribution given in Gourier-
oux, Laurent and Scaillet (2000), which is the sensitivity of the risk to an infinitesimal
fractional change in exposure.

The Vasicek (Vasicek, 2002) portfolio credit loss model is among the most popular
models quantifying portfolio credit risk. In particular it is the basis of the Basel II internal
ratings based (IRB) approach. The Vasicek model is a one period default-mode model,
i.e., loss only occurs when an obligor defaults in a fixed time horizon. Under certain homo-
geneity conditions, the Vasicek one factor model leads to very simple analytic asymptotic
approximation of loss distribution and the VaR. The approximation works very well when
the portfolio is of large size and there is no exposure concentration in presence, i.e., the
portfolio is not dominated by a few loans. However, the Vasicek one factor model can not
detect exposure concentration when it is inherent in the portfolio and it then tends to
underestimate risk.

This paper utilizes the saddlepoint approximation as an efficient tool to estimate port-
folio credit loss distribution. Saddlepoint approximation method is well known to provide
good approximations to very small tail probabilities, which makes it a very suitable tech-
nique in the context of portfolio credit loss. The use of saddlepoint approximation in
portfolio credit loss is pioneered in a series of articles by Martin, Thompson and Browne
(2001a; b). Gordy (2002) showed that saddlepoint approximation is fast and robust when
applied to CreditRisk™. This paper differs from them in that (i) we employ the saddle-
point approximation in the Vasicek model and (ii) we apply the saddlepoint approximation
to the conditional moment generating function(MGF) of portfolio loss L rather than to
the unconditional MGF. We show that this change in implementation of the saddlepoint
approximation leads to very accurate results on the portfolio loss distribution, the VaR
and VaR contribution, even for small sized portfolios and portfolios with exposure con-
centration. In addition to the VaR and VaR contribution, we also give the saddlepoint
approximations for the Expected Shortfall(ES) and ES contribution.

Although we confine our numerical experiments to the Vasicek one-factor model, the
saddlepoint approximation technique can readily be applied to more general Bernoulli
mixture models(possibly multi-factor). It can further handle portfolios with random LGD.

The rest of the article is organized as follows. In section 2 we introduce the popular
risk measures and risk contributions and we review the Vasicek one-factor model. Section
3 gives a brief introduction in saddlepoint approximation and describes how it can be used
in the context of portfolio credit loss modeling. We present numerical results in section 4.
The saddlepoint approximation is here applied to the Vasicek one-factor model. Section



5 extends the use of the saddlepoint approximation to more general situations than the
Vasicek one-factor model. The 6th section concludes.

2 Portfolio credit loss modeling

2.1 Risk measures and risk contributions

Consider a portfolio consisting of n obligors. Any obligor ¢ can be characterized by three
constant quantities: the exposure at default EAD;, the loss given default LGD; and the
probability of default PD;. Obligor ¢ is subject to default after a fixed time horizon and
the default can be modeled as a Bernoulli random variable D; such that

D, — 1 with probability PD;,
‘| 0 with probability 1-PD,.

Define the effective exposure of obligor ¢ by w; = EAD; x LGD;, then the loss incurred by
the obligor ¢ is given by

It follows that the portfolio loss is given by
n n
i=1 i=1

Let a be some given confidence level, the a-quantile of the loss distribution of L in
this context is called Value at Risk(VaR). Thus,

VaR, = inf{z : P(L < z) > a}.

Usually the « of interest is close to 1. VaR is the risk measure chosen in the Basel II
Accord (Basel Committee on Bank Supervision, 2004) for the evaluation of capital re-
quirement, which means a bank that complies with Basel II needs to reserve capital of
amount VaR, as a cushion for extreme loss. However, VaR is known to be not coherent,
in particular not subadditive (see Artzner, Delbaen, Eber and Heath, 1999). So we also
consider Expected Shortfall(ES), a coherent alternative to the VaR. It is defined as the
conditional expectation of the loss given that the loss exceeds the VaR,

ES, = E[L|L > VaR,).

A risk contribution measures how much each obligor in a portfolio contributes to the
total risk. This is equally important as risk measures because it is necessary for loan pricing
and it can provide limits on large credit exposures. It may also be useful for profitability
assessment, asset allocation and portfolio optimization. A naturally desirable property of
the risk contributions is that they sum up to the corresponding risk measure, e.g., for VaR,
we want the VaR Contributions(VaRC) add up to total VaR, i.e.,

i VaRC,; = VaR.
i=1



A common measure of risk contribution that satisfies this property is the sensitivity of the
risk to an infinitesimal fractional change in exposure, as given in Gourieroux et al. (2000).
Under some continuity conditions, the VaR contribution coincides with the conditional
expectation of L; given that the portfolio loss L takes value VaR, (L), i.e.,

VaRCj o = wi%(m — wE[D,|L = VaRu(L)], (1)

The sum of the VaR contributions indeed equals the total VaR, i.e.,

> wiB[Di|L =VaRo(L)] = E|)_ Li|L = VaRq(L)
=1 =1
= E[L|L = VaR(L)]
= VaR,(L).
Similarly, the ES contribution(ESC) is given by
OES,,
wi——=(L) = w; E[Di| L > VaRo(L)]. (2)
We also have "
> wiB[D;|L > VaRq(L)] = ESq(L). (3)
=1

2.2 The Vasicek portfolio credit loss model

The key issue in portfolio credit loss modeling is the modeling of the default dependence
among obligors. A common practice is utilizing the Bernoulli mixture model, such that D;
are independent Bernoulli variables conditional on some common factors Y with P(D; =
11Y) = pi(Y). The factors Y can represent the state of the economy, different industries
and geographical regions, etc.

A broad class of models in the portfolio credit loss modeling can be categorized as
Bernoulli mixture models. Examples include almost all popular industrial models like
KMV /Vasicek(Vasicek, 2002), CreditRisk™ (Credit Suisse Financial Products, 1997) and
CreditPortfolioView(Wilson, 1997a; b). For more details see Frey and McNeil (2002a; b).
We concentrate on the Vasicek one-factor Gaussian copula model in the sequel.

The Vasicek model is a one period default-mode model, i.e., loss only occurs when an
obligor defaults in a fixed time horizon. Based on Merton’s firm value model, the Vasicek
model evaluates the default of an obligor in terms of the evolution of its asset value.
Default occurs when the standardized asset log-return X is less than some pre-specified
threshold ¢ where X is normally distributed and P(X < ¢) = PD. X is decomposed into
a systematic part Y, representing the state of the economy, and an idiosyncratic part Z,
such that for obligor i we have



where Y and all Z; are i.i.d standard normal random variables and p is the common
pairwise correlation. It is now easily deduced that X; and X; are conditionally independent
given the realization of Y. This implies that L; and L; are also conditionally independent
given Y. Further assumptions of the Vasicek model are that all obligors have the same
characteristics, such that PD; = p, EAD; = 1 and LGD; = 1, which entails that w; = 1
for all 4.

Denote by p(y) = P[L; = 1|Y = y], i.e., the probability of default conditional on the
common factor Y = y. Then

1 .
p) = BlL = LY =) =P <y =) =0 () )

where ® is the cdf of the standard normal distribution.

As a consequence of the strong law of large numbers, one obtains for n — oo
P |lim L/n=p(y)|Y = y} =1
n—oo

Equivalently, if we denote by L(Y") the portfolio loss L conditional on Y, we have

1 .
nh_)rréo LY)/n=pY)=2 (Wﬁ\/ﬁy) a.s. (6)

Since p(Y) is strictly monotonically decreasing in Y, the a quantile of L is simply the
1 — a quantile of Y, i.e.,

V1i-=p
As all obligors in the portfolio are equivalent, the VaR contribution of each obligor is
simply VaR/n = p(®~ (1 — «)).

We note although the assumptions of uniform pairwise correlation p and unconditional
default probability PD are made in Vasicek (2002), they are not necessary conditions and
can be relaxed. Moreover, the convergence in (6) also holds for a portfolio with unequal
weights w; if wa — 0, in other words, the portfolio is not dominated by a few loans.
Summarizing, for a portfolio which is not homogeneous in terms of effective weight, default
probability and pairwise correlation, the individual loss variable L; conditional on Y is
given by

w; with probability @(w)

Lz‘(Y) = ‘th babil; c1>1*_1€};i)7\/;—iy
0  with probability 1 — @(W).
If the portfolio is not dominated by a few loans, the fraction of loss is given by
@ (pi)—v/PiY
) i S ) X el A
= lim = .
n—+o00 Z?:l E‘fll)Z Z?:l EADZ

Then, VaR and VaR contributions are given by

VaR,, — ;Wb (@ (pi)\;;__\/z@ (O‘)> , (8)




R (@1@» T m¢>1<a>> |

(9)
V1= pi
Note the VaR contribution above is a portfolio-invariant linear function of w;, which implies

that the capital contributions of individual exposures only depend on the characteristics
of the exposure in question and not on the rest of the portfolio.

The Vasicek asymptotic formula is straightforward but it strongly relies on the as-
sumptions of an infinitely large portfolio and of no exposure concentration. When the two
conditions, especially the latter, are violated, which constantly occurs in practice, it tends
to underestimate risk. Therefore, the analytic formulas are less suitable when a portfolio
is of small size or if it is dominated by a few loans. In the following sections we show that
both problems can be handled by the saddlepoint approximation.

3 Saddlepoint approximation

The computation of the probability distribution function of the sum of independent ran-
dom variables can be facilitated by the use of the moment generating function(MGF),
which is defined by Mx(t) = E(e!X). For a finite sequence of independent random vari-
ables X;,7 = 1...n, with known analytic MGF’s My,, the MGF of the sum X =) |, X;
is the product of MGF of X;, i.e.,

My (t) = [ [ Mx.(t).
=1

Let Kx(t) = log Mx(t) be the Cumulant Generating Function(CGF) of X. The inverse
MGF of X can be written as

+i00
frx(o) = 5 [ explix(t) - ta)dr (10)

21 ) _ieo

Saddlepoint approximation arises in this setting to give an accurate analytic approx-
imation. It is usually highly accurate in the tail of a distribution. The saddlepoint ap-
proximation can be thought of as the Edgeworth expansion at the center of an Esscher

transformed density. For a detailed exposition of saddlepoint approximations, see Jensen
(1995).

The saddle point, i.e., the point at which Kx (¢) — tz is stationary, is a t = ¢ such that
K% (t) = x. (11)

The density fx(x) and the tail probability P(X > z) can be approximated by Kx(t) and
its derivative up to second order at t.

The Taylor expansion of K (t) — tx (function of t) around f gives

K(t) -tz = K(f) — tx + %(t — 1) K"(t) + ... (12)



Substitute (12) into (10), we get

exp(K (t) — tx) /HOO

21

exp (%(t - f)%(”(f)) gp = SREQ) —tr) g

Fxr= 2m K (7)

—100
The tail probability is approximated as
1 [T exp(K(t) — tz)

P(X >z) = -—— Tt
270 J oo, (04) t
exp (K (f) — i + 12K"(D)) & (_Ww@) x> B(X),
IR r = E(X), (14)

1—exp (K(f) — iz + L2K"(D)) @ (—MPK”(E)) x < B(X).
If all the X; are identically distributed, the relative errors of both approximations in

(13) and (14) are known to be O(n~!). Higher order approximations of the density and
the tail probability are given by the Daniels (Daniels, 1987) formula

_ ¢(21) n—2

and the Lugannani-Rice (Lugannani and Rice, 1980) formula
1 1
P(X >2) =1 ®(2) + d(2) [z— — =40 (n_3/2>} , (16)

w 2l

B 5K’”(t~)2 N K(4)(t*)
24K"(t)3 8K’ (t)?

where z, = t\/ K" (t) and 2z = sgn(t)\/2[zt — K (1)].

3.1 Saddlepoint approximation in portfolio credit risk modeling

The use of saddlepoint approximation in portfolio credit loss is pioneered by a series of
articles by Martin et al. (2001a; b). Gordy (2002) showed that saddlepoint approximation is
fast and robust when applied to CreditRisk™. All of them apply saddlepoint approximation
to the unconditional MGF of loss L, despite the fact that L; are not independent. Annaert,
Garcia, Lamoot and Lanine (2005) show that the procedure described in Gordy (2002) may
give inaccurate results in case of portfolios with high skewness and kurtosis in exposure size.
This paper differs substantially from them in that we apply the saddlepoint approximation
to the conditional MGF of L given the common factor Y, so that L; are independent, which
is the situation the saddlepoint approximation will work well. We employ the saddlepoint
approximation in the Vasicek model. In section 4 we will show by a numerical example that
the accuracy of our procedure is not impaired by high skewness and kurtosis in exposure
size.

In the Vasicek model, obligors are independent conditional on the common factor.
The application of the saddlepoint approximation is then straightforward. We write the
conditional MGF of L as

n

M(LY) =TT (1= pi¥) + pic¥)e?). (17)
=1



The conditional CGF and its derivatives up to fourth order are defined as follows:

Y) = Z log (1= pi(Y) + pi(Y)e™) (18)
/ s w;pi(Y)e"
K Y) = ZZ; 1= pi(Y) + pi(Y)ewst” 1)

" . - (1 _pi(Y))wzzpi(Y)ewit
K"(t,Y) = ; 1= pi(Y) + pi(Y)ewit]2

o [ (L= ) (V) 21— pa(Y)upA( e
K “’Y)‘;{u—pxywpmw R it S

1 =pi(Y) +pi(Y)er]? L= pi(Y) +pi(Y)e" ]

6(1 — pi(Y))wyip} (Y)e* }
[1=pi(Y) + pi(Y)ewit]*

) {(1—1% Nwipi(Y)e™t  6(1 — pi(Y))wipi(Y)e* !
1

1=

+ (22)

With K(¢,Y) available, we are able to calculate the conditional loss density and the
conditional tail probability by the saddlepoint approximation. Since K'(t,Y") is a monoton-
ically increasing function of ¢ and it is bounded in the interval [0, w;], the equation
K'(t,Y) = x admits a unique solution ¢ for = € [0, w;]. Integrating over Y gives the
unconditional loss density and tail probability. For example, the tail probability is given
by

P(L > z) = / P(L > 2|Y)dP(Y). (23)

The VaR can then be found by inverting the loss distribution. Moreover, to obtain the
VaR contribution, we differentiate P(L > z) with respect to the effective exposure:

0 P(L > x) = EY{

1 /+i°° 10K (t,Y) Oz
3’U)Z'

PR e 3wi] exp(K(t,Y) — t:z:)dt} . (29)

21 J —ico,(0+)

Here we replace = by VaR,. Since the tail probability P(L > VaR,) is fixed at 1 — «, the
left hand side should vanish and we obtain

OK(t,Y)1

[ “+100 - B
w@VaRa B w‘Ey e 00) " By exp (K (t,Y) —tVaR,) dt]
" ow; Z By [ [H exp(K(t,Y) — tVaRa)dt}

i . . Y)ewit

By | [T Pi( exp (K(t,Y) — tVaR,, dt}

LT T pi(Y) (Ve S | (25)
’ By [fr(VaRo|Y)]
If we define

K'(t,Y) =log (pi(Y)e"") + ) log (1 —p;(Y) + p;(Y)e"")
i

8



which can be thought of as the CGF of L given Y and D; = 1, (25) is rewritten as

oVar, By [ e (RKitY) — tVaR, ) dt]
Y o, By [f1(VaRa|Y)] '

(26)

Both the numerator and the denominator can be approximated by the saddlepoint method.

The VaR contribution can also be derived in another way. With L = > i WiDj, we
have

F(L = VaRu: D; = 1)
fr(VaRy)
Ey [ f (L — VaR,, — wi|Y> pi(y)}
By [fr(VaR,[Y)]

sz(DZ\L:VaRa) = w;

= w; (27)
The conditional density in the numerator is the conditional loss density of a portfolio
excluding obligor ¢ and can again be calculated by the saddlepoint approximation. We
note that (26) and (27) are essentially the same because both formulas use the saddlepoint
t that solves

- (Y)ers?!

o 1 —pi(Y)+p;(Y)ewit

= VaR, — w;. (28)

Similarly, the ES contributions are given by

By [P (L > VaR, — wi\Y) pi(Y)]

E(D;|L > VaR,) = w; 29
wB(DL 2 VaRa) = wi By [P(L > VaRo|Y)] ’ (29)

and ES can be obtained by simply summing up all the ES contributions, i.e.,
ESo =Y wE(Dj|L > VaRa). (30)

Remarks:

e Although the obligors in a portfolio are assumed to be completely heterogeneous,
for the sake of computational efficiency, it is advisable to group obligors as much as
possible into homogeneous buckets with similar characteristics, esp. for large port-
folios. The main advantages of doing this are (i) the expedition of the calculation
of conditional CGF and its partial derivatives and (ii) a reduction of the amount of
risk contributions that need to be computed.

e Martin et al. (2001b) proposed a simple estimate to the VaR contribution, which
reads

By fL<VaRa\Y>wiMLJ

7 3’U)Z'
Ey [fL(VaRa|Y)]
in the Bernoulli mixture models. In our numerical examples we show, however, this
approximation may be inaccurate.

VaRCw 7

(31)



4 Numerical results

We now illustrate the performance of the saddlepoint approximation in the Vasicek one
factor model. For the implementation of the saddlepoint approximation, we always employ
the Lugannani-Rice formula (16) for the tail probability. We truncate the common factor
Y in the interval [—5,5] so that the probability of Y falling out of this interval is merely
5.7 x 1077, Discretization of Y is done by Gauss-Legendre quadrature, generating 1000
abscissas and weights. The three examples evaluated are:

e Example 1: A homogeneous portfolio with 1000 obligors, each with EAD=1, LGD=1,
PD=0.01 and p = 0.2.

e Example 2: A portfolio consisting of 100 obligors with EADy =k, k£ = 1,2,...100,
PD=0.1, p=0.2.

e Example 3: A portfolio consisting of 1 obligor with EAD; = 100 and 10,000 obligors
with EADg = 1. All obligors have PD=0.005 and p = 0.2.

We compare the loss ditribution from the saddlepoint approximation to results from
the analytic Vasicek formula and from Monte Carlo simulation in the first two examples.
We use Monte Carlo simulation with 4 million scenarios as the benchmark method. The
loss distribution corresponding to the Vasicek model is obtained by inverting the VaR
given by Vasicek’s formula (8) for a series of quantile .

Example 1 is an ideal case for the Vasicek formula to be accurate. The loss distributions
from different methods are presented in Figure 1. The z-axis represents the loss percentage,
i.e., the loss amount in proportion to the total exposure. The y-axis, the tail probability
P(L > z), is in log-scale. It can be seen that saddlepoint approximation is highly accurate
and follows our benchmark very well. The Vasicek formula only slightly underestimates
the risk.

T
——©— Saddlepoint
Vasicek

—+— simulation

tail probability
=
O‘
o

10|

i i i i i i P
10 12 14 16 18 20 22
loss percentage

Figure 1: Comparison of the saddlepoint approximation, Vasicek’s formula and Monte
Carlo simulation for the tail probability in Example 1.

In Example 2, the assumptions of the Vasicek asymptotic approximation are not satis-
fied any longer: the size of the portfolio is small and there is exposure concentration (the

10



weight of the largest loan is about 2%). Vasicek’s formula is not suitable in this situation,
which is confirmed in Figure 2. We observe however that the saddlepoint approximation
gives results comparable to simulation in this example.

=@ Saddlepoint
Vasicek
—+— Simulation |3

10"

I
S}
&
T

tail probability

107t

i i i i i i i i
8 10 12 14 16 18 20 22
loss percentage

Figure 2: Comparison of the Saddlepoint approximation, Vasicek’s formula and Monte
Carlo simulation for the tail probability in Example 2.

Example 3 is a particular case when the VaR and VaR contributions can be computed
almost exactly by the Binomial Expansion Method(BEM) if we treat the portfolio loss
as a discrete variable. It is therefore a suitable test portfolio for the calculation of VaR
contributions. BEM will serve as the benchmark for both the VaR and the VaR contribu-
tions. More details on BEM can be found in the Appendix. The loss distribution of this
portfolio given by the saddlepoint approximation and the BEM are shown in Figure 3.
The saddlepoint approximations again follow our benchmark very well.

0

10 F 3 T 3 T T T T
=—t— BEM

—O6— Saddlepoint

tail probability

2 4 6 8 10 12 14 16
loss percentage

Figure 3: Tail probability given by the saddlepoint approximation and the BEM for port-
folio in Example 3.

As for the VaR contribution, we first consider a fixed loss level L = 922, which
lies around the 99.9% quantile. We compute the VaR contributions of both the large
obligor(VaRC;) and any small obligor(VaRCsz). We use both the standard and higher or-
der saddlepoint approximation given by (13) and (15), respectively (denoted by SA2 and

11



SA4). Results are shown in Table 1 and in parenthesis are the relative errors of saddlepoint
approximation to the benchmark. Besides, we compute the Vasicek VaR contribution, the
saddlepoint approximation for the VaR contribution as given by (31) (denoted by SA-
Martin) for comparison.

VaRC;y VaRCs > VaRC
Vasicek 9.13 0.0913 922
SA-Martin | 21.82 0.0900 921.99
SA2 12.24(2.93%) | 0.0904(0.55%) | 916.64(0.58%)
SA4 12.65(0.32%) | 0.0907(0.22%) | 920.00(0.21%)
BEM 12.61 0.0909 921.95

Table 1: VaR contributions at the loss level L = 922 and their relative errors. The portfolio
is given in Example 3.

The results given by the benchmark BEM show that the VaR contribution increases
non-linearly with the size of the exposure. Both the standard and higher order saddlepoint
method successfully capture this feature and give the VaR contributions with small relative
errors. The higher order approximation, with relative error less that 1%, outperforms the
standard approximation. The only (negligible) problem is that the VaR contributions do
not add up to the total VaR exactly. It is also clear that the VaR contributions of the large
obligor(VaRC; ) obtained from Vasicek and SA-Martin are both relatively far from the true
value. The Vasicek contribution is proportional to the effective exposure and therefore it
underestimates the large obligor’s risk contribution. SA-Martin penalizes large exposure
too much.

Next we consider a fixed confidence level a = 99.99% in example 3, which is truly
far in the tail. The Lugannani-Rice formula will be used to compute the loss distribution
and subsequently the higher order saddlepoint approximation is used for the loss density.
Results are shown in Table 2. The accuracy of the higher order saddlpoint approximation
is very satisfactory.

‘ VaRgg'gg% ‘ VaRC1 ‘ VaRCQ ‘ Z VaRC
SA4 1558 | 19.71(0.4%) | 0.1537(0.06%) | 1556.27(0.1%)
BEM 1558 19.79 0.1538 1557.87

Table 2: VaR contributions at the loss level VaRgg 999, and their relative errors. The port-
folio is given in Example 3.

Finally we compute the ES contributions and ES as in (29) and (30) at the confidence
level @ = 99.99%. The tail probabilities are computed by the Lugannani-Rice formula.
The results are presented in Table 3. The table suggests that the approximation is more
accurate for the VaR contribution than for the ES contribution. This can be understood
roughly because the relative error of Daniels formula is O(n~2) and that of Lugannani-
Rice formula is O(n~3/2), with n being the number of i.i.d random variables, (although in
our example L; are not really identically distributed). The approximations are, however,
satisfactory for both the ES contributions and the ES.

12



| VaRgg g9% | ESCy | ESCy | ES
SA4 1558 23.18(0.17%) | 0.1848(0.49%) | 1871(0.46%)
BEM 1558 23.14 0.1839 1862.51

Table 3: ES contributions and ES at the loss level VaRgg 999, and their relative errors. The
portfolio is given in Example 3.

We remark that in example 3 the skewness and kurtosis in exposure size are 99.985
and 9998, respectively. They are much higher than in the portfolios 4 and 5 given in
Annaert et al. (2005), where it is shown that the accuracy and reliability of the saddlepoint
approximation obtained from Gordy’s (2002) procedure may deteriorate. In our approach
high skewness and kurtosis do not pose any problem with respect to accuracy.

5 Further Extensions

Although we confine our numerical experiments to the Vasicek one-factor model here, the
saddlepoint approximation technique can be readily applied to all other Bernoulli mixture
models. A different choice of mixture model only gives a difference in the form of the
conditional default probability p;(Y), eg., in the Vasicek one factor model we have

and in CreditRisk™
pi(Y) =pi (wio +> kaz‘k> ;

where Y}, are assumed to be independently gamma distributed (see Gordy, 2002).

In case of multi-factor models, esp. when the number of factors is larger than three,
instead of Gaussian quadrature, Monte Carlo simulation or low discrepancy sequences
can be employed for the integration. The saddlepoint approximation itself is however not
affected, since all the information of the common factors is encapsulated in p;(Y) before
starting the approximation procedure. We note that when z is large and Y is large and
positive, P(L > z|Y") will tend to zero and thus the integration in (23) will not be efficient.
This is particularly an issue for multi-factor models, since for one-factor models we can
simply increase the number of samples of Y. The idea of importance sampling can be
used for a significant improvement in such cases. By choosing a P-equivalent probability
measure Q, the tail probability can be rewritten as

P(L>x) = /IP(L >z|Y)dP(Y) = /[P(L > x|Y)&d@(Y).
dQ(Y’)
Several procedures to find the optimal measure Q are suggested by Glasserman and Li
(2005), Glasserman (2006).

Remarks: The above mentioned hybrid method of saddlepoint approximation and
importance sampling is more efficient than pure importance sampling, since in the simula-
tion only the common factors need to be generated and not the specific risks. This is more

13



advantageous for large portfolios. Moreover for the calculation of the VaR contribution
importance sampling can only use the few replications L. = x, whereas the hybrid method
need not condition on this rare event.

Furthermore the saddlepoint approximation can also handle LGD volatility. When the
LGD is random, the conditional CGF becomes

K(t,Y) =Y log [1 = ps(Y) + pi (V) E(e“|Y)] . (32)

Various forms of distribution of LGD can be found in the literature. For example, in Frye’s
(2000) model, the LGD is modeled as a normal random variable with mean p and standard

deviation o such that
LG’DZ = U +o <—bZY+ \/ 1-— b1261> .

Here the ¢;, independent to Y, are assumed to be i.i.d standard normal variables and the b;
are assumed to be positive to insure the correct qualitative effect of LGD, which is mostly
determined by the value of collateral. It should tend to be higher when the economy is
weak and lower when the economy is strong. It follows that

E(ewit|y) _ eE'ADi(ufabiY)tE(eE‘ADio' 17b12qt)
= exp (EAD;(u— ob;Y)t + EAD?0*(1 — b2)t%/2) . (33)

After substitution of (33) into (32), we see that a random LGD will not complicate the
problem further.

6 Conclusions

We have described a new procedure to embed the saddlepoint approximation as a use-
ful tool in portfolio credit loss modeling. We apply the saddlepoint approximation in the
Vasicek one-factor model. The saddlepoint approximations, esp. the higher order approxi-
mations, are able to produce accurate results on both the VaR and the VaR contribution.
The ES and ES contribution can also be computed satisfactorily. We have also illustrated
that the saddlepoint approximation works well for small sized portfolios and portfolios
with exposure concentration, where Vasicek’s asymptotic formulas fail. We further point
out that the saddlepoint approximation is a flexible method that it can be applied in quite
general situations, for example, other Bernoulli mixture (possibly multi-factor) models
and portfolios with random LGD.
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A Binomial expansion method

Consider a portfolio consisting of 1 obligor with EAD; = k, PD= p; and n obligors with
EADy = 1, PD= py. In a Bernoulli mixture model, the losses of the obligors are condi-
tionally independent given the common factor Y. Let p1(Y) and p2(Y') be the conditional
default probabilities, we have

P(L=m) = / P(L = m|Y)dP(Y)
= [ BE" =m— bY) (1 pr (V)P = m]Y) dB(Y),

where

P = mly) = 1) )1 =y

The VaR and VaR contributions are then given, respectively, by

VaR, = inf {x‘ STP(L=m) > a} ,
m=0

and
[ m(Y)P(L" = VaR,, — k|Y)dP(Y)
VaRCy = P(L = VaRy,) ’
1
- - - Y)pi (YV)P(L" ! = —k—1Y)dP(Y
VaRCy = gy 1] O IOV = VR — k= 1Y )aP(Y) +

+ /pg(Y)(l —pi(Y)P(L" ™ = VaR, — I\Y)d]P(Y)} :

The ES contributions are computed according to (29) with

r—1

P(L>z)=1-)Y P(L=m)
m=0

and ES is obtained by (30).
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