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A comparison of abstract versions of deflation, balancing and

additive coarse grid correction preconditioners

R. Nabben∗ C. Vuik†

Abstract

In this paper we consider various preconditioners for the cg method to solve large lin-
ear systems of equations with symmetric positive definite system matrix. We continue the
comparison between abstract versions of the deflation, balancing and additive coarse grid cor-
rection preconditioning techniques started in [17, 18]. There the deflation method is compared
with the abstract additive coarse grid correction preconditioner and the abstract balancing
preconditioner. Here we close the triangle between these three methods. First of all we show,
that a theoretical comparison of the condition numbers of the abstract additive coarse grid
correction and the condition number of the system preconditioned by the abstract balancing
preconditioner is not possible. We present a counter example, for which the condition number
of the abstract additive coarse grid correction preconditioned system is below the condition
number of the system preconditioned with the abstract balancing preconditioner. However,
if the cg method is preconditioned by the abstract balancing preconditioner and is started
with a special starting vector, the asymptotic convergence behavior of the cg method can
be described by the so called effective condition number with respect to the starting vector.
We prove that this effective condition number of the system preconditioned by the abstract
balancing preconditioner is less or equal to the condition number of the system preconditioned
by the abstract additive coarse grid correction method. We also provide a short proof of the
relation between the effective condition number and the convergence of CG. Moreover, we
compare the A-norm of the errors of the iterates given by the different preconditioners and
we establish the orthogonal invariants of all three types of preconditioners.

1 Introduction

In 1952 Hestenes and Stiefel [6] introduced the Conjugate Gradient method (cg method) to solve
large linear systems of equations

Ax = b

whose coefficient matrices A are sparse and symmetric positive definite. The convergence rate of
the Conjugate Gradient method is bounded as a function of the condition number of the system
matrix to which it is applied. If the condition number of A is large it is advisable to solve, instead,
a preconditioned system M−1Ax = M−1b, where the symmetric positive definite preconditioner
M is chosen such that M−1A has a more clustered spectrum or a smaller condition number than
that of A. Furthermore, systems Mz = r must be cheap to solve relative to the improvement it
provides in convergence rate.

Today the design and analysis of preconditioners for the cg method are in the main focus
whenever a linear system with symmetric positive definite coefficient matrix need to be solved.
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Even fast solvers, like multigrid or domain decomposition methods, are used as preconditioners.
However, there are just a few theoretical comparisons of different preconditioners.

Here we consider three different preconditioning techniques the additive coarse grid correction,
the balancing and the deflation preconditioner. These preconditioner differ a lot in practice.
However, we consider these techniques from an abstract point of view. This abstract point of view
allows us to derive comparisons between these preconditioners.

In [17, 18] the authors theoretically compared the abstract deflation method with the abstract
additive coarse grid correction preconditioner and the abstract balancing preconditioner. It is
proved in [17, 18] that the condition number of the system matrix preconditioned by the deflation
method is always below the condition number of the system matrix preconditioned by the additive
coarse grid correction. Moreover, the authors proved that the condition number of the system
matrix preconditioned by the deflation method is always below the condition number of the system
matrix preconditioned by the abstract balancing preconditioner.

Here we close the triangle between these three methods. We compare the abstract additive
coarse grid correction preconditioner with the abstract balancing preconditioner.

It is suggested e.g. by Mandel [12] and in [25] that the balancing preconditioner always yields
a smaller condition number than the additive coarse grid correction preconditioner. However,
it is worth to have a closer look into the abstract versions of these preconditioner. First of all
we show, that a theoretical comparison of the condition numbers of the abstract additive coarse
grid correction and the condition number of the system preconditioned by the abstract balancing
preconditioner is not possible. We present a counter example, for which the condition number of
the abstract additive coarse grid correction preconditioned system is below the condition number
of the system preconditioned with the abstract balancing preconditioner.

However, if the cg method is preconditioned by the abstract balancing preconditioner and is
started with a special starting vector, a theoretical comparison can be established. In this case
the asymptotic convergence behavior of the cg method can be described by the so called effective
condition number with respect to the starting vector. We provide a short proof of the relation
between the effective condition number with respect to the starting vector and the convergence of
CG.

We then prove that this effective condition number of the system preconditioned by the abstract
balancing preconditioner is less or equal to the condition number of the system preconditioned by
the abstract additive coarse grid correction method.

Moreover, we compare the A-norm of the errors of the iterates given by the different precon-
ditioners. It was shown in [18] that the A-norm of the error of the iterates given by the deflation
preconditioner is below the error of the iterates given by the abstract balancing preconditioner.
Such general results do not hold between the other preconditioners. But we prove here that the
error of the iterates given by the deflation method is below the error of the iterates given by the
additive coarse grid correction if eigenvectors are used as projection vectors.

Finally, we established the orthogonal invariance of all the preconditioners mentioned above.

The paper is organized as follows. Section 2 describes the preconditioners. In Section 3
the comparison of balancing and the coarse grid correction is given. In Section 4 we compare
the A-norm of the deflation and coarse grid correction errors. In Section 5 it is shown that the
preconditioners are invariant under orthogonal transformations. Section 6 contains some numerical
results.

2 The preconditioner

The balancing and additive coarse grid correction preconditioner are used mainly in domain de-
composition methods [25]. The additive coarse grid correction is introduced by Bramble, Pasciak,
and Schatz [2], Dryja and Widlund [4], and Dryja [3]. An abstract analysis of this preconditioner is
given by Padiy, Axelsson, and Polman [20]. The balancing preconditioner is proposed by Mandel
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[11, 12] and Mandel and Brezina [14] and further analyzed by Dryja and Widlund [5], Pavarino
and Widlund [21], and Toselli and Widlund [25].

Here we consider these preconditioners from an abstract point of view. We use an algebraic
formulation to describe these preconditioners. This approach leads to abstract versions of these
methods. Hence, we call this methods abstract additive coarse grid correction and abstract bal-
ancing preconditioners.

In our notation the abstract balancing, the abstract additive coarse grid and the deflation
preconditioner are given in the following form.

Let A ∈ R
n×n be a symmetric positive definite matrix. With a rectangular but full rank matrix

Z ∈ R
n×r, the matrix E = ZT AZ and an arbitrary symmetric positive definite matrix M the

abstract balancing preconditioner is given by

PB = (I − ZE−1ZT A)M−1(I − AZE−1ZT ) + ZE−1ZT . (1)

Note that PB is symmetric and positive definite.
In the original balancing preconditioner, M−1 contains the additive Schwarz preconditioner and
some scaling.

The abstract additive coarse grid correction can be written as

PCM = M−1 + σZE−1ZT , (2)

where in most applications σ = 1.
As for the balancing method, the additive Schwarz preconditioner is used as M−1 in the original

version of the additive coarse grid correction.
From our algebraic point of view Z is an arbitrary rectangular matrix with full rank. Moreover,

M is an arbitrary symmetric positive definite matrix. In practice, the particular choices of Z and
M in the coarse grid correction preconditioner and the balancing preconditioner can be different.
More details about the balancing and the additive coarse grid correction preconditioner are given
in [25, 22, 24].

The deflation technique has been exploited by several authors. Among them are Nicolaides
[19], Morgan [16], Kolotilina [10], and Saad, Yeung, Ehrel, and Guyomarc’h [23]. There are also
many different ways to describe the deflation technique. We prefer the following one.

We define the projection PD by

PD = I − AZ(ZT AZ)−1ZT , Z ∈ R
n×r, (3)

where the column space of Z is the deflation subspace, i.e. the space to be projected out of the
residual, and I is the identity matrix of appropriate size.

We assume that r ≪ n and that Z has rank r. Under this assumption E ≡ ZT AZ may be
easily computed and factored and is symmetric positive definite. Since x = (I −P T

D )x + PT
Dx and

because
(I − PT

D )x = Z(ZT AZ)−1ZT Ax = ZE−1ZT b (4)

can be immediately computed, we need only to compute P T
Dx. In light of the identity APT

D = PDA,
we can solve the deflated system

PDAx̃ = PDb (5)

for x̃ using the Conjugate Gradient method, premultiply this by PT
D and add it to (4).

Obviously (5) is singular. But a positive semidefinite system can be solved by the cg method
as long as the right-hand side is consistent (i.e. as long as b = Ax for some x) [8]. This is certainly
true for (5), where the same projection is applied to both sides of the nonsingular system.

The deflated system can also be solved by using a symmetric positive definite preconditioner
M−1,

M−1PDAx̃ = M−1PDb. (6)
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3 Comparison of abstract balancing and the abstract coarse

grid correction

There are some results known in the literature that compare the balancing with the additive coarse
grid correction preconditioner. But it is worth to have a closer look into these comparisons and
to drive a comparison of the abstract versions.

It is suggested in Mandel [12] and in [25], that the balancing preconditioner always yields
a better condition number than the additive coarse grid correction preconditioner. In Mandel
[12] the original versions of the balancing or hybrid preconditioner and the additive coarse grid
preconditioner are compared, i.e. the additive Schwarz preconditioner is used as M−1 such that
M−1A is a sum of projections. In the comparison of [25] the additive Schwarz preconditioner is
used also. Moreover, not the full balancing operator is used as a preconditioner in the cg run. We
will discuss in detail the result stated in [25] at the end of this section.

However, a comparison of the abstract versions of these preconditioners is not possible. Exam-
ple 3.1 shows that the additive coarse grid correction preconditioner can lead to a smaller condition
number.

Example 3.1 We take the following matrix A:

A =

(

100 0
0 101

)

. (7)

Further we choose matrix M = I and matrix Z as:

Z =

(

1
0

)

. (8)

It appears that ZT AZ = 100 and

PD =

(

0 0
0 1

)

, and PB =

(

0.01 0
0 1

)

and PCM =

(

1.01 0
0 1

)

. (9)

Computing the condition numbers give:

κ(A) = 1.01,

κ(PCMA) = 1,

κ(PBA) = 101,

which clearly shows that κ(PBA) can be larger than κ(PCMA).

Example 3.1 shows that Lemma 3.2 in [12] is not valid for the abstract preconditioner. Even
if the additive Schwarz preconditioner is used as M−1, this lemma has to be modified [13].

Nevertheless, one can prove a comparison if the cg method, preconditioned by the abstract
balancing preconditioner, is started with a specific starting vector. The asymptotic convergence
behavior of the cg method can then be described by the so called effective condition number with
respect to the starting vector. We will describe this concept in the following.

In [15, 9, 7] the convergence of the cg method is related to the condition number κ(A) of A.
In [26] these papers are cited to relate the convergence of the cg method to the effective condition
number with respect to a specific starting vector, however, as far as we know the theorem is not
explicitly stated nor proved. For this reason we give this theorem here, together with a short
proof.

Definition 3.2 Let A be symmetric positive definite and let (λi, yi) be the eigenpairs of A, i.e.
Ayi = λiyi and yT

i yj = δij. For x0 ∈ R
n let

x − x0 =

n
∑

j=1

γjyj .
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Define

α := min{λj|γj 6= 0},

β := max{λj |γj 6= 0},

κ(A, x − x0) :=
β

α
,

where κ(A, x − x0) is called the effective condition number of A with respect to x and x0.

Theorem 3.3 If the cg method is applied to solve Ax = b with starting vector x0 the i-th iterate
satisfies

||x − xi||A ≤ 2

{

√

κ(A, x − x0) − 1
√

κ(A, x − x0) + 1

}i

||x − x0||A.

Proof: In order to prove this result we define jα and jβ such that α = λjα
and β = λjβ

. For
the cg errors it is well known ([1] p. 586) that there exists a polynomial pi ∈ Π1

i , that is of degree
i and pi(0) = 1, such that

‖x − xi‖
2
A =

n
∑

j=1

λj(pi(λj))
2γ2

j ≤
n

∑

j=1

λj(qi(λj))
2γ2

j =

jβ
∑

j=jα

λj(qi(λj))
2γ2

j , (10)

for all qi ∈ Π1
i . Take qi equal to the following shifted and scaled Chebyshev polynomial of degree

i:

T̂i(t) =
Ti

(

β+α
β−α

− 2t
β−α

)

Ti

(

β+α
β−α

) . (11)

It now follows that

‖x − xi‖
2
A ≤

jβ
∑

j=jα

λj(T̂i(λj))
2γ2

j ≤ 4







√

β
α
− 1

√

β
α

+ 1







2i
jβ
∑

j=jα

λjγ
2
j

= 4

{

√

κ(A, x − x0) − 1
√

κ(A, x − x0) + 1

}2i

||x − x0||
2
A,

where we have used that γ2
j and λj are positive, together with the inequality:

|T̂i(λj)| ≤ 2







√

β
α
− 1

√

β
α

+ 1







i

for jα ≤ j ≤ jβ .

�

In the following we want to apply the above theorem to the preconditioned cg method (PCG
method) with a symmetric positive definite preconditioner M and a special starting vector x0.
Therefore we point out that PCG for Ax = b with starting vector x0 is equivalent to the cg
method applied to M

1
2 AM

1
2 x̃ = M

1
2 b and starting vector x̃0 = M−

1
2 x0. The cg method will

return x̃ which satisfies x̃ = M−
1
2 x or M

1
2 x̃ = x. Hence, the next corollary follows from Theorem

3.3 immediately.

Corollary 3.4 Let A and M be symmetric positive definite. Let (λ̃i, ỹi) be the eigenpairs of

M
1
2 AM

1
2 . For x0 ∈ R let

M−
1
2 x − M−

1
2 x0 =

n
∑

j=1

γ̃j ỹj .
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Define

α̃ := min{λ̃j |γ̃j 6= 0},

β̃ := max{λ̃j |γ̃j 6= 0},

κ(MA, x − x0) :=
β̃

α̃
.

If the PCG method is applied to solve Ax = b with starting vector x0 and preconditioner M the
i-th iterate satisfies

||x − xi||A ≤ 2

{

√

κ(MA, x − x0) − 1
√

κ(MA, x − x0) + 1

}i

||x − x0||A.

As shown in Example 3.1, for general starting vectors there is no ordering possible between
κ(PBA) and κ(PCMA). Starting with the starting vector x0,B = ZE−1ZT b, it is possible to
compare the effective condition number of PBA and the condition number of PCMA.

Theorem 3.5 Let A be symmetric positive definite. Let the preconditioners PB and PCM be
defined as in (1) and (2). With x0,B = ZE−1ZT b we obtain

κ(PBA, x − x0,B) ≤ κ(PCMA).

Proof: First of all we consider the deflation operator PD defined in (3) and M−1PDA.
Suppose that the spectrum of M−1PDA is given by

spectrum(M−1PDA) = {0, . . . , 0, µr+1, . . . , µn}

with the corresponding eigenvectors {z1, . . . , zr} and {vr+1, . . . , vn} satisfying

M−1PDAzi = 0 and M−1PDAvj = µjvj .

Note that µj 6= 0, for j = r + 1, . . . , n, because A and M are non-singular and PD has rank n− r.
From the proof of Theorem 2.8 in [18] we know that

PBAzi = zi and PBA(PT
Dvj) = µjP

T
Dvj .

Now we consider the eigenpairs of P
1
2

B AP
1
2

B . Obviously

P
1
2

B AP
1
2

B (P
−

1
2

B zi) = (P
−

1
2

B zi),

P
1
2

B AP
1
2

B (P
−

1
2

B PT
Dvj) = µj(P

−
1
2

B PT
Dvj).

Moreover we obtain for r̃ := P
1
2

B AP
1
2

B (P
−

1
2

B (x − x0,B))

r̃ = P
1
2

B AP
1
2

B (P
−

1
2

B (x − x0,B)) = P
1
2

B b − P
1
2

B AP
1
2

B P
−

1
2

B ZE−1ZT b

= P
1
2

B b − P
1
2

B AZE−1ZT b.

We can decompose r̃ as

r̃ =

r
∑

i=1

γi(P
−

1
2

B zi) +

n
∑

i=r+1

γi(P
−

1
2

B PT
Dvi).

Next we will establish that γi = 0 for i = 1, . . . , r. Since

P
−

1
2

B z1, . . . , P
−

1
2

B zr, P
−

1
2

B PT
Dvr+1, . . . , P

−
1
2

B PT
Dvn
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are the eigenvectors of P
1
2

B AP
1
2

B , which can be chosen as an orthonormal set, it suffices to prove

that (P
−

1
2

B Z)T r̃ = 0.
We obtain

(P
−

1
2

B Z)T r̃ = ZT P
−

1
2

B (P
1
2

B b − P
1
2

B AZE−1ZT b)

= ZT b − ZT AZE−1ZT b

= ZT b − ZT b

= 0.

Hence,

P
1
2

B AP
1
2

B (P
−

1
2

B (x − x0,B)) = r̃ =

n
∑

i=r+1

γi(P
−

1
2

B PT
Dvi).

Thus,

P
−

1
2

B x − P
−

1
2

B x0,B =
n

∑

i=r+1

γi

µi

(P
−

1
2

B PT
Dvi).

With Corollary 3.4 we get

κ(PBA, x − x0,B) = κ(PDA, x − x0,D) ≤
µn

µr+1

.

Using Theorem 2.11 of [17] together with µn

µr+1
= κeff (M−1PDA) we finally obtain

κ(PBA, x − x0,B) ≤
µn

µr+1

≤ κ(PCMA).

�

From Theorem 3.5 we conclude that the abstract balancing preconditioner with starting vector
x0,B = ZE−1ZT b is asymptotically a better preconditioner than the coarse grid correction pre-
conditioner. Hence, we expect a faster convergence of the PCG method if the abstract balancing
preconditioner is used.

As shown in Example 3.1, for general starting vectors there is no ordering possible between
κ(PBA) and κ(PCMA).

In [25] (Lemma 2.15) it is proved that

κ(PT
DM−1PDA) ≤ κ(PCMA). (12)

But note that

PB = PT
DM−1PD + ZE−1ZT . (13)

From (12) it is deduced that the balancing preconditioner with starting vector x0,B = ZE−1ZT b

is asymptotically a better preconditioner than the coarse grid correction preconditioner. However,
to derive this statement some properties of the balancing preconditioner have to be proved in detail
before. Namely, that starting with x0,B = ZE−1ZT b implies that the balancing approximations
stay in the range(PD), and starting with x0,B = ZE−1ZT b implies that the term ZE−1ZT in (13)
can be neglected. Thus, the balancing preconditioner can be implemented with the use of P T

DAPD

only.
Moreover, the system PT

DM−1PDA as well as the system PT
DM−1A are singular and it is not

clear at all which condition number describes the convergence behavior of the cg method started
with x0,B = ZE−1ZT b. Note that κ(PBA) can be larger than κ(PCMA).

The effective condition number with respect to a starting vector however, gives a complete
description of the convergence behavior of the cg method. Thus, Theorem 3.5 provides a complete
comparison of the abstract balancing method with the abstract additive coarse grid correction
method. Furthermore, the proof is self-contained.
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4 Comparing the A-norm of the deflation and coarse grid

correction errors

It appears that the effective condition number of a preconditioned matrix combined with a defla-
tion operator is always less than the condition number of the matrix preconditioned with a coarse
grid correction operator ([17], Theorem 2.11). This implies that the deflated version asymptot-
ically has a faster convergence than the coarse grid correction version. It is more valuable to
compare the errors of different preconditioners measured in some norm. However, such kind of
comparison results are hard to find. In [18] such a result is given for the deflation and the balancing
preconditioner.

Definition 4.1 The eigenvalues of A are denoted by λk, and the eigenvectors yk of A are chosen
such that yT

k yj = δkj . Define Z = [y1 . . . yr].

In this section we assume that the eigenvalues are arbitrarily ordered.
From [17] Theorem 2.5, we know for this choice of projection vectors that the spectra of PDA

and PCA are:
spectrum(PDA) = {0, . . . , 0, λr+1, . . . , λn}, and

spectrum(PCA) = {σ + λ1, . . . , σ + λr, λr+1, . . . , λn}.

As in Section 3 of [18] we note that:

xk,D = x0 + ZE−1ZT r0 + PT
D x̃k,D , (14)

where x̃k,D is the k-th iterate of CG applied to the singular deflated system PDAx = PDr0. We
take x̃0,D = 0 as starting solution. The coarse grid correction method is started with x0,C = x0.

Definition 4.2 The initial error vector can be written as a linear combination of the eigenvectors:

x − x0 =

n
∑

j=1

γjyj .

We first investigate x − x0,D.

Lemma 4.3 Using (14) and Definition 4.2 it appears that

x − x0,D =

n
∑

j=r+1

γjyj . (15)

Proof: It is easy to show that E = ZT AZ = diag(λ1, . . . , λr). This together with (14) is used
to derive the following expressions:

x − x0,D = x − x0 − ZE−1ZT (b − Ax0)

= x − x0 − [y1 . . . yr]diag(
1

λ1

, . . . ,
1

λr

)[y1 . . . yr]
T

n
∑

j=1

γjλjyj

=

n
∑

j=1

γjyj −

r
∑

j=1

γjyj =

n
∑

j=r+1

γjyj.

�

Now we are able to prove the following comparison result:

Theorem 4.4 Using Z as in Definition 4.1, x̃0,D = 0, and x0,C = x0 it appears that

‖x − xk,D‖A ≤ ‖x − xk,C‖A. (16)
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Proof: The exact solution x can be written as:

x = x0 + (I − PT
D )(x − x0) + PT

D (x − x0) = x0 + ZE−1ZT r0 + PT
D (x − x0).

Combination with (14) shows that

x − xk,D = PT
D (x − x0 − x̃k,D). (17)

Note that
x̃k,D = sk(PDA)PDr0 = sk(PDA)PDA(x − x0),

where sk is a polynomial of degree k − 1. Substituting this into (17) yields

PT
D (x − x0 − x̃k,D) = PT

Dpk,D(PDA)(x − x0) with pk,D ∈ Π1
k. (18)

Since Z consists of eigenvectors we know that PD = I − ZZT = PT
D . Together with PDA = APD

this implies that
PT

Dpk,D(PDA) = pk,D(PDA)PD.

With Definition 4.2 and (18) we get

PT
D (x − x0 − x̃k,D) = pk,D(PDA)PD(x − x0) = pk,D(PDA)(I − ZZT )

n
∑

j=1

γjyj =

= pk,D(PDA)
n

∑

j=r+1

γjyj =
n

∑

j=r+1

pk,D(λj)γjyj .

Using the optimality property of the cg method we observe that

‖x − xk,D‖2
A = ‖

n
∑

j=r+1

pk,D(λj)γjyj‖
2
A =

n
∑

j=r+1

λj(pk,D(λj))
2γ2

j (19)

≤

n
∑

j=r+1

λj(qk(λj))
2γ2

j ,

where qk is an arbitrary polynomial in the set Π1
k. Using the polynomial property of the cg method

again we note that there is a pk,C ∈ Π1
k such that

‖x − xk,C‖2
A =

r
∑

j=1

λj(pk,C(σ + λj))
2γ2

j +
n

∑

j=r+1

λj(pk,C(λj))
2γ2

j . (20)

Combination of (19) and (20) leads to:

‖x − xk,D‖2
A ≤

n
∑

j=r+1

λj(pk,C(λj))
2γ2

j

≤

r
∑

j=1

λj(pk,C(σ + λj))
2γ2

j +

n
∑

j=r+1

λj(pk,C(λj))
2γ2

j

= ‖x − xk,C‖
2
A,

which proves the theorem. �

The A-norm inequality as given in Theorem 4.4 is not valid if the projection vectors are general
vectors. This is illustrated by the example given below.
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Example 4.5 Applying deflation and coarse grid correction to problem with

A =





1 0 0
0 2 0
0 0 3



 , b =





1
2
3



 with Z =





1
−10
0



 and x0 =





0
0
0



 , (21)

one obtains the results as given in Table 1. Note that the A-norm of the deflation error is larger
than the A-norm of the coarse grid correction error in the first iterate.

iteration ‖x − xk,D‖A ‖x − xk,C‖A

0 2.4495 2.4495
1 0.7138 0.6899
2 0 0.0018

Table 1: The error for deflation and coarse grid correction

We end and conclude this section with some remarks concerning error norm comparisons.

Remark 4.6 • It is possible to prove an equivalent comparison result as in Theorem 4.4 if an
additional symmetric positive definite preconditioner M is used.

• Using Theorem 3.7 of [18] it appears that for the balancing iterate xk,B the inequality

‖x − xk,B‖A ≤ ‖x − xk,C‖A,

also holds if the cg method is started with x0,B = ZE−1ZT r0 and Z is chosen as in Definition
4.1.

• If x0,B 6= ZE−1ZT r0, but Z is chosen as in Definition 4.1 the inequality is not valid. To
show this we again use Example 4.5, but now the projection vector is chosen to be equal to

the first eigenvector, so Z =





1
0
0



. The results are given in Table 2. Note that the A-norm

of the balancing error is larger than the A-norm of the coarse grid correction error in the
first iterate.

iteration ‖x − xk,D‖A ‖x − xk,C‖A ‖x − xk,B‖A

0 2.4495 2.4495 2.4495
1 0.414 0.4804 0.7454
2 0 0 0.2689

Table 2: The error for deflation, coarse grid correction, and balancing

• Repeating Theorem 3.4 of [18] we know that

‖x − xk,D‖A ≤ ‖x − xk,B‖A,

for all choices of Z and x0.

5 Orthogonal transformations

It is well known that Krylov subspace methods are invariant to orthogonal transformations. Sup-
pose Q is an orthogonal matrix (QT Q = QQT = I). Consider a change of basis from e1, . . . en to
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q1, . . . qn, the columns of Q. The linear system Ax = b in the Euclidean basis is equivalent to the
transformed system

Âx̂ = b̂, (22)

in the new basis, where x̂ = QT x, b̂ = QT b, and Â = QT AQ. The fact that cg method applied to
Ax = b is equivalent to cg method applied to Âx̂ = b̂ can be proved by writing out the formulas of
the cg method algorithm or analyzing the optimization properties of the cg method. Note that if
the columns of Q are equal to the normalized and orthogonal eigenvectors of A, the transformed
matrix Â is a diagonal matrix. This implies that theorems proved for a diagonal matrix can be
generalized to the same results for an arbitrary symmetric matrix, and numerical experiments
can also be restricted to diagonal matrices (except the rounding error behavior, which can be
different).

In this section we show that the deflation, coarse grid correction, and balancing Neumann-
Neumann operators are all invariant with respect to orthogonal coordinate transformations.

Theorem 5.1 It appears that
P̂D = QT PDQ, (23)

P̂CM = QT PCMQ, provided that σ̂ = σ, (24)

P̂B = QT PBQ. (25)

Proof: We start to prove (23). Since we have a change of basis the projection vectors are changed
as follows: Ẑ = QT Z. From the definition of P̂D it follows that:

P̂D = I − ÂẐ(ẐT ÂẐ)−1ẐT

= I − QT AQQT Z(ZT QQT AQQT Z)−1ZT Q

= QT (I − AZ(ZT AZ)−1ZT )Q = QT PDQ.

In the same way we can prove (24) where we use σ̂ = σ:

P̂CM = M̂−1 + σ̂Ẑ(ẐT ÂẐ)−1ẐT

= QT M−1Q + σQT Z(ZT AZ)−1ZT Q

= QT (M−1 + σZ(ZT AZ)−1ZT )Q = QT PCMQ.

Finally to prove (25) we note that

P̂B = P̂T
DM̂−1P̂D + Ẑ(ẐT ÂẐ)−1ẐT

= QT PT
DQQT M−1QQT PDQ + QT Z(ZT AZ)−1ZT Q

= QT (PT
DM−1PD + Z(ZT AZ)−1ZT )Q = QT PBQ.

�

This theorem implies that if one is able to compare the various methods for a diagonal matrix,
the comparison is also valid for a general symmetric matrix.

6 Numerical experiments

In all our numerical experiments, the multiplication y = E−1b is done by solving y from Ey = b,
where E is decomposed in its Cholesky factor. The choice of the boundary conditions is such that
all problems have as exact solution the vector with components equal to 1. In order to make the
convergence behavior representative for general problems we chose a random vector as starting
solution, in stead of the zero start vector.

We apply both methods (balancing and additive coarse grid correction) to the Poisson equation.
In order to investigate the scaling properties of the methods we use the scaled linear system:

γAx = γb.
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In all our examples the balancing preconditioner performs better than the additive coarse
grid preconditioner as indicated by the theoretical results if x0 = ZE−1ZT r0. We observe from
Figure 1 and 2 that both methods are not scaling invariant. In exact arithmetic the balancing
preconditioner with x0 = ZE−1ZT r0 is scaling invariant. This implies that the rounding errors
spoil the invariance properties in practice. It is clear that the additive coarse grid preconditioner
is more sensitive to scaling. This can be explained as follows: for the balancing preconditioner r

eigenvalues of the original matrix are changed into 1 by the preconditioner. So, if the scaling is
bad, there is only one outlier in the spectrum.. Due to the superlinear convergence this has only a
limited effect on the convergence. Using the additive coarse grid preconditioner r eigenvalues are
shifted. For a bad scaling the spectrum has r outliers, which are worse than one outlier for the
convergence of the method.

Finally, from Figure 3, we conclude that in general the balancing preconditioner converges faster
than the additive coarse grid preconditioner, also for arbitrary starting vectors. However, the A-
norm inequality is not always valid. Initially, the additive coarse grid preconditioner converges
faster than the balancing preconditioner.
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Figure 1: Convergence of the balancing and additive coarse grid correction preconditioner with
γ = 1 and x0 = ZE−1ZT r0.

7 Conclusions

We considered various preconditioners for the cg method, namely the deflation, the abstract bal-
ancing and the abstract additive coarse grid correction preconditioners. In [18, 17] the deflation
method is compared with the abstract additive coarse grid correction preconditioner and the ab-
stract balancing preconditioner. Here we established a direct comparison between the condition
numbers of the abstract coarse grid correction preconditioner and the abstract balancing precondi-
tioner. We showed that the effective condition number with respect to a specific starting vector of
the system preconditioned by the abstract balancing preconditioner is less or equal to the condition
number of the system preconditioned by the additive coarse grid correction method. Moreover,
we compared the A-norm of the errors of the iterates given by the different preconditioners and
we established the orthogonal invariance of all three types of preconditioners.
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Figure 2: Convergence of the balancing and additive coarse grid correction preconditioner with
γ = 500 and x0 = ZE−1ZT r0.
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Figure 3: Convergence of the balancing and additive coarse grid correction preconditioner with
γ = 500. In this example a random starting vector is used.
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