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Spectral analysis of the discrete Helmholtz operator

preconditioned with a shifted Laplacian.

M.B. van Gijzen∗, Y.A. Erlangga†and C. Vuik‡

Abstract

Shifted Laplace preconditioners have attracted considerable attention as a tech-
nique to speed up convergence of iterative solution methods for the Helmholtz equa-
tion. In this paper we present a comprehensive spectral analysis of the Helmholtz
operator preconditioned with a shifted Laplacian. Our analysis is valid under gen-
eral conditions. The propagating medium can be heterogeneous, and the analysis also
holds for different types of damping, including a radiation condition for the boundary
of the computational domain. By combining the results of the spectral analysis of
the preconditioned Helmholtz operator with an upper bound on the GMRES-residual
norm we are able to provide an optimal value for the shift, and to explain the mesh-
dependency of the convergence of GMRES preconditioned with a shifted Laplacian.
We illustrate our results with a seismic test problem.

Keywords: Helmholtz equation, shifted Laplace preconditioner, iterative solution meth-
ods, GMRES, convergence analysis.

1 Introduction

In this paper we investigate the spectral behavior of iterative methods applied to the
time-harmonic wave equation in heterogeneous media. The underlying equation governs
wave propagation and scattering phenomena arising in acoustic problems in many areas,
e.g., in aeronautics, marine technology, geophysics, and optical problems. In particular,
we look for solutions of the Helmholtz equation discretized by using finite difference, finite
volume or finite element discretizations. Since the number of grid points per wavelength
should be sufficiently large to result in acceptable solutions, for very high frequencies the
discrete problem becomes extremely large, prohibiting the use of direct solution methods.
Krylov subspace iterative methods are an interesting alternative. However, Krylov sub-
space methods are not competitive without a good preconditioner.

Finding a suitable preconditioner for the Helmholtz equation is still an area of active
research, see for example [7]. A class of preconditioners that has recently attracted con-
siderable attention is the class of shifted Laplace preconditioners. Preconditioning of the
Helmholtz equation using the Laplace operator without shift was first suggested in [1].
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This approach has been enhanced in [8, 9] by adding a positive shift to the Laplace op-
erator, resulting in a positive definite preconditioner. In [2, 3, 4, 13] the class of shifted
Laplace preconditioners is further generalized by also considering general complex shifts.

It is well known that the spectral properties of the preconditioned matrix give impor-
tant insight in the convergence behavior of the preconditioned Krylov subspace methods.
Spectral analyses for the Helmholtz equation preconditioned by a shifted Laplace opera-
tor have previously been given in [2, 3, 4]. The analysis in [2], however, is restricted to
the homogeneous physical parameters case, for a purely imaginary shift preconditioner.
This analysis concerns the singular values of the preconditioned matrix rather than the
eigenvalues. Furthermore, only reflecting and pressure release boundary conditions are
considered. In [3], a convergence analysis of GMRES is discussed, under the same restric-
tion as in [2]. A more thorough spectral analysis is presented in [4] for the case that the
preconditioning operation is performed approximately by using multigrid. The analysis is
based on Rigorous Fourier Analysis (RFA) for homogeneous physical parameters. Results
from RFA, however, give little insight in the convergence of Krylov subspace methods.

This paper gives a spectral analysis from an algebraic point of view. Therefore, the results
are valid under rather general conditions:
- they do not depend on the discretization method,
- inhomogeneous physical parameters (like sound speed, density and damping) are allowed,
- the analysis is also valid for various types of boundary conditions (reflecting, radiation,
pressure release and PML as well).
These generalizations are new, and they allow us to analyse shifted-Laplace precondition-
ers for a much wider class of discrete Helmholtz problems than in previous publications.

By combining the results of our analysis with a bound on the norm of the GMRES-
residual, we are able to derive a ’quasi’ optimal value for the shift. This result is also
new. The shift is derived under the assumption that the preconditioning operations with
the shifted-Laplace preconditioner are performed sufficiently accurately. In practice, the
preconditioning operations are performed only approximately, for example by using a
multi-grid method or by making an ILU decomposition of the shifted-Laplace operator.
Of course, our results do not hold unconditionally in these cases. However, the results
that are reported in [2, 3, 4], where the preconditioning operations are performed approx-
imately, using either a multi-grid method or ILU, are obtained using shifts that are close
to the optimal shift that follows from our analysis. This indicates that the optimal shift
that we derive in this paper also gives strong guidelines for choosing the shift in the case
where the preconditioning operations are performed approximately.

This paper is organized as follows. In Section 2 we describe the acoustic wave equation
and its discretization. We specify some properties of the matrices (symmetry, complex
valued, positive definiteness etc.), which form the coefficient matrix of the resulting linear
system. In Section 3 we show that for the damped Helmholtz equation with Dirichlet and
Neumann boundary conditions, the eigenvalues are located on a line or on a circle with a
given parameterization for a special type of damping. For radiation boundary conditions
and for general viscous media we show that the eigenvalues are located on one side of the
line or within the circle. In Section 4 we use a simple bound on the GMRES-residual norm.
Using this bound and the results of our spectral analysis we are able to derive the optimal
value of the shift in the shifted Laplacian preconditioner. We also show for a number of
applications that the convergence of GMRES is independent of the grid-size. Section 5
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contains numerical experiments to illustrate and verify the theoretical results derived in
Sections 3 and 4. Finally, Section 6 contains the conclusions of this paper.

2 The Helmholtz equation

2.1 The acoustic wave equation

An acoustic medium with space-varying density ρ(x) and sound speed c(x) occupies the
volume Ω, bounded by the boundary Γ = Γ1∪Γ2∪Γ3. In addition, the medium is assumed
to be viscous with damping coefficient γ(x). The wave equation for the acoustic pressure
p(x, t) (with x spatial coordinates, and t time) in such a medium is:

1

ρc2

∂2p

∂t2
+

γ

ρ

∂p

∂t
−∇ · 1

ρ
∇p =

s(x, t)

ρ
in Ω, (1)

where ∇ denotes the gradient operator and ∇· the divergence. Realistic conditions on
the physical boundaries of an acoustic medium can be reflecting boundaries, which are
described by the homogeneous Neumann condition

∂p

∂n
= 0 on Γ1, (2)

pressure release boundaries, which are described by the homogeneous Dirichlet condition

p = 0 on Γ2. (3)

and radiating boundaries, which can be described by

∂p

∂n
= − 1

ρc

∂p

∂t
on Γ3, (4)

where n is the outward pointing normal unit vector.
We will assume that the right-hand side function s(x, t) is a harmonic point source

s(x, t) = ae2πiftδ(x − xs), located at xs, which transmits a signal with amplitude a and
frequency f . Here, i =

√
−1.

2.2 The Helmholtz equation.

If the source term is harmonic, then the pressure field has the factored form

p(x, t) = p̂(x)e2πift. (5)

Substitution of (5) into (1) yields the so called Helmholtz equation

(
−(2πf)2

ρc2
+ 2πif

γ

ρ
)p̂ −∇ · 1

ρ
∇p̂ =

a

ρ
δ(x − xs) in Ω, (6)

with boundary conditions
∂p̂

∂n
= 0, on Γ1 (7)

p̂ = 0 on Γ2. (8)

and
∂p̂

∂n
= −2πif

ρc
p̂ on Γ3. (9)
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This latter condition is also known as a Sommerfeld condition of the first kind.
If the damping parameter has the special form

γ(x, f) = 2πf
ν

c2
, (10)

with ν a non-negative constant, the Helmholtz equation (6) simplifies to

(−(2πf)2

ρc2
(1 − iν) −∇ · 1

ρ
∇)p̂ = a

δ(x − xs)

ρ(xs)
in Ω. (11)

Clearly, the assumption holds for non-viscous media, i.e. with γ = 0.
The above equation can be discretized with a discretization method like the finite

element method, finite volume method or the finite difference method. Discretization of
the above equation plus boundary conditions with any of these methods yields a discrete
Helmholtz equation of the form

(L + iC − z1M)x = b (12)

in which L is the discretization of −∇· 1
ρ
∇, M corresponds to the discretized zeroth order

term 1
ρc2

, C corresponds to the Sommerfeld condition and/or to damping that does not

satisfy (10), and b to the source term. The complex number z1 is defined by

z1 = (2πf)2(1 − iν) . (13)

Both L and C are real symmetric and positive semi-definite, and the matrix M is real
symmetric and positive definite. The matrix L+iC−z1M , however, is complex symmetric
and indefinite.

For high frequencies, system (12) can be very large, in particular in 3D. This is a
consequence of the fact that each wavelength has to be sampled with sufficient grid points.
Numbers of unknowns in excess of 106 for realistic models are quite common. Fortunately,
system (12) is sparse. Krylov-type iterative solvers like GMRES [12] or Bi-CGSTAB [14]
are among the most popular techniques for solving large and sparse linear systems. They
have proved to be particularly efficient for systems with an Hermitian positive-definite
matrix, or more generally, for systems with a matrix with all eigenvalues in the right half of
the complex plane. Helmholtz-type systems like (12), however, are highly indefinite, which
means that the system matrix has eigenvalues with both negative and positive real parts, a
characteristic that can result in a very slow convergence. In order to overcome this problem
a suitable preconditioner has to be applied. A class of promising preconditioners that has
attracted a lot of attention is the class of shifted Laplace preconditioners [1, 8, 2, 3, 4].
In the next section we will analyze these preconditioners by locating in the complex plane
the spectrum of the preconditioned discrete Helmholtz operator.

3 Spectral analysis of the Helmholtz operator preconditioned

with the shifted Laplace preconditioner.

Shifted Laplace preconditioners are preconditioners of the form

P = L + iC − z2M,

i.e. the same form as the discrete Helmholtz operator A = L + iC − z1M . The shift-
parameter z2 has to be chosen such that the convergence of GMRES (or another suitable
iterative method) applied to the preconditioned system

(L + iC − z2M)−1(L + iC − z1M)x = (L + iC − z2M)−1b
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is considerably faster than of GMRES applied to the original system. Moreover, z2 has to
be chosen such that operations with the inverse of (L + iC − z2M) are easy to perform.
In practice this means that z2 is chosen such that operations with the inverse of the
preconditioner can be computed using a fast multigrid method [4]. Note that L + iC is
the operator that is being shifted. This means that all boundary conditions, including the
Sommerfeld condition, are included in the preconditioner, as recommended in [10].

The complex numbers z1 and z2 can be written as

z1 = α1 + iβ1 z2 = α2 + iβ2, (14)

in which α1, β1, α2 and β2 are real. Recall that for our application z1 is defined by (13),
and hence

α1 > 0 , β1 ≤ 0 .

Choices for the shift z2 that are considered in literature are z2 = 0 [1], z2 = −α1 [8],
z2 = −iα1 [2, 3], and z2 = (1 − 0.5i)α1 [4].

In this section we will study the spectrum of the preconditioned system. The spectrum
governs to a large extent the convergence of iterative methods as long as the matrix of the
eigenvectors is well conditioned.

3.1 The spectrum of the preconditioned Helmholtz operator without

Sommerfeld condition

We will first assume that C = 0 and hence that the damped Helmholtz operator is given
by L − z1M . We recall that L is symmetric positive semi-definite, M symmetric positive
definite and z1 is a complex number. We will consider a shifted Laplace preconditioner,
i.e. a matrix of the form L − z2M , as preconditioner for the Helmholtz operator, and
analyze how the location of the eigenvalues σ of the preconditioned system depends on
the parameters z1 and z2. The eigenvalues σ of the preconditioned matrix are solutions of
the generalized eigenproblem

(L − z1M)x = σ(L − z2M)x. (15)

It is easy to see that the matrices (L− z1M) and (L− z2M) share the same eigenvectors,
which are the eigenvectors of

Lx = λMx. (16)

Since for our problem L is symmetric positive semi-definite and M symmetric positive
definite, the eigenvalues λ are real and non-negative. Substitution of λMx for Lx in (15)
yields

(λ − z1)Mx = σ(λ − z2)Mx

and hence
λ − z1 = σ(λ − z2), (17)

which, if z2 6= λ, gives

σ =
λ − z1

λ − z2
. (18)

Note that if z2 coincides with an eigenvalue of (16), i.e. if z2 = λ, the preconditioner
P = L − z2M will be singular, which is a situation that has to be avoided. So in the
following we assume that z2 6= λ for all eigenvalues of (16). The eigenvalues λ can be
considered as a real parameterization of the curves (18) in the complex plane on which
the eigenvalues σ of the preconditioned system are located.
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To determine these curves we write σ = σr + iσi and substitute this into (17), which
yields

λ − α1 − iβ1 = σr(λ − α2) − iσrβ2 + iσi(λ − α2) + σiβ2.

We can split this equation into an equation for the real terms and one for the imaginary
terms:

λ − α1 = σr(λ − α2) + σiβ2 ,

−β1 = −σrβ2 + σi(λ − α2) .

If β1 = σrβ2, the second equation reduces to σi = 0. If this is not the case we get for λ
that

λ = α2 +
σrβ2 − β1

σi
.

Substitution of λ in the equation for the real terms yields the following result

β2(σ
r)2 − (β1 + β2)σ

r + β2(σ
i)2 + (α1 − α2)σ

i = −β1. (19)

This equation is valid for all values of α1, β1, α2 and β2, including the case β1 = σrβ2.
In the following we will distinguish between the cases β2 = 0 and β2 6= 0. Theorem 3.1

deals with the case β2 = 0.

Theorem 3.1 Let β2 = 0 and let L be symmetric positive semi-definite and M be sym-
metric positive definite real matrices. Then the eigenvalues σ = σr +iσi of (15) are located
on the straight line in the complex plane given by

−β1σ
r + (α1 − α2)σ

i + β1 = 0 . (20)

Proof The result follows directly from substituting β2 = 0 in (19). △

The next theorem characterises the spectrum in the case that β2 6= 0.

Theorem 3.2 Let β2 6= 0 and let L be symmetric positive semi-definite and M be sym-
metric positive definite real matrices. Then the eigenvalues σ = σr +iσi of (15) are located
on the circle given by

(σr − β2 + β1

2β2
)2 + (σi − α2 − α1

2β2
)2 =

(β2 − β1)
2 + (α2 − α1)

2

(2β2)2
. (21)

The center c of this circle is

c = (
β2 + β1

2β2
,
α2 − α1

2β2
)

and the radius R is

R =

√

(β2 − β1)2 + (α2 − α1)2

(2β2)2

Proof Divide (19) by (2β2) and complete the square. △
To understand the convergence of iterative methods it is important to know if the

origin is enclosed by the circle given in theorem 3.2. The following theorem gives a simple
condition that determines this.

Theorem 3.3 If β1β2 > 0 the origin is not enclosed by the circle (21) given in Theorem
3.2.
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Proof The origin is not enclosed by the circle if the distance of the center to the origin
is larger than the radius. Hence if

(β2 + β1)
2 + (α2 − α1)

2

(2β2)2
>

(β2 − β1)
2

(2β2)2
+

(α2 − α1)
2

(2β2)2

which is clearly the case. △

Remark The center of the circle can also be written as

c =
z1 − z2

z2 − z2

and the radius as

R = |z2 − z1

z2 − z2
|.

3.2 The spectrum of the preconditioned Helmholtz operator with Som-

merfeld condition

We will now study the general damped Helmholtz operator L + iC − z1M . As before
L and C are symmetric positive semi-definite matrices, M is a symmetric and positive
definite matrix and z1 is a complex number. For our problem, the matrix C stems from
the discretization of the Sommerfeld boundary condition, or from damping that does not
satisfy (10). This means that for example a damping matrix that stems from an absorbing
layer is also covered by the theory below. We consider a shifted Laplace preconditioner,
i.e. a matrix of the form L + iC − z2M , to precondition the Helmholtz operator. The
eigenvalues of this matrix are given by

(L + iC − z1M)x = σS(L + iC − z2M)x. (22)

Let λS be an eigenvalue of the generalized problem

(L + iC)x = λSMx . (23)

As in the previous section it is straightforward to show that (22) and (23) share the same
eigenvectors x and that the eigenvalues σS of the preconditioned system are related by the
eigenvalues λS by

(λS − z2)σS = λS − z1 (24)

The main difference with the previous section is that λS is complex, whereas λ in the
previous section was real, which allowed us to consider λ as a real valued parameterization
of a curve in the complex plane. Although the eigenvalues σS will in general not be located
on a straight line or on a circle in the complex plane if λS is complex, it is still possible
to establish useful results regarding the location of σS . To this end, we will distinguish
between the three cases β2 = 0, β2 > 0 and β2 < 0. Before we proceed we will formulate
the following Lemma that we will need in the remainder of this section.

Lemma 3.1 Let L and C be symmetric positive semi-definite and let M be symmetric
positive definite real matrices. Then the eigenvalues λS = λr

S + iλi
S of the generalized

eigenproblem (23) have a nonnegative imaginary part.
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Proof We use the fact that any matrix can be split into two Hermitian matrices:

A =
1

2
(A + AH) + i

1

2i
(A − AH) = ℜ(A) + iℑ(A) (25)

where

ℜ(A) =
1

2
(A + AH) and ℑ(A) =

1

2i
(A − AH) . (26)

According to Bendixon’s theorem, see e.g. [6], page 69, we have

λ
ℜ(A)
min ≤ Re(λA) ≤ λℜ(A)

max ,

λ
ℑ(A)
min ≤ Im(λA) ≤ λℑ(A)

max .

The eigenvalues λS of the generalized problem (23) are also solutions of the standard
eigenproblem

U−1(L + iC)U−T y = λSy

in which M = UUT . This means that we can take A = U−1(L + iC)U−T , in which
case Im(A) = U−1CU−T . This latter matrix is positive semi-definite, so by Bendixon’s
theorem we have λi

S ≥ 0 △

As in the previous section we first consider the case β2 = 0.

Theorem 3.4 Let β2 = 0 and let L and C be symmetric positive semi-definite and M be
symmetric positive definite real matrices. Then the eigenvalues σS = σr

S + iσi
S of (22) are

located in the half-plane
−β1σ

r
S + (α1 − α2)σ

i
S + β1 ≥ 0 .

Proof Since β2 = 0 we have

(λS − α2)σS = λS − z1

Splitting this equation into an equation for the real terms and one for the imaginary terms
yields

λr
Sσr

S − λi
Sσi

S − α2σ
r
S = λr

S − α1

and
λr

Sσi
S + λi

Sσr
S − α2σ

i
S = λi

S − β1 .

The second equation gives that either σi
S = 0 or that

λr
S = α2 −

β1

σi
S

+ λi
S

1 − σr
S

σi
S

.

Substitution in the first equation and some straightforward manipulations yields

−β1σ
r
S + (α1 − α2)σ

i
S + β1 = λi

S((σr
S − 1)2 + σi

S
2
).

By Lemma 3.1 λi
S ≥ 0, and hence the right-hand-side term is larger than or equal to zero.

△

If β2 < 0 the spectrum of the preconditioned matrix is characterised by Theorem 3.5.

Theorem 3.5 Let β2 < 0 and let L and C be symmetric positive semi-definite and M be
symmetric positive definite real matrices. Then the eigenvalues σS of (22) are inside or
on the circle with center c = z1−z2

z2−z2
and radius R = | z2−z1

z2−z2
|.
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Proof We have to prove that |σS − c| ≤ R if β2 < 0.

|σS − c| = |λS − z1

λS − z2
− z1 − z2

z2 − z2
|,

= |(λS − z1)(z2 − z2) − (λS − z2)(z1 − z2)

(λS − z2)(z2 − z2)
|,

= |λS(z2 − z1) + (z1 − z2)z2

(λS − z2)(z2 − z2)
|,

= |λS − z2

λS − z2

z2 − z1

z2 − z2
|,

= |λS − z2

λS − z2
|R (27)

What is left to prove is that |λS−z2

λS−z2
| ≤ 1. Writing

λS = λr
S + iλi

S

we get

|λS − z2

λS − z2
|2 =

(λr
S − α2)

2 + (λi
S + β2)

2

(λr
S − α2)2 + (λi

S − β2)2
. (28)

Since β2 < 0 and by Lemma 3.1 λi
S ≥ 0 we have

(λr
S − α2)

2 + (λi
S + β2)

2

(λr
S − α2)2 + (λi

S − β2)2
≤ 1,

and hence the above condition is satisfied. △

If β2 > 0, the spectrum of the preconditioned matrix is characterised by Theorem 3.6.

Theorem 3.6 Let β2 > 0 and let L and C be symmetric positive semi-definite and M be
symmetric positive definite real matrices. Then the eigenvalues σS of (22) are outside or
on the circle with center c = z1−z2

z2−z2
and radius R = | z2−z1

z2−z2
|.

Proof Analogous to the proof of Theorem 3.5. △

Remark. The results presented above specify regions in the complex plane where
the eigenvalues of the preconditioned matrix are located. These regions are completely
determined by the parameters z1 and z2. Given the definition of z1, (13), these regions
only depend on the frequency f , on the damping parameter ν, and of course on the shift
for the preconditioner z2. It is important to note that the regions in the complex plane
where the eigenvalues are located do not depend on other physical parameters like the
sound speed or density, nor on computational parameters like the size of the matrix or on
the mesh size h.

4 Combination of the results of the spectral analysis with

an upper bound on the GMRES-residual norm

In this section we will combine the results of the spectral analysis presented in the previous
section with a well-known upper bound on the GMRES-residual norm. This upper bound
assumes that the spectrum is enclosed by a circle, and hence this bound can be naturally
combined with the circle specified in Theorems 3.2 and 3.5.
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Let the eigenvalues of the preconditioned matrix be enclosed by a circle with radius R
and center c as in Theorem 3.5. Then the GMRES-residual norm after k iterations ‖rk‖
satisfies (see e.g. [12])

‖rk‖
‖r0‖ ≤ c2(X)

(

R

|c|

)k

. (29)

In this equation X is the matrix of eigenvectors and c2(X) its condition number in the
2-norm. If this condition number is large the upper bound gives no information about the
convergence, since in that case there is no relation between the location of the eigenvalues
and the convergence behavior of the preconditioned Krylov method [5]. Fortunately, in our
application we may expect that the condition number of the eigenvector matrix is relatively
small. If C = 0 the eigenvectors of the preconditioned matrix are the same as of (16) and
hence independent of the shift parameters. Moreover, since the eigenvectors of (16) are
M−orthogonal and M is a (scaled) mass matrix which is in general well conditioned, we
expect that c2(X) will be small in practice. This can be seen from

XT MX = I ⇔ c2(X
T MX) = 1 ⇔ c2(M

1

2 X) = 1 .

Since
c2(X) = c2(M

− 1

2 M
1

2 X) ≤ c2(M
− 1

2 )c2(M
1

2 X) ,

we get
c2(X) ≤

√

c2(M) .

If C 6= 0, the eigenvectors of the preconditioned system are the same as of (23). These
are unfortunately not M−orthogonal, but for many problems we can consider (23) as a
relatively small perturbation of (16), in which case we can still expect that c2(X) is small.

4.1 Optimization of the shift

Although equation (29) only gives an upper bound on the GMRES-residual norm, it allows
us to derive a ’quasi’ optimal choice for the shift. We derive this shift by minimizing the
upper bound. For this it is sufficient to minimize the ratio R

|c| , or, using Theorem 3.5, the
function

f(α2, β2) =
R2

|c|2 =
(α2 − α1)

2 + (β2 − β1)
2

(α2 − α1)2 + (β2 + β1)2
.

To analyze this function we differentiate with respect to α2,

∂f

∂α2
=

8(α2 − α1)β1β2

((α2 − α1)2 + (β2 + β1)2)2
,

and with respect to β2

∂f

∂β2
=

4β1((β
2
2 − β2

1) − (α2 − α1)
2)

((α2 − α1)2 + (β2 + β1)2)2
.

Clearly, both derivatives are zero at α1 = α2, β1 = β2. This choice for the shift minimizes
of course the upper bound since this corresponds to using the original operator as precon-
ditioner, which means that performing the preconditioning operation is as hard as solving
the original system.

We are interested in the case where the preconditioning operation is relatively cheap.
In particular, we have in mind the situation where preconditioning operations can be
efficiently carried out using a fixed number of cycles of a multigrid method for the whole
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range of shifts under consideration. We therefore restrict our analysis to values for the
shift for which multigrid is known to work well. We first consider the purely imaginary
shift [2, 3, 4], this means that α2 equals zero. In this case, the derivative with respect to
β2 is zero if

(β2
2 − β2

1) − α2
1 = 0 (30)

yielding
β2 = ±|z1|.

Since by (13) β1 = −(2πf)2ν ≤ 0, we must choose by Theorem 3.3 β2 ≤ 0, and hence
z2 = −|z1|i as the shift that minimizes the upper bound (29). This choice is also optimal
if we consider all possible shifts for which α2 ≤ 0, meaning all possible shifts for which the
preconditioner has all its eigenvalues in the right-half plane. By (13), α1 = (2πf)2 > 0,
and by Theorem 3.3 β1β2 ≥ 0, so ∂f

∂α2
is negative for α2 ≤ 0. Therefore f(α2, β2) takes its

minimum on the edge α2 = 0. We conclude that the choice

z2 = −|z1|i (31)

minimizes the upper bound (29) for all z2 ∈ C, with α2 ≤ 0.
The same methodology for deriving an optimal shift can still be used if we do not

restrict ourselves to the case α2 ≤ 0. Such a shift still (approximately) minimises the
number of GMRES iterations. However, the performance of a multigrid method for the
preconditioning operations will deteriorate if z2 is too close to z1, and hence such a shift
would no longer minimise the total work of the whole solution process. How to find a shift
that minimises the total work, if the performance of multigrid depends on the shift, is of
great practical importance, but is outside the scope of this paper.

4.2 Discussion

The upper bound (29) is only meaningful if the circle does not enclose the origin. This is
the case if β1 < 0, or equivalently if ν > 0. However, because of continuity arguments, the
result (31) for the ’quasi’ optimal shift is still valid if β1 = 0.

As was remarked in the previous section, the circle around the spectrum of the precon-
ditioned matrix only depends on z2, and on f and ν. Consequently, if β1 < 0 inequality
(29) yields an upper bound on the GMRES-residual norm that also only depends on the
frequency f and on the damping parameter ν. Because of this, the number of GMRES-
iterations should be bounded from above by a constant that is independent of the mesh
size.

By scaling the shift z2 with the frequency we can make the upper bound on the number
of GMRES-iterations also independent of frequency. To this end we introduce the scaled
shift

z̃2 = α̃2 + iβ̃2 =
z2

(2πf)2
.

Applying Theorem 3.5 and substituting z2 = (2πf)2z̃2 and the definition for z1 (13) into
(29) yields

‖rk‖
‖r0‖ ≤ c2(X)

(

R

|c|

)k

= c2(X)

√

(α̃2 − 1)2 + (β̃2 + ν)2

(α̃2 − 1)2 + (β̃2 − ν)2
. (32)

Clearly, this upper bound only depends on the the damping parameter ν and on the choice
for the parameter z̃2.
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5 Experiments

In this section we describe a typical test problem with a variable sound velocity. The
location of the eigenvalues of the discretized operators are compared with the theoretically
predicted locations. The value of the optimal shift is validated by numerical experiments.
Finally, it appears that the convergence behavior of GMRES is independent of the mesh
size.

5.1 Description of the test problem

The test problem that we consider mimics three layers with a simple heterogeneity, and is
taken from ([11]).

For ν ∈ R, find p ∈ C
N satisfying:











−∆p − (1 − ν)( 2πf
c(x))

2p = s, in Ω = (0, 600) × (0, 1000) meter2

s = δ(x1 − 300, x2), x1 = (0, 600), x2 = (0, 1000)

with Sommerfeld conditions or Neumann conditions on Γ ≡ ∂Ω.

(33)

The local sound velocity is given as in Figure 1. The density is assumed to be constant.

Figure 1: Problem geometry with sound velocity profile.

We have discretized the above problem with the finite element method using linear
triangular elements. The computations that are described in this section have been per-
formed with MATLAB.

5.2 Location of the eigenvalues

The first experiments validate the theorems that are presented in Section 3. To this end we
have taken as source frequency f = 2 and we have discretized the problem with mesh size
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h = 100/2. We have calculated all the eigenvalues of the preconditioned matrix for four
typical combinations of values of the scaled parameters z̃1 and z̃2. The upper left-hand-side
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Figure 2: Spectra for different values of the complex shift in the preconditioner; h =
100/2, f = 2. ’*’ denote eigenvalues for the Neumann problem, ’o’ are eigenvalues for the
Sommerfeld problem.

subplot shows the spectrum of the preconditioner if a real shift is chosen, as suggested in
[8]. As was predicted by Theorem 3.1, the eigenvalues for the Neumann problem, which are
indicate with the symbol ’*’, are located on a line. Since the example contains damping,
the line does not pass through the origin. The eigenvalues of the Sommerfeld problem,
which are indicated with the symbol ’o’, are all on one side of the line, as is predicted
by Theorem 3.4. Note that the eigenvalues move away from the origin if the Neumann
problem is replaced by the Sommerfeld problem.

The upper right-hand-side subplot shows the spectrum of the preconditioner if a purely
imaginary shift is chosen. The eigenvalues of the Neumann problem are located on the
circle that is given by Theorem 3.2, and the eigenvalues of the Sommerfeld problem are, as
predicted by Theorem 3.5 on or inside this circle. This example does not contain damping
(apart from the radiation condition): z̃1 is real. Consequently, the circle contains the
origin.
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The lower left-hand-side subplot shows another picture of the spectrum of the precon-
ditioner if a purely imaginary (negative) shift is chosen. In this case the problem contains
damping since z̃1 is complex. As a result, the circle is smaller than for the previous
example, and the origin is outside the circle.

The lower right-hand-side subplot shows for the same z1 what happens if the sign
of the complex shift is chosen wrongly (i.e. positively). According to Theorem 3.6 the
eigenvalues of the Sommerfeld problem should in this case be on or outside the circle. This
is confirmed by the numerical results. Moreover, by Theorem 3.3, the origin should be
enclosed by the circle, which is the case.

5.3 Optimization of the shift

The second group of experiments validates the optimal value for the shift z2 that was
found in Section 4. This value is given by equation (31).

The optimal value was determined by minimizing the ratio R
|c| . Using the scaled vari-

ables z̃2 = z2/(2πf)2 this ratio can be written as

R

|c| =

√

(α̃2 − 1)2 + (β̃2 + ν)2

(α̃2 − 1)2 + (β̃2 − ν)2
. (34)

This function takes values between 0 and 1. A small value of R
|c| indicates fast convergence

and a value close to 1 slow convergence. Figure 3 shows for three different damping
parameters ν how the value of R

|c| depends on α̃2 and β̃2. The values on the contour lines

correspond to the value of R
|c| . The three plots show clearly that (34) takes its minimum
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Figure 3: Contour plot of the convergence factor as function of the complex shift.

when α̃2 = 0, and that the optimal β̃2 becomes more negative when the damping parameter
is increased. These observations are of course consistent with the optimal value for the
shift parameter (31) that was derived in Section 4.

To validate that this value is really (sub-)optimal in actual computations we solve the
Sommerfeld problem with scaled imaginary shifts ranging from 0 to -2. For the mesh size
we take h = 100/8 and we perform the experiment for four different damping parameters.
The result is shown in Figure 4. Clearly, the more damping the fewer the number of
GMRES-iterations, and the larger (more negative) the optimal imaginary shift.

Table 1 shows the minimum number of iterations and compares this with the number
of iterations when the ’optimal’ shift (31) is used. The results show that the shift (31) is
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Figure 4: Actual number of iteration as function of the imaginary shift (h = 100/8).

Damping Optimal shift Iterations ”optimal” shift Min. number of iterations

ν = 0 1 56 54

ν = 0.1 1.005 42 41

ν = 0.5 1.118 20 20

ν = 1 1.4142 13 13

Table 1: Number of iterations for ”optimal” shift and minimum number of iterations

nearly optimal with respect to the number of GMRES-iterations.

5.4 Mesh dependency.

The last set of experiments examines dependency of the number of iterations of precondi-
tioned GMRES on the mesh size.

Table 2 shows for an increasingly fine step size h the number of iterations for the
Sommerfeld problem. The experiment is performed for four different damping parameters,
and the frequency is kept fixed to f = 2. The results show that for all four different values
of the damping parameter the number of iterations is independent of the step size h.
Based on the discussion at the end of Section 4 this could be expected. The theory that is
presented in Section 4, however, does not make any predictions about the mesh dependent
performance of preconditioned GMRES for problems with a zero damping parameter.

The results of the same type of experiments, but now with a frequency that scales
with the mesh size, is tabulated in Table 3. These results confirm that if the damping
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Number of iterations

h : 100/2 100/4 100/8 100/16 100/32
f : 2 2 2 2 2

ν = 0 14 13 13 13 13

ν = 0.1 13 12 12 12 13

ν = 0.5 11 10 11 11 11

ν = 1 9 9 9 9 9

Table 2: Number of iterations under mesh refinement for a fixed frequency.

parameter is nonzero, the number of GMRES-iterations is bounded by a number that is
independent of the mesh size. This is most apparent in the results for ν = 0.5 and ν = 1.
The results for ν = 0 seem to indicate that the number of GMRES-iterations more or less
doubles if the step size is halved. As was remarked above, the theory presented in Section
4 does not make any predictions for the case that ν = 0.

Number of iterations

h : 100/2 100/4 100/8 100/16 100/32
f : 2 4 8 16 32

ν = 0 14 25 56 116 215

ν = 0.1 13 22 42 63 80

ν = 0.5 11 16 20 23 23

ν = 1 9 11 13 13 13

Table 3: Number of iterations under mesh refinement for increasingly high frequencies.

To check that c2(X) is actually small for the above test cases we have also computed
the condition numbers of the mass matrices on the five meshes. These condition numbers
are equal to 24 for all meshes, hence we have that

c2(X) ≤
√

c2(M) = 2
√

3 .

6 Conclusions

We have presented a spectral analysis of the Helmholtz operator that is preconditioned
with a shifted Laplace operator. We have shown that, depending on the value of the shift,
the eigenvalues of the preconditioned matrix are located in or on a circle, or in a half-plane.
Combination of these results concerning the spectrum of the preconditioned matrix with a
well-known bound on the GMRES-residual norm allowed us to determine a close to optimal
shift. Furthermore, we have shown for problems with a nonzero damping parameter that
there is an upper bound on the number of GMRES iterations that only depends on the
damping parameter and hence is independent of the mesh-size, the frequency, the sound
speed and the density.

We have derived the close-to-optimal shift for the shifted-Laplace preconditioner in
combination with GMRES, under the assumption that preconditioning operations are
performed exactly. In practice, however, preconditioning operations are performed ap-
proximately, for example using a multi-grid method, and another Krylov method like
Bi-CGSTAB [14] may be used instead of GMRES. In this case the analysis that has been
presented in this paper does not hold anymore. However, experimental results reported
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in [3], where Bi-CGSTAB is used as Krylov solver and preconditioning operations are
performed approximately with one multigrid-cycle, use values for the shift that are close
to the predicted value for the optimal shift we present in this paper. The experimental
results are also in these cases quite satisfactory. We therefore conclude that our results
provide strong guidelines on how to select the shift parameter for all Krylov methods, as
well as for approximate preconditioners.
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