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Abstract

In this report we present the so-called Stadyc model for the movement of a ship. The idea
is the following: first compute the optimal positioning of the thrusters for the static (Sta)
situation, then solve the dynamic (dy) model in order to predict the trajectory of the ship,
and finally, the forces and positions of the thrusters are adapted in the control (c) model
in order that the ship follows a given path as good as possible. The difference of the real
position of the ship and the required position can be obtained from the model or from actual
measurements.

Keywords. numerical model, Multi Thruster Control System, required trajectory, static model,
dynamic model, control, physical constants

1 Introduction

In this report we present the so-called Stadyc model for the movement of a ship. The idea is the
following: first compute the optimal positioning of the thrusters for the static (Sta) situation, then
solve the dynamic (dy) model in order to predict the trajectory of the ship, and finally, the forces
and positions of the thrusters are adapted in the control (c) model in order that the ship follows
a given path as good as possible. The difference of the real position of the ship and the required
position can be obtained from the model or from actual measurements. The dynamic model is
given in Section 2. The static model is discussed in Section 3, and the control model is presented
in Section 4.

2 The dynamic model for a ship

2.1 The dynamic model of the movement of a ship

In order to describe the dynamic model of the movement of a ship we note that a ship has only
three degrees of freedom: the x and y position of the ship and the angle φ. To describe these
degrees of freedom, we use the x, y coordinate system, which is fixed in space and oriented such
that the positive y axis is pointing in the north direction. We use the following notations:

• m is the hydrodynamic mass of the ship. This constant may contain an extra term due to
the movement of an amount of water, which is proportional to the underwater volume of the
ship,

• I is the inertia for rotation of the ship,
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• xs(t) is the x-coordinate of the mass center of the ship as a function of t,

• ys(t) is the y-coordinate of the mass center of the ship as a function of t,

• φ(t) is the angle of the ship as a function of t with the positive x-axis.

Newton’s law leads to the following dynamical system:

m
d2xs

dt2
= Rx, (1)

m
d2ys

dt2
= Ry, (2)

I
d2φ

dt2
= M. (3)

In order to describe the forces and the moment, we first give an expression for these quantities,
with respect to the ξ, η coordinate system. This coordinate systems is connected to the ship. Its
origin is in the mass center of the ship, whereas the positive η axis points into the direction of the
bow. If nt thruster are used, the forces are then given by:

Rξ = Rξ(1) + . . . + Rξ(nt) + Rξ,water + Rξ,wind, (4)

Rη = Rη(1) + . . . + Rη(nt) + Rη,water + Rη,wind, (5)

and the moment

M = −ηpos(1) × Rξ(1) . . . − ηpos(1) × Rξ(nt) +

+ξpos(1) × Rη(1) . . . + ξpos(nt) × Rη(nt) +

+Mwater + Mwind. (6)

Note that the moment is independent of the coordinate system, whereas the forces depends on
the coordinate system. In the formula’s given above the following notations are used:

• Rξ is the sum of all the forces in the ξ direction,

• Rη is the sum of all the forces in the η direction,

• Rξ(j) and Rη(j) are the components of the force from thruster j,

• ξpos(j) and ηpos(j) are the coordinates of the location of thruster j,

• Rξ,water and Rη,water are the components of the water force,

• Rξ,wind and Rη,wind are the components of the wind force,

• M is the sum of all the moments,

• Mwater is the moment due to the water,

• Mwind is the moment due to the wind.

Note that the values of Rξ(j) and Rη(j) for j = 1, . . . , nt, are the only couplings between the
static and the dynamic model. So if some Rξ(j) and Rη(j) are required in the dynamic model,
one should be able to compute them with the static model, or on the other hand, if the values of
Rξ(j) and Rη(j) are given by the static model, they can be used in the dynamic model to compute
the form of the trajectory of the ship.

Now all forces are transformed to the fixed coordinate system, by the following transformation:
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x-component
Rx = Rξ sin φ + Rη cosφ,

y-component
Ry = −Rξ cosφ + Rη sinφ.

Below we first study the influences of the water forces. The wind forces can modeled in the same
way. We shall do this after the water forces are considered. In order to compute the water forces,
we use the following definitions:

• vx,water is the x-velocity of the water (current) in the fixed coordinate system,

• vy,water is the y-velocity of the water (current) in the fixed coordinate system.

We assume that the water forces are a function of the velocity of the ship relative to the water.
The relative velocities are given by:

vx =
dxs

dt
− vx,water,

vy =
dys

dt
− vy,water.

These velocities are decomposed into the ξ, η coordinates as follows:

vξ = vx sin φ − vy cosφ,

vη = vx cosφ + vy sin φ.

We now use the following model to determine the water forces, due to the velocities vξ and vη (for
other models we refer to [3, 2]). A number of constants are unknown and should be determined,
see Section 2.3.

Rξ,water = −KW vξ|vξ|, (7)

Rη,water = −KAvη|vη|, (8)

where in general KW > KA. Finally, the moment originated by the water is modeled by:

Mwater = −KMvξ|vξ| − KN

dφ

dt
. (9)

Now we consider the influence of the wind forces. In order to compute the wind forces, we use the
following definitions:

• vx,wind is the x-velocity of the wind in the fixed coordinate system,

• vy,wind is the y-velocity of the wind in the fixed coordinate system.

We assume that the wind forces are a function of the velocity of the ship relative to the wind. The
relative velocities are given by:

vx =
dxs

dt
− vx,wind

vy =
dys

dt
− vy,wind

These velocities are decomposed into the ξ, η coordinates as follows:

vξ = vx sin φ − vy cosφ,

vη = vx cosφ + vy sin φ.
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We now use the following model to determine the wind forces, due to the velocities vξ and vη (for
other models we refer to [3, 2]). A number of constants are unknown and should be determined,
see Section 2.3.

Rξ,wind = −KW,windvξ|vξ|, (10)

Rη,wind = −KA,windvη|vη|, (11)

where in general KW,wind > KA,wind. Finally, the moment originated by the wind is modeled by:

Mwind = −KM,windvξ|vξ|. (12)

We note that in general the coefficients due to the wind forces are one or two orders of magnitude
less than the coefficients due to the water forces. However, the wind velocities can be one or two
order larger than the water velocities. Finally, we expect that at sea the current is only a slowly
varying function of space and time, whereas the wind velocities can be rapidly varying functions
of time. Another difference between the wind and water model is that we assume that the wind
resistance with respect to rotation is negligible. In Table 1 all the constants, which should be

constant description dimension
m hydrodynamic mass of the ship kg

I inertia of the ship kg m2

KW coefficient of the water force in ξ-direction kg
m

KA coefficient of the water force in η-direction kg
m

KM coefficient of the water moment due to the velocity in η-direction kg

KN coefficient of the water moment due to rotation kg m2

s

KW,wind coefficient of the wind force in ξ-direction kg
m

KA,wind coefficient of the wind force in η-direction kg
m

KM,wind coefficient of the wind moment due to the velocity in η-direction kg

Table 1: The constant and their dimensions, which are used in the dynamic model

determined are summarized.

In order to solve the dynamic model, we first transform the system of second order equations (1),
(2), and (3) to a system of first order equations. Therefore, we use the following unknowns:

p(1) = xs, p(2) =
dxs

dt
, p(3) = ys, p(4) =

dys

dt
, p(5) = φ, p(6) =

dφ

dt
, (13)

which leads to the following system:
dp(1)

dt
= p(2),

dp(2)

dt
=

Rx

m
,

dp(3)

dt
= p(4),

dp(4)

dt
=

Ry

m
,

dp(5)

dt
= p(6),

dp(6)

dt
=

M

I
.

This together with suitable initial conditions leads to a unique solution, which describes the
trajectory of the ship. In general it is impossible to solve this system by an analytical solution
method. Therefor we solve this system by a numerical method, the so-called Euler Forward
method. For the details of this method we refer to [1].
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2.2 Numerical experiments

In this section we give some numerical experiments computed with the dynamic model in order to
illustrate the power of this model. Most of the constants used in this model are chosen artificially.
Below we give the constants, which are used in the first experiment:

% initial conditions

x_start = 0;

y_start = 0;

vx_start = 0;

vy_start = 5;

phi_start = 90;

vphi_start = 4;

% time constants

tend = 30; % final time

tend = 90; % final time

nend = 300; % number of time steps

nplot = 30; % number of plots

% coefficients

mass = 10;

inertia = 10000;

% water resistance coefficients

Kw = 4;

Ka = 1;

Km = 100;

Kn = 100;

% velocity of the current

vx_water = 0;

vy_water = 0;

% wind resistance coefficients

Kw_wind = 0*0.4;

Ka_wind = 0*0.1;

Km_wind = 0*100;

% velocity of the wind

vx_wind = 0;

vy_wind = 0;

% thruster forces and positions
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xpos(1) = -30;

ypos(1) = -60;

R1(1) = 10;

R2(1) = 50;

xpos(2) = 30;

ypos(2) = -60;

R1(2) = 10;

R2(2) = 50;

The resulting position of the ship and its orientation are given in Figure 1. The starting point of
the ship is located in the origin. When a current is added, vx,water is -2, the trajectory is changed,
see Figure 2. Below we compute again the position of the ship and its orientation, where the
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Figure 1: The trajectory of the ship without current
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Figure 2: The trajectory of the ship with current

initial velocity of rotation is set equal to zero and both thrusters are only giving a force in the
η direction. Without current the resulting trajectory is a straight line and the orientation of the
ship is in the same direction (see Figure 3). When a current is added, vx,water is -2, the trajectory
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remains a straight line, but the orientation of the ship has a different angle (see Figure 4).

In our second experiment we investigate the influence of the wind forces. We start with a ship in
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Figure 3: The trajectory of the ship without current
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Figure 4: The trajectory of the ship with current

a stationary position, and the velocity of the current is equal to zero. The velocity of the wind is
equal to vx,wind = 10 and vy,wind = 10. Below we give the constants, which are used in the second
experiment:

x_start = 0;

y_start = 0;

vx_start = 0;

vy_start = 0;

phi_start = 90;

vphi_start = 0;

% time constants
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tend = 270; % final time

nend = 300; % number of time steps

nplot = 60; % number of plots

% coefficients

mass = 10;

inertia = 10000;

% water resistance coefficients

Kw = 4;

Ka = 1;

Km = 100;

Kn = 400;

% velocity of the current

vx_water = 0;

vy_water = 0;

% wind resistance coefficients

Kw_wind = 0.04;

Ka_wind = 0.01;

Km_wind = 20;

% velocity of the wind

vx_wind = 10;

vy_wind = 10;

% thruster forces and positions

xpos(1) = -30;

ypos(1) = -60;

R1(1) = 0;

% R2(1) = 50;

R2(1) = 0;

xpos(2) = 30;

ypos(2) = -60;

R1(2) = 0;

R2(2) = 0;

The result of this simulation is given in Figure 5. Note that initially the ship is rotating such that
the bow is pointing into the wind direction, furthermore the velocity increases to a limit value.
Due to the damping and reaction forces of the water the rotation of the ships stops at a certain
moment. This phenomenon depends on the choices of the coefficients. For other choices the ship
keeps rotating.
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Figure 5: The trajectory of the ship with wind

2.3 How to find the constants?

Using a model, there is always the difficulty how to obtain the parameters, which are used in the
model. There are three different ways to obtain a value for the parameters:

1. Ask the designer of the ship for the values.

2. Try to determine the coefficients by using formulas which describe the parameters as a
function of the length depth etc. An advantage of this method is that the ship can be
analyzed, before it is built. A disadvantage is that the formula’s can be very complicated.
This idea is described in Section 3.2 of [2].

3. Measure the 6 parameters by doing some maneuvers with the ship. An advantage is that
this is simple to do. A disadvantage is that the parameters can only obtained when the ship
is built. This idea is described in Section 3.3 of [2].

In this report we start by using the last method. We describe the maneuvers below.

Maneuver to determine the hydrodynamic mass m

Do this maneuver when the wind velocity is low.

• Measure the velocity of the current.

• Make the initial orientation of the ship such that the angle of the ship is equal to the angle
of the velocity of the water.

• The velocity of the ship should be equal to the velocity of the water, so the relative velocity
is equal to zero. Since the relative velocity is zero, the water forces are zero.

• Start the thrusters at t = 0 with a given power, where the ξ-forces are equal to zero, after
the position (xs(0), ys(0)) is measured. From these assumptions it follows that

Rη = Rη(1) + Rη(2).

For a short time tend (so that the resulting velocities remain small) the water forces are
negligible.



12

• The trajectory of the ship is now given by:

xs(t) = xs(0) + vx,watert +
Rξ sin φ

2m
t2,

ys(t) = ys(0) + vy,watert −
Rξ cosφ

2m
t2.

• Measuring xs(tend) and ys(tend) one can estimate m by

m =
0.5Rξ sin φt2end

xs(tend) − xs(0) − vx,watertend

,

or

m = −
0.5Rξ cosφt2end

ys(tend) − ys(0) − vy,watertend

.

Maneuver to determine the inertia I of the ship

Do this maneuver when the wind velocity is low.

• Make the initial orientation of the ship such that the angle φ = 0.

• The velocity of the ship should be equal to the velocity of the water, so the relative velocity
is equal to zero. Since the relative velocity is zero, the water forces are zero.

• Start the thrusters at t = 0 with a given power and compute the resulting moment M by
using Equation (6). For a short time tend (so that the resulting velocities remain small) the
water forces are negligible.

• The angle φ is now given by:

φ(t) =
M

2I
t2.

• Measuring φ(tend) one can estimate I by

I =
0.5M

φ(tend)
t2end.

Maneuver to determine the coefficient KA

Do this maneuver when the wind velocity is low.

• Start the thrusters with a given power, where the ξ-forces are equal to zero. From these
assumptions it follows that

Rη = Rη(1) + Rη(2).

• Wait until the velocity of the ship is stationary. We assume that vx,water and vy,water

remain constant during this maneuver. Measure vx and vy , the relative velocities. Compute
vη = vx cosφ + vy sin φ. Since the velocities are stationary it appears that the sum of the
outer forces is zero:

Rη = KAvη|vη|.

From this equation the value of KA can be estimated by

KA =
Rη

vη|vη|
.

Maneuver to determine the coefficient KW

Do this maneuver when the wind velocity is low.
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• Start the thrusters with a given power, where the η-forces are equal to zero and M is equal
to zero. From these assumptions it follows that

Rξ = Rξ(1) + Rξ(2).

• Wait until the velocity of the ship is stationary. We assume that vx,water and vy,water

remain constant during this maneuver. Measure vx and vy the relative velocities. Compute
vξ = vx sin φ − vy cosφ. Since the velocities are stationary it appears that the sum of the
outer forces is zero:

Rξ = KW vξ|vξ|.

From this equation the value of KA can be estimated by

KW =
Rξ

vξ|vξ|
.

Maneuver to determine the coefficient KN

Do this maneuver when the wind velocity is low.

• Give the ship a rotation velocity dφ
dt

(0) and a relative velocity vξ = 0.

• Switch off the thrusters at t = 0.

• The resulting equation is:

I
d2φ

dt2
= −KN

dφ

dt
.

This differential equation can be solved. The solution is given by the following expression:

dφ

dt
(t) =

dφ

dt
(0) exp(−

KN

I
t).

• Measure dφ
dt

(tend). Then the value of KN can be estimated by

KN =
I

tend

(

ln(
dφ

dt
(0)) − ln(

dφ

dt
(tend))

)

Maneuver to determine the coefficient KM

Since all other constants are known the coefficient KM can be estimated as follows. Make a curve
with the ship. Use the same data in the simulation and adjust the coefficient KM such that the
simulated trajectory matches the measured trajectory.

Maneuver to determine the wind relates coefficients

The same type of maneuvers can be done in order to determine KA,wind, KW,wind and KM,wind.
At this moment it is not necessary to specify these maneuvers.

3 The static model of the thrusters

A number of algorithms has already be described in [4]. In this section we shall describe algorithms
for more complicated situations.

3.1 Static model for two thrusters with a non constant power

In this subsection we assume that the x, y coordinates are connected with the ship, where the
origin is equal to the mass center and the positive y-axis is pointing in the direction of the bow.
We start again with two thrusters. However, now the forces are no longer given in Cartesian
components, but in polar coordinates. As usual we assume that R is the size of the required force,
Q is the angle of the force and M is the moment. Furthermore, we assume that:
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• the coordinates of the thrusters are: (xpos(1), ypos(1)) and (xpos(2), ypos(2)).

• the thrusters are further characterized by:

- angle Φ1 and Φ2 given in radials;
- power P1 and P2.

The resulting forces are defined as follows:

R1 = R1(P1, Φ1, Φ2)

and
R2 = R2(P2, Φ1, Φ2).

This forces and angles should be chosen such that the usual equations are satisfied. These equations
are summarized below.

R1(P1, Φ1, Φ2) cosΦ1 + R2(P1, Φ1, Φ2) cosΦ2 = R cos(
Qπ

180o
), (14)

R1(P1, Φ1, Φ2) sin Φ1 + R2(P1, Φ1, Φ2) sin Φ2 = R sin(
Qπ

180o
), (15)

and
−ypos(1)R1(P1, Φ1, Φ2) cos Φ1 − ypos(2)R2(P1, Φ1, Φ2) cosΦ2+

+xpos(1)R1(P1, Φ1, Φ2) sinΦ1 + xpos(2)R2(P1, Φ1, Φ2) sin Φ2 = M. (16)

The idea is the following: take Φ1 = 0, h, ..., 2π and determine for each Φ1 the value of Φ2, P1,
and P2 such that the 3× 3 non linear system given by (14), (15), and (16) is satisfied. Determine
then Φ1,min such that |P1| + |P2| is minimal.

As an example we consider the following function:

R1(P1, Φ1, Φ2) = P1 × f1(Φ1) × g1(Φ1, Φ2), (17)

where f1 and g1 are chosen as:

1,
π

4
≤ Φ1 ≤ 2π,

f1(Φ1) = 1 −
4

π
(
π

4
− Φ1),

π

8
≤ Φ1 ≤

π

4
,

1 −
4

π
Φ1, 0 ≤ Φ1 ≤

π

8
,

and

1,
π

8
≤ Φ1 ≤ 1

7

8
π,

g1(Φ1, Φ2) =

1

2
, −

π

8
≤ Φ1, Φ2 ≤

π

8
.

In the same way the function R2(P2, Φ1, Φ2) can be defined. In this advanced two thruster model,
we use the following algorithm, where we assume that the required forces and momentum are
given:

1. compute the solution with the standard model,

2. compute P1, P2, Φ1, and Φ2 from this model,
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3. use these values as a start for the advanced model,

4. step Φ0

1
, . . . ΦN

1
where N × h = 2π,

5. compute Φ1 such that |P1| + |P2| is minimal.

As a first model we take R1 = P1 and R2 = P2. Assume that Φ1 is given, and determine P1, P2,
and Φ2 such that

f1(P1, P2, Φ2) = 0,

f2(P1, P2, Φ2) = 0,

f3(P1, P2, Φ2) = 0,

where
f1(P1, P2, Φ2) = P1 cosΦ1 + P2 cosΦ2 − Fx,

f2(P1, P2, Φ2) = P1 sinΦ1 + P2 sin Φ2 − Fy,

and

f3(P1, P2, Φ2) = −ypos(1)P1 cosΦ1 − ypos(2)P2 cosΦ2 + xpos(1)P1 sinΦ1 + xpos(2)P2 sin Φ2 −M.

In order to solve this non-linear system we use the Newton-Raphson method [1]:

Pnew = Pold − (F ′(Pold))−1F (Pold),

where Pnew and Pold are vectors with components (P1, P2, Φ2) for the new and for the previous
iteration. Furthermore F ′ is the Jacobian of the non-linear vector function
(f1(P1, P2, Φ2), f2(P1, P2, Φ2), f3(P1, P2, Φ2)). The iteration is stopped if

‖F (Pnew)‖2

‖(Fx, Fy, M)‖2

≤ ε.

Below the coefficients of the 3 × 3 Jacobian matrix are given:

∂f1

∂P1

= cosΦ1,
∂f1

∂P2

= cosΦ2,
∂f1

∂Φ2

= −P2 sin Φ2,

∂f2

∂P1

= sin Φ1,
∂f2

∂P2

= sin Φ2,
∂f2

∂Φ2

= P2 cosΦ2,

∂f3

∂P1

= −ypos(1) cosΦ1 + xpos(1) sin Φ1,

∂f3

∂P2

= −ypos(2) cosΦ2 + xpos(2) sin Φ2,

∂f3

∂Φ2

= ypos(2)P2 sin Φ2 + xpos(2)P2 cosΦ2.

This method works fine. The results for this simple model and the previous model are identical. For
the more advanced model, where the resulting force R1 is given by (17), we use the same algorithm
where the Jacobian is based on the simple model. In a certain sense this can be interpreted as a
pseudo Newton-Raphson method.

3.2 Numerical experiments

We consider two thrusters, where the power of the thrusters depends on the angle. The results are
given in Figure 6 for the standard situation and in Figure 7 for the more advanced model. Note
that there are considerable differences in the angle and power of the thrusters.
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Figure 6: The orientation and power of the thrusters in a standard situation
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Figure 7: The orientation and power of the thrusters in a more complicated situation

4 Control of the position of a ship

In this section we consider a simple situation. The ship should follow a straight line with angle
of 45o and the angle of the ship should also be equal to 45o. Below we give the control options
to adapt the moment and the forces in order to arrive at the required line with the required
orientation. We assume three constants, which can be chosen to influence the control: ω which is
a relaxation parameter, ε, which is used as a tolerance, and tcontrol, which is the time needed to
arrive at the required line with the required orientation.

Control for the momentum

First, we try to find the moment such that after tcontrol the ship has the correct orientation.
Therefor we solve the simplified dynamic momentum equation

d2φ

dt2
=

M

I
.

Integration in time leads to
dφ

dt
=

M

I
t + φ′(t).
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A second integration from time t to time t + tcontrol yields

φ(t + tcontrol) = φ(t) +
M

2I
t2control + φ′(t)tcontrol.

This implies that the required control of the momentum is equal to (including the relaxation
parameter):

M = ω
2I

t2control

(
π

4
− φ(t) − φ′(t)tcontrol).

Control for the forces

The distance from the ship to the line with angle 45o is equal to
√

1

2
|xs − ys|, where xs and ys

are the coordinates of the ship. We only consider the x-direction, because the y-direction can be
done in a similar way. Again we solve the simplified dynamic equation (unless the difference is
less than ε):

m
d2xs

dt2
= Rx.

Integration in time leads to
dxs

dt
=

Rxt

m
+ x′

s(t).

So the distance after t + tcontrol is

distance =
Rx

2m
t2control + x′

s(t)tcontrol.

This implies that the required force is

Rx =
2m

t2control

(distance − x′

s(t)tcontrol).

The choice for the sign of the distance depends on position of the ship above the required line or
below the required line.

In Figure 8 a trajectory of the ship is given for a typical situation.

5 Conclusions

It appears that the Stadyc model for the movement of a ship works very well. The various
difficulties are subdivided into different problems, which can be solved separately. First the optimal
positioning of the thrusters can be computed for the static (Sta) situation. Then the dynamic
(dy) model can be used to predict the trajectory of the ship. Finally, the forces and positions of
the thrusters are adapted in the control (c) model in order to make that the ship follows a given
path as good as possible.
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