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Abstract

For various applications, it is well-known that a two-level-preconditioned Krylov
method is an efficient method for solving large and sparse linear systems. Beside
a traditional preconditioner like incomplete Cholesky decomposition, a projector
has been included as preconditioner to get rid of a number of small and large eigen-
values of the matrix. In literature, various projection methods are known coming
from the fields of deflation, domain decomposition and multigrid. From an ab-
stract point of view, these methods are closely related. The aim of this paper is to
compare these projection methods both theoretically and numerically using vari-
ous elliptic test problems. We investigate their convergence properties and stability
by considering implementation issues, rounding-errors, inexact coarse solves and
severe termination criteria. Finally, we end up with a suggestion of the optimal
second-level preconditioner, which is as stable as the abstract balancing precondi-
tioner and as cheap and fast as the deflation preconditioner.

Keywords: deflation, domain decomposition, multigrid, preconditioning, Krylov
methods, implementation, Poisson equation, hybrid methods, coarse grid correc-
tions.
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CHAPTER 1

Introduction

The Conjugate Gradient (CG) method [13] is a very popular iterative method to
solve large linear systems of equations

Ax = b, A = [aij ] ∈ R
n×n, (1.1)

whose coefficient matrix A is sparse and symmetric positive semi-definite (SPSD).
The convergence rate of CG depends on the condition number of the coefficient
matrix of the linear system, i.e., after m iterations of CG, the error is bounded by,

||x− xk||A ≤ 2||x− x0||A
(√

κ− 1√
κ+ 1

)m

, (1.2)

where x0 is the starting vector, κ = κ(A, x0) denotes the effective spectral condi-
tion number of A related to x0, and ||x||A is the A−norm of x, defined as ||x||A =√
xTAx. If κ is large it is advisable to solve, instead, a preconditioned system

M−1Ax = M−1b, where the symmetric positive definite (SPD) preconditioner
M−1 is chosen such that M−1A has a more clustered spectrum or a smaller condi-
tion number than that of A. Furthermore, systems My = z must be cheap to solve
relative to the improvement it provides in convergence rate.

Nowadays, the design and analysis of preconditioners for the CG method are
in the main focus, whenever a linear system with SPSD coefficient matrix needs
to be solved. Even fast solvers, like multigrid or domain decomposition meth-
ods, are used as preconditioners. Traditional preconditioners are diagonal scal-
ing, basic iterative methods, approximate inverse preconditioning and incomplete
Cholesky preconditioners. However, it appears that the resulting preconditioned
CG method shows slow convergence in many applications with highly refined
grids and flows with high coefficient ratios in the original differential equations.
In these cases, the presence of small eigenvalues has a harmful influence on the
convergence of preconditioned CG.

Nowadays, it appears that beside traditional preconditioners, a second level
preconditioning can be used to get rid of the small eigenvalues. This new type is
also known as projectors or projection methods where extra coarse linear systems
have to be solved. Deflation is one of the frequently used projection methods, see
e.g. [8, 15, 26, 29, 37]. Other typical examples of projectors are additive coarse grid
correction [4, 5] and abstract balancing [16–18] methods which are well-known in
the field of multigrid and domain decomposition methods.

1



2 Chapter 1. Introduction

Various projectors appear to be very useful for problems with large jumps in the
coefficients, combined with domain decomposition methods [31, 34] and in com-
bination with block-Jacobi type preconditioners in parallel computing [9, 36, 38].
Recently, it appeared that the two-level preconditioning can also be useful for prob-
lems with constant coefficients, which are solved on sequential computers [33].

At a first glance, the projectors from deflation, domain decomposition and
multigrid seem not to be comparable. Eigenvector approximations are usually
used as deflation projectors, whereas special projections are built to transfer infor-
mation to the whole domain or to a coarser grid in the cases of domain decomposi-
tion and multigrid. However, from an abstract point of view, these projections are
comparable, or even identical in some sense. In [23–25], theoretical comparisons
are given of the deflation, abstract balancing and additive coarse grid correction
projectors. It has been shown that the deflation method is expected to be faster in
convergence than the additive coarse grid correction or abstract balancing method
by considering e.g. the effective condition numbers, although the spectra of de-
flation and abstract balancing are almost the same. For certain starting vectors,
deflation and abstract balancing even produce the same iterates. In the concise
numerical experiments considering porous media flows, it appeared that although
these projectors seem to be comparable, some of them are instable in the sense that
the residuals of some methods stagnate or even diverge, if the required accuracy
is (too) high. More recent papers about stability of projectors can also be found in
e.g. [2, 11, 12].

The comparisons of deflation, abstract balancing and coarse grid correction
were mainly based on theoretical aspects, whereas the numerical comparison had
been done concisely in the references given above. Additionally, there are more at-
tractive projection methods available in literature, which are not included in these
comparisons. Moreover, some projection methods basically employ the same op-
erators, where some slight differences can only be noticed in the numerical imple-
mentation. Therefore, in this paper we consider a wide set of projection methods
used in different fields. Some more attractive projection methods, which are not
known in literature, are also included in this set. First this set will be compared
theoretically, by considering the corresponding spectral properties, their numerical
implementation and equivalences. Then the main focus will be on the numerical
experiments, where these methods will be tested on their convergence properties
and stability. The effect of the different implementations will be analyzed exten-
sively. The following questions will be investigated in this paper:

• which implementations are stable with respect to rounding errors?

• which implementations can be applied if one uses inaccurate coarse solvers,
severe termination criteria and perturbed starting vectors?

• is there a second level preconditioner, which is as stable as abstract balancing
and as cheap and fast as deflation?

Besides the preconditioners considered in this paper, some other variants are
known as augmented subspace CG [7], deflated Lanczos method [29] and the Odir
and Omin version of CG combined with extra vectors [1]. Since these methods
have already been compared in [29], we refer to this overview paper for the details
about this comparison, see also [30].

This paper is organized as follows. In Chapter 2, we introduce the methods and
their algorithms which will be compared. Chapter 3 is devoted to the theoretical
comparison of these methods. The main of this paper is the numerical compari-
son which is the topic of Chapter 4. Finally, the conclusions are drawn in Chapter 5.



CHAPTER 2

Notations, Methods and their Algorithms

In this chapter, we will give some notations of matrices applied through this paper.
Subsequently, the methods will be defined and motivated, which will be further
compared theoretically and numerically later on. It also includes their algorithms,
because they are of importance during the comparisons.

2.1 Definition of Matrices

In Table 2.1 one can find the matrices used in this paper. We assume that k ≪
n ∈ N and I is the identity matrix of appropriate size. In addition, note that in
the definition of the (coarse grid) correction matrix Q, we assume that the inverse
exists, and otherwise, the pseudo-inverse of E is used.

Meaning Matrix Dimensions

Given SPSD Coefficient matrix A n× n
Given SPD Preconditioning matrix M−1 n× n
Given Deflation Subspace matrix Z n× k
Coarse matrix E := ZTAZ k × k
Correction matrix Q := ZE−1ZT n× n
Deflation matrix P := I −AQ n× n

Table 2.1: Notations of the matrices.

From an abstract point of view, all methods, which will be considered for com-
parison consist of an arbitrary SPD preconditioner M−1 combined with one or
more deflation matrices P and/or correction matrices Q. In the next subsections,
we will give a concise explanation and choices for the matrices in the different
fields. Nevertheless, from our point of view, the given matrices M−1 and Z are
just arbitrary but full rank matrices. This abstract setting allows us to compare the
different approaches used in domain decomposition, multigrid and deflation.

2.1.1 Matrices in Domain Decomposition

In the projection methods used in domain decomposition, such as the balancing
Neumann-Neumann or the (two-level) additive coarse grid correction method, the

3



4 Chapter 2. Notations, Methods and their Algorithms

preconditioner M−1 consists of the local (exact or inexact) solves on the subdo-
mains. For example, M−1 can be the additive Schwarz preconditioner. Moreover,
Z describes a restriction operator, while ZT is the prolongation or interpolation
operator based on the subdomains, which are rectangular but full-ranked. In these
cases, E is the coarse grid or Galerkin matrix and Q is called the coarse grid cor-
rection matrix. To speed up the convergence of the additive coarse grid correction
method, a coarse grid correction Q can be added. Finally, matrix P can be seen as
a subspace correction in which each subdomain is agglomerated into a single cell.
More details can be found in [31, 34].

2.1.2 Matrices in Multigrid

Like in the domain decomposition approach, Z is a restriction operator and ZT

is the prolongation operator in the multigrid field, with the difference that there
can be a connection between some subdomains. Matrices E and Q are again the
coarse grid/Galerkin and the coarse grid correction matrices, corresponding to
the Galerkin approach. Matrix P can be seen as a coarse grid correction using an
interpolation operator with extreme coarsening, where linear systems with E are
usually solved recursively. In the context of multigrid projection methods, M−1

should work as a smoother before a coarse grid correction P . We refer to [35, 40]
for more details.

2.1.3 Matrices in Deflation

In the deflation projection methods, M−1 can be an arbitrary preconditioner such
as the Incomplete Cholesky factorization. Furthermore, matrix Z consists of the
so-called deflation vectors used in the deflation matrix P . In this case, the column
space of Z builds the deflation subspace, i.e., the space to be projected out of the
residuals. It consists of for example eigenvectors, approximations of eigenvectors,
but also piecewise constant or linear vectors which are strongly related to domain
decomposition. If one chooses for eigenvectors, the corresponding eigenvalues
would be moved to zero in the spectra of PA. This fact has motivated the name
deflation method. In literature it is also known as the spectral preconditioner, see
also e.g. [11].

As mentioned earlier, P is the projection or deflation matrix, where the column
space of Z is the deflation subspace. Since k ≪ n and that Z has rank k, coarse
matrix E can be easily computed and factored and it is SPSD for any Z . Usually,
systems with E are solved directly using e.g. Cholesky decomposition.

2.2 Linear System and Preconditioners

Before defining the projection methods, we first deal with the linear system in more
detail and we will derive general combinations of separate preconditioners in this
section. In this paper, ‘seperate preconditioners’ mean separate matrices like M−1,
Q and P without their additive or multiplicative combinations.

For the standard preconditioned CG method we solve

PAx = b, P ,A ∈ R
n×n, (2.1)

where usually b = M−1b is the right-hand side, A = A represents the SPSD coef-
ficient matrix and P = M−1 is an SPD and separate preconditioner. For example,
one can apply CG with the preconditioner P = M−1

PREC, abbreviated by PREC in
this paper.
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Moreover, A can also be a combination of the SPSD matrix A and a projection
matrix P such that A is still SPSD, while P is a standard separate preconditioner.
This will be done in the deflation methods, see Subsection 2.3.1.

Subsequently, instead of choosing a separate preconditioner, different precon-
ditioners/projectors can be combined in an additive or multiplicative way which
can also be used for P . This will be decribed below.

2.2.1 Additive Combination of Preconditioners

The additive combination of two separate SPSD preconditioners C1 and C2 leads
to Pa2

which is the additive preconditioner consisting of two separate precondi-
tioners, i.e.,

Pa2
:= C1 + C2, (2.2)

which should be SPD. Of course the summation of the preconditioners can be done
by different weightings of C1 and C2. Moreover, (2.2) can be easily generalized to
Pai

for more SPD preconditioners C1, C2, . . . , Ci.

2.2.2 Multiplicative Combination of Preconditioners

The multiplicative combination of preconditioners can be easily explained by con-
sidering the stationary iterative methods induced by the preconditioner. We have

xi+ 1

2 = xi + C1(b−Axi),

xi+1 = xi+ 1

2 + C2(b−Axi+ 1

2 ),
(2.3)

with two separate SPD preconditioners C1 and C2. This implies

xi+1 = xi + Pm2
(b−Axi), (2.4)

where

Pm2
:= C1 + C2 − C2AC1 (2.5)

is the multiplicative operator consisting of two separate preconditioners.
In addition, C1 and C2 can again be combined with another preconditioner C3

in a multiplicative way, by taking C1 := Pm2
and C2 := C3 in Expressions (2.3)–

(2.5). This yields

Pm3
= C1 + C2 + C3 − C2AC1 − C3AC2 − C3AC1 + C3AC2AC1. (2.6)

Again this can be generalized to Pmi
for more separate SPSD preconditioners

C1, C2, . . . , Ci.

2.3 Definition of Methods

In this section, the projection methods will be given and motivated.

2.3.1 Deflation Methods

The deflation technique has been exploited by several authors, among them are [9,
10,15,19,20,22–24,26,29,37]. Below we first describe the deflation method follow-
ing [37]. Thereafter we repeat this procedure using another theoretically equiva-
lent approach of the deflation method as used in [15, 19, 20, 26, 29].
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Deflation Method

In order to solve Ax = b we employ

x = (I − PT )x+ PTx. (2.7)

BecauseQ is symmetric and (I−PT )x = QAx = Qb can be immediately computed,
we only need to compute PTx in (2.7). In light of the identity APT = PA which
will be shown in the next chapter, we solve the deflated system

PAx̃ = Pb (2.8)

for x̃ using CG. Then, because one can show that PT x̃ = PTx, solution x can be
obtained via (2.8) by premultiply x̃ by PT and add it to Qb. Obviously, (2.8) is
singular and an SPSD system can only be solved by CG as long as the right-hand
side is consistent, i.e., as long as b = Ax for some x see also [14]. If matrix A is non-
singular, than this is certainly true for (2.8), where the same projection is applied
to both sides of the nonsingular system. If A is singular, then this projection can
also be applied in many cases, see [32, 33].

Subsequently, the deflated system can also be solved by using an SPD precon-
ditioner M−1, leading to

P̃ Ãx̃ = P̃ b,

with
Ã := M−1/2AM−1/2, P̃ = I − ÃZ(ZT ÃZ)−1ZT .

After some transformations this gives

M−1PAx = M−1Pb, (2.9)

see [37] for details.
The linear system (2.9) is of the form of (2.1) by taking P = M−1, A = PA

and b = M−1Pb. Note that this is well-defined since it can be shown that A is still
SPSD. The resulting method is called Deflation Method Variant 1 (DEF1).

Alternative Derivation of Deflation Method

Another way to describe the deflation technique is done by e.g. [15, 19, 20, 26, 29]
which proceeds as follows.

Let x′ be a random vector and suppose

x0 := Qb+ PTx′.

Then, the solution of Ax = b can be constructed in the form

x = x0 + w, (2.10)

where
w = x− x0 = x−Qb− PTx′ = PT (x − x′), (2.11)

by noting that Qb = QAx and PT = I −QA. Due to (2.11), we have

w = PTw, (2.12)

since PT is a projector satisfying (PT )2 = PT . Moreover, premultiplying (2.10) by
A yields

Aw = r0, r0 := b−Ax0. (2.13)
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Next, since (2.12) holds, w is also a solution of the deflated system

APT y = r0. (2.14)

Conversely, given a non-unique solution y of (2.14), we set w := PT y which pro-
vides the required solution of (2.13) that saisfies (2.12). Hence, the solution of
Ax = b can be constructed in the form

x = x0 + PT y, (2.15)

where
x0 := Qb+ PTx′, x′ random, (2.16)

and y is the unique solution of the deflated system

APT y = r0, r0 := b−Ax0. (2.17)

Again, the deflated system (2.17) can also be solved with the preconditioner
M−1, leading to

M−1APT y = M−1r0, (2.18)

and applying (2.15) to find solution x. After some rewriting, solution x can be
uniquely determined from

PTM−1Ax = PTM−1b, (2.19)

where the unique solution x can be found provided that x0 as given in (2.16) has
been used. We refer to e.g. [15] for more details.

The resulting abstract method with various known names is not only used in
the field of deflation, but also in domain decomposition and multigrid, where the
numerical implementation may differ although the linear system is identical, see
also Section 2.5. In this paper, we call it Deflation Variant 2 (DEF2) and Reduced
Balancing Variant 2 (R-BNN2) which are equivalent and only differ in the imple-
mentation. In fact, the implementation of DEF2 is equal to the approach as applied
in e.g. [29], where the deflation method has been derived by combining a deflated
Lanczos procedure and the standard CG algorithm. On the other hand, R-BNN2
is the approach where deflation has been incorporated into the CG algorithm in
a direct way [15] but it is also the approach where a so-called hybrid variant has
been employed in a domain decomposition method [34].

Note that (2.18) can be written in the form of (2.1) by taking P = M−1, A =
APT which is SPSD and b = M−1r0. However, (2.19) is of a different type since it
can obviously not be written as (2.1) with an SPD operator P and an SPSD matrix
A. Fortunately, we will see in the next chapter that both DEF2 and R-BNN2 are
identical to a method, where the resulting linear system appears to be of the form
of (2.1). Hence, DEF2 and R-BNN2 are appropriate methods and we denote their
operators as

PDEF2 = PR-BNN2 = PTM−1. (2.20)

Remark 2.1. The difference between DEF1 and DEF2 is that their projection operators
are flipped. Moreover, in DEF1 the ‘uniqueness-step’, which can be informally written as

x = Qb+ PTx, (2.21)

has been done at the end so that one can use an arbitrarily chosen starting vector x0. On the
contrary, this uniqueness step 2.21 has been carried out in the beginning of DEF2 which
can be interpreted as adopting a ‘special’ starting vector.
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2.3.2 Additive Method

If one substitutes an arbitrary preconditioner C1 = M−1 and a coarse grid cor-
rection matrix C2 = Q into the additive combination as given in (2.2), then this
implies

PAD = M−1 +Q. (2.22)

Using the additive Schwarz preconditioner for M−1, the abstract form (2.22)
includes the additive coarse grid correction preconditioner introduced by Bramble
et al. [3]. This operator has further been analyzed by e.g. [4, 5, 27]. Moreover,
if the multiplicative Schwarz preconditioner has been taken as M−1, we obtain
the so-called Hybrid-2 preconditioner, see [34, p. 47]. In the multigrid language
this preconditioner is sometimes called an additive multigrid preconditioner. In
this paper, we call the resulting method with the operator PAD the additive (AD)
method for convenience.

2.3.3 Adapted Deflation Methods

We take again C1 = Q and C2 = M−1, but now as a multiplicative combination as
given in (2.5) which implies

PA-DEF1 = M−1 +Q−M−1AQ
= M−1P +Q.

(2.23)

In the multigrid language this preconditioner results from the non-symmetric multi-
grid iteration scheme, where one first applies a coarse grid correction followed by
a smoothing step. Note that, althoughQ andM−1 are SPSD preconditioners, (2.23)
is a non-symmetric operator and, even more, it is not symmetric with respect to the
inner product induced by A.

In addition, PA-DEF1 as given in (2.23) can also be seen as an adapted deflation
preconditioner, since the deflation preconditioner M−1P is combined in an addi-
tive way with a coarse grid correction Q. Hence, we call the method associated to
the operator PA-DEF1 the adapted deflation variant 1 (A-DEF1) method.

Subsequently, we can also reverse the order of Q and M−1 in (2.5), i.e., we
choose C1 = M−1 and C2 = Q, then Expression (2.5) yields

PA-DEF2 = Q+M−1 −QAM−1

= PTM−1 +Q.
(2.24)

Using the additive Schwarz preconditioner for M−1, the preconditioner PA-DEF2

is called the two-level Hybrid-II Schwarz preconditioner in [31, p. 48]. In the multi-
grid methods, M−1 is used as a smoother and then PA-DEF2 is the (non-symmetric)
multigrid preconditioner. Again, PA-DEF2 is non-symmetric, also with respect to the
inner product induced by A. Fortunately, in the next chapter we will see that A-
DEF2 with special choices of the starting vector is identical to the abstract balanc-
ing method, which is based on a symmetric operator.

As in the case of PA-DEF1, the operator PA-DEF2 can also be seen as an adapted defla-
tion preconditioner, since the deflation preconditioner PTM−1 is combined with a
coarse grid correction Q in an additive way. Therefore, we call the method corre-
sponding to PA-DEF2 the adapted deflation variant 2 (A-DEF2) method.

2.3.4 Abstract Balancing Methods

The operators PA-DEF1 and PA-DEF2 can be symmetrized by using the multiplicative
combination of three preconditioners. If one takes C1 = Q, C2 = M−1 and C3 = Q
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in Expression (2.6), we obtain

PBNN = M−1 + 2Q−M−1AQ−QAM−1 −QAQ+QAM−1AQ

= Q+M−1(I −AQ) −QAM−1(I −AQ)

= PTM−1P +Q.

In the multigrid language this preconditioner results from a symmetric multigrid
iteration scheme, where one first applies a coarse grid correction followed by a
smoothing step and ended with another coarse grid correction.

In combination with the additive Schwarz preconditioner for M−1, and af-
ter some scaling and special choices of Z , PBNN is well-known as the Balancing-
Neumann-Neumann preconditioner, introduced by Mandel [16]. It has further
been analyzed by e.g. [6, 17, 18, 28, 34]. In the abstract form, PBNN is called the
Hybrid-1 preconditioner in [34, p. 34]. Here, we call it the abstract balancing pre-
conditioner (BNN) following [16–18].

Moreover, we consider two variants of the BNN method. In the first variant we
omit the seperate term Q in PBNN giving us

PR-BNN1 = PTM−1P,

which still remains a symmetric operator. It is an operator which is rather un-
known in literature and therefore it can be interesting to investigate its properties.
The corresponding method is called the reduced balancing variant 1 (R-BNN1)
method.

Furthermore, the second variant of BNN is called the reduced balancing vari-
ant 2 (R-BNN2) method and has already been defined in Subsection 2.3.1, since it is
strongly related to the deflation method. We recall that the corresponding operator
has the following form:

PR-BNN2 = PTM−1.

As mentioned in Subsection 2.3.1, this is a non-symmetric operator, but in the next
chapter we however will see that both PR-BNN1 and PR-BNN2 are identical to PBNN in spe-
cial cases. Therefore, we classify these methods as variants of the original abstract
balancing method rather than on variants of deflation methods.

2.4 Table of the Methods

After introducing the methods, we give all operators of the methods which will be
used for comparison in Table 2.2. In the CG method they can be interpreted as the
preconditioners P as in (2.1) with A = A.

Remark 2.2. Denote Pγi
the class of operators of

γ1M + γ2P
TM−1 + γ3P

TM−1P + γ4M
−1P + γ5Q (2.25)

with γi = {0, 1} for i = 1, . . . , 5 such that
∑4

i=1
γi = 1. Then each of the methods given

in Table 2.2 belongs to the class of Pγi
.

Remark 2.3. Recall that both DEF2 and R-BNN2 are based on the same operator and
differ only in the numerical implementation, see Section 2.5.

2.5 Implementation of the Methods

In this section we consider the implementation of the methods by considering their
algorithms. This will be done in order to analyze the proposed methods with re-
spect to the amount of work, rounding errors, stability etc.
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No. Abbreviation Method Operator

0 PREC Classical Preconditioner M−1

1 AD Additive Coarse Grid Correction M−1 +Q
2 DEF1 Deflation Variant 1 M−1P
3 DEF2 Deflation Variant 2 PTM−1

4 A-DEF1 Adapted Deflation Variant 1 M−1P +Q
5 A-DEF2 Adapted Deflation Variant 2 PTM−1 +Q
6 BNN Abstract Balancing PTM−1P +Q
7 R-BNN1 Reduced Balancing Variant 1 PTM−1P
8 R-BNN2 Reduced Balancing Variant 2 PTM−1

Table 2.2: List of methods which will be compared.

2.5.1 Algorithms

The implementation of all methods we will compare can be found in Algorithms 1–
9. If possible, in the caption of each algorithm we give the references to the most
related implementations known in the literature.

Algorithm 1 PREC (M−1) solving Ax = b, [21]

1: x0 random, r0 := b−Ax0

2: z0 := M−1r0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Precondition: zj+1 := M−1rj+1

9: βj := (rj+1, zj+1)/(rj , zj)
10: pj+1 := zj+1 + βjpj

11: end for
12: x := xj+1

Algorithm 2 AD (M−1 +Q) solving Ax = b, [31]

1: x0 random, r0 := b−Ax0

2: z0 := M−1r0 +Qr0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Precondition: ẑj+1 := M−1rj+1

9: Correction: z̃j+1 := Qrj+1

10: zj+1 := ẑj+1 + z̃j+1

11: βj := (rj+1, zj+1)/(rj , zj)
12: pj+1 := zj+1 + βjpj

13: end for
14: x := xj+1
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Algorithm 3 DEF1 (M−1P ) solving Ax = b, [37]

1: x0 random, r0 := b−Ax0

2: r̂0 = Pr0, z0 := M−1r̂0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: Projection: ŵj := Pwj

6: αj := (r̂j , zj)/(pj , ŵj)
7: x̃j+1 := x̃j + αjpj

8: r̂j+1 := r̂j − αjŵj

9: Precondition: zj+1 := M−1r̂j+1

10: βj := (r̂j+1, zj+1)/(r̂j , zj)
11: pj+1 := zj+1 + βjpj

12: end for
13: x := Qb+ PTxj+1

Algorithm 4 DEF2 (PTM−1) solving Ax = b, [29]

1: x0 random, xs := Qb+ PTx0, r0 := b−Axs

2: z0 := M−1r0, p0 := PT z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Precondition: zj+1 := M−1rj+1

9: βj := (rj+1, zj+1)/(rj , zj)
10: Projection: yj+1 = PT zj+1

11: pj+1 := yj+1 + βjpj

12: end for
13: x := xj+1

Algorithm 5 A-DEF1 (M−1P +Q) solving Ax = b, [31]

1: x0 random, r0 := b−Ax0

2: z0 := M−1Pr0 +Qr0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Projection: yj+1 := Prj+1

9: Precondition: z̃j+1 := M−1yj+1

10: Correction: ẑj+1 := Qrj+1

11: zj+1 := z̃j+1 + ẑj+1

12: βj := (rj+1, zj+1)/(rj , zj)
13: pj+1 := zj+1 + βjpj

14: end for
15: x := xj+1
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Algorithm 6 A-DEF2 (PTM−1 +Q) solving Ax = b, [31]

1: x0 random, xs := Qb+ PTx0, r0 := b−Axs

2: z0 := PTM−1r0 +Qr0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Precondition: yj+1 := M−1rj+1

9: Projection: ẑj+1 := PT yj+1

10: Correction: z̃j+1 := Qrj+1

11: zj+1 := ẑj+1 + z̃j+1

12: βj := (rj+1, zj+1)/(rj , zj)
13: pj+1 := zj+1 + βjpj

14: end for
15: x := xj+1

Algorithm 7 BNN (PTM−1P +Q) solving Ax = b, [16]

1: x0 random, r0 := b−Ax0

2: z0 := PTM−1Pr0 +Qr0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Projection: ŷj+1 := Prj+1

9: Precondition: yj+1 := M−1ŷj+1

10: Projection: ẑj+1 := PT yj+1

11: Correction: z̃j+1 := Qrj+1

12: zj+1 := ẑj+1 + z̃j+1

13: βj := (rj+1, zj+1)/(rj , zj)
14: pj+1 := zj+1 + βjpj

15: end for
16: x := xj+1

Algorithm 8 R-BNN1 (PTM−1P ) solving Ax = b

1: x0 random, xs := Qb+ PTx0, r0 := b−Axs

2: z0 := PTM−1Pr0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Projection: ŷj+1 := Prj+1

9: Precondition: yj+1 := M−1ŷj+1

10: Projection: zj+1 := PT yj+1

11: βj := (rj+1, zj+1)/(rj , zj)
12: pj+1 := zj+1 + βjpj

13: end for
14: x := xj+1
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Algorithm 9 R-BNN2 (PTM−1) solving Ax = b, [34]

1: x0 random, xs := Qb+ PTx0, r0 := b−Axs

2: z0 := PTM−1r0, p0 := z0
3: for j := 0, . . . , until convergence do
4: wj := Apj

5: αj := (rj , zj)/(pj , wj)
6: xj+1 := xj + αjpj

7: rj+1 := rj − αjwj

8: Precondition: yj+1 := M−1rj+1

9: Projection: zj+1 := PT yj+1

10: βj := (rj+1, zj+1)/(rj , zj)
11: pj+1 := zj+1 + βjpj

12: end for
13: x := xj+1

2.5.2 Projection and Precondition Steps

In each algorithm except for PREC, one or more projection and precondition steps
have to be carried out. Except for DEF1 and DEF2, the projection and precondition
steps are basically combined resulting in the preconditioned/projected residuals
zj+1, which consists of the whole operator based on the projections and precondi-
tioners. DEF2 is the only method where a projection or precondition step has been
applied on the search directions pj+1. Finally, DEF1 is the only method where one
substitutes PA intoA in the beginning of each iteration step, i.e., the projection has
been carried out on wj .

2.5.3 Starting Vectors

Note that in DEF2, A-DEF2, R-BNN1 and R-BNN2, the random starting vector x0

is used to create a new ‘special’ starting vector xs. These special choices appear to
be crucial in these methods, which will be further explained in the next chapter.
Furthermore, in the other methods, there is no need to compute and use xs.

2.5.4 Termination Criteria

In all methods we terminate the iterative process if the norm of the relative pre-
conditioned/projected residual, i.e., ||zj+1||2/||z1||2, is below a tolerance ǫ or if the
maximum allowed number of iterations has been reached. Note that this is done
for convenience, since zj+1 has different meanings for each method. For example,
zj+1 is the preconditioned update residual in DEF2, whereas zj+1 represents the
preconditioned-projected update residual in R-BNN2. Although the comparisons
of the methods look unfair due to this fact, they appear to be comparable by also
comparing the real errors in the numerical experiments.

2.5.5 SPD Preconditioner

As earlier mentioned in this chapter, P as given in Expression (2.1) should be SPD
to guarantee convergence of CG. This is however only the case for PREC, AD and
BNN. Due to xs, it can be proven that the methods DEF2, A-DEF2, R-BNN1 and
R-BNN2 can be transformed into BNN (see next chapter), so in fact they are equiv-
alent to a method with an SPD preconditioner. Note that in general this does not
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hold anymore if one perturbs the starting vector xs. This will be further investi-
gated in Chapter 4.

Moreover, recall that the operator M−1P of DEF1 is also proper, because in this
method we based the SPD preconditionerM−1 on the SPSD matrix PA rather than
on A. Since PA is singular, we correct the solution xj+1 at the end so that it leads
to the unique solution x. Note furthermore that if we implement the method in a
naive way by combining M−1P in one step in the algorithm, we obtain a method,
which will generally not work in combination with CG .

Finally, A-DEF1 is the only method which does not have an SPD operator
and which can not be decomposed or transformed into an SPD preconditioner.
Nonetheless, we will see that it works properly in a lot of numerical experiments,
see Chapter 4.

2.5.6 Computational Costs

Below we give a sketch of the required computational costs for each iterate of the
methods. For now it is rather difficult to give detailed information about these
costs, because it depends for example on the choice of M and Z and, moreover, on
the way of implementation and storage of the matrices.

First we give the required operations needed for each iterate in PREC, see Ta-
ble 2.3.

Operation Number

Matrix-vector multiplication (MVM) 1
Inner products (IP) 4
Vector updates (VU) 3
Preconditioning 1

Table 2.3: Computational costs of each iterate of PREC.

Next, we present the efficient implementation of the extra operations Py, PT y
andQy for an arbitrary vector y which has to be carried out in the projection meth-
ods, see Algorithms 10–12. Moreover, the computational work of these algorithms
is given in Table 2.4. Note thatE and its Cholesky decomposition andAZ are com-
puted and stored beforehand, so that matrix-vector multiplications with A are not
required in the algorithms. Moreover, we distinguish two cases considering Z and
AZ :

• Z is sparse and both Z and AZ can each be stored in one vector;

• Z is full and therefore, Z and AZ are full matrices.

Algorithm 10 Operation Py

1: y1 := ZT y
2: solve Ey2 = y1
3: y3 := (AZ)y2
4: Py := y − y3

Remark 2.4. If both P ŷ andQŷ should be computed for the same vector ŷ, like in A-DEF1
and BNN, then the first two steps of Algorithm 12 are not needed. In this case, Qŷ only
requires one inner product if Z is sparse or one matrix-vector multiplication if Z is full.
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Algorithm 11 Operation PT y

1: y1 := (AZ)T y
2: solve Ey2 = y1
3: y3 := Zy2
4: PT y := y − y3

Algorithm 12 Operation Qy

1: y1 := ZT y
2: solve Ey2 = y1
3: y3 := Zy2

(a) Z is full.

Operation Py, PTy Qy

Matrix-vector multiplication (MVM) 2 2
Inner products (IP) 0 0
Vector updates (VU) 1 0
Coarse System Solves (CSS) 1 1

(b) Z is sparse.

Operation Py, PTy Qy

Matrix-vector multiplication (MVM) 0 0
Inner products (IP) 2 2
Vector updates (VU) 1 0
Coarse System Solves (CSS) 1 1

Table 2.4: Computational costs of Py, PT y and Qy.
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Subsequently, the extra computations for each iterate in the projection meth-
ods with respect to PREC are presented in Table 2.5. Recall that AZ and E−1

have already been computed before the iteration process starts. Obviously, AD
is the cheapest method, while BNN and R-BNN1 are the most expensive projec-
tion methods. Finally, observe that using a projection method is only efficient if Z
is sparse or if the number of deflation vectors is relatively small in the case of a full
Z .

(a) Z is full.

Method Py, PT y Qy MVM IP VU CCS

AD 0 1 2 0 0 1
DEF1 1 0 2 0 1 1
DEF2 1 0 2 0 1 1
A-DEF1 1 1 3 0 1 1
A-DEF2 1 1 4 0 1 2
BNN 2 1 5 0 2 2
R-BNN1 2 0 4 0 2 2
R-BNN2 1 0 2 0 1 1

(b) Z is sparse.

Method Py, PT y Qy MVM IP VU CCS

AD 0 1 0 2 0 1
DEF1 1 0 0 2 1 1
DEF2 1 0 0 2 1 1
A-DEF1 1 1 0 3 1 1
A-DEF2 1 1 0 4 1 2
BNN 2 1 0 5 2 2
R-BNN1 2 0 0 4 2 2
R-BNN2 1 0 0 2 1 1

Table 2.5: Extra computational costs of each iterate of the projection methods compared to PREC. IP =

inner products, VU = vector updates and CCS = coarse system solves.



CHAPTER 3

Theoretical Comparison

This chapter is devoted to give a theoretical comparison between the methods de-
fined in the previous chapter. We start with some preliminaries in Section 3.1. Sub-
sequently, a comparison of the eigenvalue distributions of the operators associated
to the projection methods will be given in Section 3.2. Finally, we show that the
abstract balancing method and some other projection methods are equal in exact
arithmetic, see Section 3.3.

3.1 Preliminary Results

In this section some preliminary results are presented which are needed in some
proofs in this chapter. We start with some results from linear algebra, where
σ(A) = {λ1, λ2, . . . , λn} denotes the spectrum of an arbitrary matrix A with eigen-
values λi.

Lemma 3.1. Let A,B ∈ R
n×n be arbitrary invertible or singular matrices. Then the

following equations hold:

(a) σ(AB) = σ(BA);

(b) σ(A+ I) = σ(A) + σ(I);

(c) σ(A) = σ(AT );

Proof. (a) Let λ and v be an eigenvalue and corresponding eigenvector of AB. We
consider two cases:

• λ is nonzero: the corresponding v satisfies ABv 6= 0, so in particular we have
Bv 6= 0. Then the following equations are equivalent

ABv = λv;
BABv = λBv;
BAw = λw,

where w = Bv 6= 0.

• λ is zero: we have
det(AB) = det(BA) = 0,

and hence, if λ is a zero-eigenvalue of AB then it is also a zero-eigenvalue of
BA.

17
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In other words, for both cases λ is an eigenvalue of both AB and BA.
(b) Let λ and v be an eigenvalue and corresponding eigenvector of A+ I , then

the following equations are equivalent

(A+ I)v = λv;
Av = (λ − 1)v;
Av = µv,

where µ = λ− 1. In other words, λ is an eigenvalue of A+ I is equivalent to λ− 1
is an eigenvalue of A.

(c) By definition of determinants, we have det(A − λI) = det(AT − λI) for
all λ.

Subsequently, we give some preliminaries on the matrices as defined in Ta-
ble 2.1, see Lemma 3.2. Most of them have been proven in literature, but for com-
pleteness we also state these proofs here.

Lemma 3.2. The following equalities hold:

(a) P = P 2;

(b) APT = PA;

(c) QA = I − PT ;

(d) PTZ = 0;

(e) PAZ = 0;

(f) QT = Q;

(g) QAQ = Q

(h) QAPT = 0;

(i) QP = 0;

(j) QAZ = Z .

Proof. (a)
P 2 = (I −AZE−1ZT )(I −AZE−1ZT )

= I − 2AZE−1ZT +AZE−1ZTAZE−1ZT

= I − 2AZE−1ZT +AZE−1ZT

= I −AZE−1ZT

= P.

(b)
APT = A(I − ZE−1ZTA)

= A−AZE−1ZTA
= (I −AZE−1ZT )A
= PA.

(c)
QA = ZE−1ZTA

= I − (I − ZE−1ZTA)
= I − PT .

(d)
PTZ = Z − ZE−1ZTAZ

= Z − Z
= 0.
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(e)
PAZ = AZ −AZE−1ZTAZ

= AZ −AZ
= 0.

(f)
QT = (ZE−1ZT )T

= ZE−1ZT

= Q.

(g)
QAQ = (ZE−1ZT )A(ZE−1ZT )

= ZE−1ZT

= Q.

(h)
QAPT = QA(I −QA)

= QA−QAQA
= QA−QA
= 0.

(i)
QP = Q(I −AQ)

= Q−QAQ
= Q−Q
= 0.

(j)
QAZ = (ZE−1ZT )AZ

= Z.

3.2 Comparison of Spectra of Projection Methods

From the literature we already know that the eigenvalue distribution of the oper-
ator corresponding to PREC is always worse than e.g. AD, DEF1 and BNN. For
example, in [39] we have shown that

κ̃
(
M−1PA

)
< κ

(
M−1A

)
, (3.1)

for any SPD matrices A and M and an arbitrary full-ranked Z . This means that
the effective condition number of DEF1 is always below the condition number of
PREC. It appears that the effective condition number of PREC is always larger
than those of the other projection methods. Therefore, we restrict ourselves to the
projection methods in this chapter.

Next, in [23, 24] it has been shown that the effective condition number of DEF1
is below the condition number of both AD and BNN, i.e.,

κ̃
(
M−1PA

)
< κ

(
M−1A+QA

)
, (3.2)

and
κ̃

(
M−1PA

)
< κ

(
PTM−1PA+QA

)
, (3.3)

for all full-ranked Z and SPD matrices A and M−1.
Besides the comparisons of AD, DEF1 and BNN done in e.g. [23–25], some

more relations between the eigenvalue distribution of these and the other projec-
tion methods can be found below.

First we show that the operators of DEF1, DEF2, R-BNN1 and R-BNN2 have
the same spectra.
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Lemma 3.3. The spectra corresponding to the operators of DEF1, DEF2, R-BNN1 and
R-BNN2 are the same, i.e.,

σ
(
M−1PA

)
= σ

(
PTM−1A

)
= σ

(
PTM−1PA

)
.

Proof. (i) Equality σ
(
M−1PA

)
= σ

(
PTM−1A

)
follows from

σ
(
M−1PA

)
=L3.1a σ

(
AM−1P

)
=L3.1c σ

(
PTM−1A

)
.

(ii) Equality σ
(
M−1PA

)
= σ

(
PTM−1PA

)
holds since

σ
(
M−1PA

)
=L3.2a σ

(
M−1P 2A

)

=L3.2b σ
(
M−1PAPT

)

=L3.1a, L3.2d,e σ
(
PTM−1PA

)
.

Next, we show that the eigenvalues of the corresponding operators of BNN,
A-DEF1 and A-DEF2 are identical.

Lemma 3.4. The spectra of BNN, A-DEF1 and A-DEF2 are the same, i.e.,

σ
(
(PTM−1P +Q)A

)
= σ

(
(M−1P +Q)A

)
= σ

(
(PTM−1 +Q)A

)
.

Proof. (i) Equality σ
(
(PTM−1P +Q)A

)
= σ

(
(M−1P +Q)A

)
follows from

σ
(
PTM−1PA+QA

)
=L3.2c σ

(
PTM−1PA− PT + I

)

=L3.1b σ
(
PT (M−1PA− I)

)
+ σ(I)

=L3.1a σ
(
(M−1PA− I)PT

)
+ σ(I)

=L3.2b σ
(
M−1P 2A− PT

)
+ σ(I)

=L3.1b σ
(
M−1P 2A− PT + I

)

=L3.2c σ
(
M−1P 2A+QA

)

=L3.2a σ
(
M−1PA+QA

)
.

(ii) Equality σ
(
(PTM−1 +Q)A

)
= σ

(
(PTM−1P +Q)A

)
is true because

σ
(
PTM−1A+QA

)
=L3.2c σ

(
PTM−1A− PT + I

)

=L3.1b σ
(
PTM−1A− PT

)
+ σ(I)

=L3.1c σ
(
AM−1P − P

)
+ σ(I)

=L3.2a σ
(
AM−1P 2 − P

)
+ σ(I)

=L3.1a σ
(
PAM−1P − P

)
+ σ(I)

=L3.1c σ
(
PTM−1APT − PT

)
+ σ(I)

=L3.2b σ
(
PTM−1PA− PT

)
+ σ(I)

=L3.1b σ
(
PTM−1PA− PT + I

)

=L3.2c σ
(
PTM−1PA+QA

)
.

As a consequence, the methods DEF1, DEF2, R-BNN1 and R-BNN2 can be seen
as one class of projection methods. Conversely, BNN, A-DEF1 and A-DEF2 form
another class of projection methods. These two classes can be connected by Theo-
rem 2.8 of [24], which states that if σ(M−1PA) = {0, . . . , 0, µk+1, . . . , µn}, is given,
then σ(PTM−1PA + QA) = {1, . . . , 1, µk+1, . . . , µn}. It appears that the reverse
statement also holds. For completeness, these results are given in Theorem 3.1.
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Theorem 3.1. Let the spectra of DEF1 and BNN be given by

σ(M−1PA) = {λ1, . . . , λn}, σ(PTM−1PA+QA) = {µ1, . . . , µn},

respectively. Then, the order of the eigenvalues within these spectra can be changed such
that

λi = 0, µi = 1, i = 1, . . . , k.

and
λi = µi, i = k + 1, . . . , n.

Proof. First of all, by using Lemma 3.2e and 3.2j, we have

(PTM−1P +Q)AZ = PTM−1PAZ +QAZ = 0 + Z = Z,

and
M−1PAZ = 0.

As a consequence, the columns of Z are the eigenvectors corresponding to the
eigenvalues of BNN and DEF1 which are equal to 1 and 0, respectively.

Next, due to Theorem 2.8 of [24], it suffices to show that if σ(PTM−1PA +
QA) = {1, . . . , 1, µk+1, . . . , µn} holds then this implies σ(M−1PA) = {0, . . . , 0,
µk+1, . . . , µn}. The proof is as follows.

Consider the eigenvalues µi and corresponding eigenvectors vi with i = k +
1, . . . , n of BNN, i.e.,

(PTM−1P +Q)Avi = µivi,

which implies
PT (PTM−1P +Q)Avi = µiP

T vi. (3.4)

Applying Lemma 3.2a, 3.2b, 3.2d, 3.2i, we have

(PT )2M−1PA+ PTQA = PTM−1P 2A+ 0 = PTM−1PAPT .

Using the latter expression, Eq. (3.4) can be rewritten into

PTM−1PAwi = µiwi.

where wi := PT vi. Note that due to Lemma 3.2d we have PTx = 0 if x ∈ Col(Z).
However, wi 6= 0 since vi /∈ Col(Z) for i = k + 1, . . . , n. Hence, µi is also an
eigenvalue of PTM−1PA. Lemma 3.3 gives

σ
(
M−1PA

)
= σ

(
PTM−1PA

)
,

so that µi is also an eigenvalue of DEF1.

Hence, both operators of DEF1 and BNN lead to almost the same spectra with
the same clustering. The zero eigenvalues of DEF1 are replaced by eigenvalues,
which are one if BNN is used. Next, we give Corollary 3.1 which connects all
methods in terms of spectra. It can be concluded that they all lead to almost the
same spectra with the same clusters of eigenvalues.

Corollary 3.1. Suppose the spectrum of DEF1, DEF2, R-BNN1 or R-BNN2 is given
by {0, . . . , 0, λk+1, . . . , λn}. Moreover, let the spectrum of DEF1, DEF2, R-BNN1 or
R-BNN2 be {1, . . . , 1, µk+1, . . . , µn}. Then, if λi and µi in the spectra are increasingly
sorted, then λi = µi for all i = k + 1, . . . , n.

Remark 3.1. The convergence of the methods depend on more aspects rather than only on
the spectra of the preconditioned systems. It can also be influenced by aspects like starting
vectors, rounding errors and manner of implementation. Although BNN, A-DEF1 and
A-DEF2 are the same by considering their spectra, they all have their own properties and
convergence rates. These also hold for DEF1, DEF2, R-BNN1 and R-BNN2.
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3.3 Identity of Abstract Balancing and Other Projec-

tion Methods

In this section, we will compare BNN and the methods DEF2, A-DEF2, R-BNN1
and R-BNN2. Since the BNN operator is SPD, it works appropriately for an SPSD
matrix A. This is in contrast to DEF2, A-DEF2, R-BNN1 and R-BNN2, which obvi-
ously correspond to non-SPD operators. Sometimes the latter methods works ap-
propriately, but this can not be proved. Fortunately, for special starting vectors, we
can show that these methods are completely identical to BNN in exact arithmetic,
see also Section 2.5.2 of [34]. As a consequence, these methods give appropriate
operators as well, so that CG in combination with them will work fine.

It can be shown that Line 8 and Line 11 are not needed in Algorithm 7 if we
extend the first line with

x0 := Qb+ PTx0. (3.5)

In other words both ŷj+1 := Prj+1 = rj+1 and z̃j+1 := Qrj+1 = 0 hold for all
j = 1, 2, . . . and for special starting vector as given in Exp. (3.5), see also [34].
For completeness both results and corresponding proofs are given in Lemma 3.5
and 3.6.

Lemma 3.5. Suppose that in Line 1 of Algorithm 7 has been extended with x0 := Qb+
PTx0. Then, Line 11 of this algorithm gives Qrj+1 = 0 for all j = 1, 2, . . . and Qr1 = 0.

Proof. The proof is given by induction.

• Starting Case: we prove that Qr1 = 0 and QAp1 = 0. First,

Qr1 = Q
(
b−A(Qb− PTx0)

)

= Qb−QAQb+QAPTx0

=L3.2g,h Qb−Qb
= 0.

Moreover,
QAp1 = QA(PTM−1P +Q)r1

= QAPTM−1Pr1 +Qr1
=L3.2h 0 + 0
= 0.

• Inductive Hypothesis (IH): we assume that Qrj = 0 and QApj = 0.

• Inductive Step: we show that Qrj+1 = 0 and QApj+1 = 0:

Qrj+1 = Q(rj − αjApj)
= Qrj − αjQApj

=IH 0 − 0
= 0,

and also
QApj+1 = QA(zj+1 + βjpj)

= QAzj+1 + βjQApj

= QA(PTM−1P +Q)rj+1)
= QAPTM−1Prj+1 +QAQrj+1

=L3.2h 0 + 0
= 0.
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Lemma 3.6. Suppose that Line 1 of Algorithm 7 has been extended with x0 := Qb+PTx0.
Then Line 8 of Algorithm 7 gives Prj+1 = rj+1 for all j = 1, 2, . . . and Pr1 = r1.

Proof. We give this proof also by induction.

• Starting Case: we show that Pr1 = r1 and PAp1 = Ap1:

Pr1 = P
(
b−A(Qb− PTx0)

)

= Pb− PAQb− PAPTx0

=L3.2h Pb− PAPTx0

=L3.2b Pb− A(PT )2x0

=L3.2a Pb− APTx0

= b−AQb−APTx0

= b−A(Qb+ PTx0)
= b−Ax0

= r1.

and furthermore,

PAp1 = PAPTM−1Pr1
= PAPTM−1r1
=L3.2b A(PT )2M−1r1
=L3.2a APTM−1r1
= APTM−1Pr1
= Ap1,

where we used p1 = PTM−1Pr1 +Qr1 = PTM−1Pr1 in the last step, apply-
ing Lemma 3.5.

• Inductive Hypothesis (IH): we assume that Prj = rj and PApj = Apj .

• Inductive Step: we prove that Prj+1 = rj+1 and PApj+1 = Apj+1:

Prj+1 = Prj − αjPApj

=IH rj − αjApj

= rj+1,

and
PApj+1 = PA(zj+1 + βjpj)

= PAzj+1 + βjPApj

= PAPTM−1Prj+1 + βjApj

= PAPTM−1rj+1 + βjApj

=L3.2b A(PT )2M−1rj+1 + βjApj

=L3.2a APTM−1rj+1 + βjApj

= APTM−1Prj+1 + βjpj

= A(zj+1 + βjpj)
= Apj+1,

where we applied zj+1 = PTM−1Prj+1 + Qrj+1 = PTM−1Prj+1 which is
the result of Lemma 3.5.

Remark 3.2. Note that we need the result of Lemma 3.5 in order to obtain Lemma 3.6.
In other words, if Qrj 6= 0 then Lemma 3.6 would not be true. Moreover, note that from
Lemma 3.6 we proved implicitly that the residuals are orthogonal to the deflation subspace
matrix Z , i.e.,

ZT rj = 0, j = 1, 2, . . . . (3.6)

To be more precise, using induction we can show Expression (3.6) and, therefore, Prj =
rj −AZE−1(ZT rj) = rj follows immediately.
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Hence, by comparing the algorithms we conclude that if (3.5) has been adapted,
then the BNN method is completely identical to R-BNN1, R-BNN2, A-DEF2 and
also to DEF2, since the operator PTM−1 is the same in R-BNN2 and DEF2. This
result is summarized in Corollary 3.2.

Corollary 3.2. BNN with the special starting vector (i.e., BNN extended with Expres-
sion (3.5) is identical to DEF2, A-DEF2, R-BNN1 and R-BNN2.

Remark 3.3. Because of rounding errors, it may be possible that Lemma 3.5 and 3.6 are
not fully satisfied in numerical experiments. Therefore, although BNN, DEF2,A-DEF2,
R-BNN1 and R-BNN2 are identical in exact arithmetic, all methods except for BNN may
lead to inaccurate solutions and even instabilities in these numerical experiments. In these
cases, Line 8 and 11 of the BNN algorithm appear to be important and can not be omitted
in these methods.



CHAPTER 4

Numerical Experiments

After comparing the projection methods theoretically in the previous chapter, we
will perform numerical experiments in this chapter to give also a numerical com-
parison of these methods.

First we describe the test problems and the settings of the numerical experi-
ments. Subsequently, the results of these experiments will be presented by giving
the number of iterations and the 2−norms of the exact errors in table form and by
giving the exact errors in the A−norm during the iteration process in figure form.
These errors can be computed because we will also solve the resulting linear sys-
tems in a direct way Solutions obtained with a direct and iterative solver will be
denoted by x and xi, respectively. Moreover, figures with the residuals and exact
errors in the 2−norm and during the iteration processes are omitted in this paper,
since they all show the same comparable behaviors in our test cases.

We will start with the numerical experiments using standard parameters, which
means that we apply an appropriate termination criterion and an exact computa-
tion of E−1 and starting vector in these experiments. Subsequently, numerical ex-
periments will be performed with inexact matrix E−1, a severe termination crite-
rion and a perturbed starting vector, respectively. Finally, we end this chapter with
some experiments and notes on reorthogonalization strategies for non-converging
methods.

4.1 Settings

The test problems and matrices M and Z will be described, which are used in the
numerical experiments.

4.1.1 Test Problems

In the numerical experiments we consider three different 2-D test problems, which
will be described below

Laplace Problem (TP1)

In Test Problem 1 (TP1), we consider the standard Laplace equation, i.e.,

∆p(x) = 0, x = (x, y) ∈ Ω = (0, 1)2, (4.1)

25
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with a Dirichlet condition on the boundary y = 1 and homogenous Neumann
conditions on the other boundaries.

Porous Media Problem (TP2)

In Test Problem 2 (TP2), the Poisson equation with a discontinuous coefficient, i.e.,

−∇ ·
(

1

ρ(x)
∇p(x)

)
= 0, x = (x, y) ∈ Ω = (0, 1)2, (4.2)

is considered with ρ and p denoting the permeability and fluid pressure, respec-
tively. In addition, we have again a Dirichlet condition on the boundary y = 1
and homogenous Neumann conditions on the other boundaries. The form of the
permeability ρ is given in Figure 4.1. Furthermore, we define the contrast ǫ as the
jump between the highest and lowest permeability, i.e., ǫ := 10−6/100 = 10−6.

Sandstone

Shale

Shale

Sandstone

Shale

10

10

10

10

10

0

−6

0

−6

0

Composition Permeability

Figure 4.1: The permeability in the porous media problem (TP2).

Bubbly Flow Problem (TP3)

In Test Problem 3 (TP3), we investigate a bubbly flow problem. In this case, we
have again the Poisson equation with discontinuous coefficient, i.e.,

−∇ ·
(

1

ρ(x)
∇p(x)

)
= 0, (4.3)

where we choose for non-homogeneous Neumann boundaries such that the result-
ing linear system is compatible. Finally, the form of the permeability ρ is given in
Figure 4.2, where we again define the contrast as ǫ := 10−3/100 = 10−3.

4.1.2 Matrix A and Preconditioner M−1

We use a standard second-order finite-difference scheme to discretize the test prob-
lems, which results in our main linear system

Ax = b, A ∈ R
n×n. (4.4)

The exact definition of A depends on the test problems. In the numerical experi-
ments the gridsizes and permeabilities can be varied.

Moreover, in this paper we will restrict ourselves to the Incomplete Cholesky
(IC) preconditioner MIC, which is defined as MIC := LD−1LT with lower triangu-
lar matrix L = [lij ] and diagonal matrix D = [dij ] satisfying [21]:
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10−3 10−3

100

10−310−3

10−3

PermeabilityComposition

water

air air

air air

air

Figure 4.2: The permeability in the bubbly flow problem (TP3).

• lij = 0 if aij = 0;

• (LD−1LT )ij = aij if aij 6= 0 and lii = dii.

4.1.3 Deflation Subspace Matrix Z

Let the open domain Ω be divided into k open subdomains Ωj , j = 1, 2, . . . , k, such
that Ω = ∪k

j=1Ωj and ∩k
j=1Ωj = ∅ where Ωj is Ωj including its adjacent boundaries.

The discretized domain and subdomains are denoted by Ωh and Ωhj
, respectively.

For each Ωhj
with j = 1, 2, . . . , k, we introduce a deflation vector zj as follows:

(zj)i :=

{
0, xi ∈ Ωh \ Ωhj

;
1, xi ∈ Ωhj

,

where xi is a grid point in the discretized domain Ωh. Then the deflation subspace
matrix Z is defined as

Z := [z1 z2 · · · zk] ∈ R
n×k.

Hence, Z consists of orthogonal disjunct piecewise-constant vectors.

Remark 4.1. In TP1 and TP2, matrix A is invertible. However, due to the Neumann
boundary conditions, we have a singular matrix A in TP3, which satisfies the condition
that the rowsums are zero. Due to the construction of the deflation vectors, E also appears
to be singular. In this case, we can only use the pseudo-inverse rather than the real inverse
of E. Here, we choose for another approach where we omit the last column of Z , i.e.,

Z := [z1 z2 · · · zk−1] ∈ R
n×k−1,

resulting in an invertible matrix E. We do not lose generality, since the row sums of A are
zero and therefore the null space of PA with both choices of Z is the same, see also [32,33].

Finally, in this paper we restrict ourselves to two settings of domain decompo-
sitions of Ωj : one with layers and the other with blocks. The associated geometries
are depicted in Figure 4.3.

In TP1 we only use layers as deflation subdomains Ωj . Moreover, in TP2, we
also apply layers as deflation subdomains, where each layer of the problem cor-
responds to one subdomain. Hence, the number of deflation vectors is equal to
the total number of shale and sandstone layers in the problem. Finally, instead of
choosing layers as subdomains, we will apply blocks as deflation subdomains in
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Ω3

Ω2

Ω4

Ω1

Ω5

(a) Subdomains in layers used in TP1
and TP2.

Ω1 Ω2

Ω3 Ω4

(b) Subdomains in blocks used in TP3.

Figure 4.3: Geometry of subdomains Ωj .

TP3. This means that each block can consist of regions with several permeabilities,
making the situation in this case more sophisticated than in TP1 or TP2. Note that
the deflation vectors are fixed in TP2, while they can be varied in TP1 and TP3.

In this case, we deal with a linear system, which is singular but this is not
troublesome, see also the next section.

4.2 Numerical Results using Standard Parameters

Numerical experiments are performed using standard parameters with termina-
tion criterion ||zj+1||/||z1|| < δ = 10−8, exact E−1 and exact starting vectors. The
results considering TP1, TP2 and TP3 will be presented in the next subsections.

4.2.1 Test Problem 1: Laplace Problem

The results of the numerical experiments considering TP1 can be found in Table 4.1
and Figure 4.4. The number of deflation vectors k and the number of grid points n
have been varied in these experiments.

Method n = 292, k = 5 n = 542, k = 5 n = 412, k = 7 n = 552, k = 7
# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2

PREC 57 4.4 × 10−7 74 6.5 × 10−7 79 9.5 × 10−7 100 4.7 × 10−6

AD 47 9.1 × 10−7 58 9.7 × 10−7 65 1.9 × 10−6 76 2.1 × 10−6

DEF1 44 5.0 × 10−7 55 1.3 × 10−6 60 7.4 × 10−7 74 2.1 × 10−6

DEF2 44 5.0 × 10−6 55 1.3 × 10−6 60 7.4 × 10−7 74 2.1 × 10−6

A-DEF1 44 9.9 × 10−7 57 3.1 × 10−6 63 2.6 × 10−6 77 2.3 × 10−6

A-DEF2 45 2.1 × 10−7 56 6.5 × 10−7 60 7.4 × 10−7 74 2.1 × 10−6

BNN 44 5.2 × 10−7 56 6.5 × 10−7 60 7.4 × 10−7 74 2.1 × 10−6

R-BNN1 45 2.1 × 10−7 56 6.5 × 10−7 60 7.4 × 10−7 74 2.1 × 10−6

R-BNN2 45 2.1 × 10−7 56 6.5 × 10−7 60 7.4 × 10−7 74 2.1 × 10−6

Table 4.1: Number of required iterations for convergence and the 2−norm of the exact error of all
proposed methods for TP1 with standard parameters.

Observation 4.1. Considering both Table 4.1 and Figure 4.4, we observe that
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• all methods, except for PREC, AD and A-DEF1, perform more or less the same;

• A-DEF1 is somewhat slower in convergence and less accurate in the solutions than
the other methods except for IC and AD;

• as expected, PREC is obviously the slowest method, followed by AD. However, note
that the differences between AD and the other projection methods are relatively small.

4.2.2 Test Problem 2: Layer Problem

Similar to the previous subsection, the results of the numerical experiments with
TP2 are presented in Table 4.2 and Figure 4.5.

Method n = 292, k = 5 n = 542, k = 5 n = 412, k = 7 n = 552, k = 7
# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2

PREC 101 2.2 × 10−7 135 3.9 × 10−7 188 2.3 × 10−7 236 6.3 × 10−7

AD 60 5.0 × 10−7 74 1.7 × 10−6 76 1.7 × 10−6 92 3.2 × 10−7

DEF1 53 2.2 × 10−7 68 5.9 × 10−7 68 3.0 × 10−7 85 4.1 × 10−7

DEF2 53 2.2 × 10−7 68 5.9 × 10−7 68 2.9 × 10−7 85 4.3 × 10−7

A-DEF1 60 4.6 × 10−7 76 7.0 × 10−7 69 2.5 × 10−6 86 8.8 × 10−7

A-DEF2 53 2.5 × 10−7 69 2.6 × 10−7 68 2.8 × 10−7 85 4.5 × 10−7

BNN 53 2.4 × 10−7 69 2.6 × 10−7 68 2.8 × 10−7 85 4.3 × 10−7

R-BNN1 53 2.2 × 10−7 69 2.6 × 10−7 68 2.8 × 10−7 85 4.2 × 10−7

R-BNN2 53 2.2 × 10−7 69 2.8 × 10−7 68 2.9 × 10−7 85 4.3 × 10−7

Table 4.2: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP2 with ǫ = 10−6 and standard parameters.

Observation 4.2. Considering both Table 4.2 and Figure 4.5, we can make exactly the
same observations as done in the previous subsection:

• all methods, except for PREC, AD and A-DEF1, perform more or less the same;

• A-DEF1 is somewhat slower in convergence and less accurate in the solutions than
the other methods except for IC and AD;

• PREC is obviously the slowest method, followed by AD. The differences between AD
and the other projection methods are relatively small, although the plots show erratic
behavior for AD.

Finally, note that the methods, especially PREC, require more iterations to converge com-
pared to TP1.



30 Chapter 4. Numerical Experiments

5 10 15 20 25 30 35 40 45

10
−6

10
−4

10
−2

10
0

Iteration
A

−
no

rm
 o

f t
he

 R
ea

l E
rr

or
s

Test Problem 1 (Laplace): Comparison of the Real Errors in A−norm

 

 
AD
DEF1
DEF2
A−DEF1
A−DEF2
BNN
R−BNN1
R−BNN2

(a) n = 292, k = 5.

5 10 15 20 25 30 35 40 45 50 55
10

−6

10
−4

10
−2

10
0

Iteration

A
−

no
rm

 o
f t

he
 R

ea
l E

rr
or

s

Test Problem 1 (Laplace): Comparison of the Real Errors in A−norm

 

 
AD
DEF1
DEF2
A−DEF1
A−DEF2
BNN
R−BNN1
R−BNN2

(b) n = 392, k = 5.
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(c) n = 412, k = 7.
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(d) n = 552, k = 7.

Figure 4.4: Exact errors in the A−norm for TP1 with standard parameters.
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(c) n = 412, k = 7.
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(d) n = 552, k = 7.

Figure 4.5: Exact errors in the A−norm for TP2 with standard parameters.
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4.2.3 Test Problem 3: Bubbly Flow Problem

Similar to the previous subsections, the results of the numerical experiments with
TP3 are presented in Table 4.3 and Figure 4.6. Now, we keep the number of grid
points n constant and we vary the number of deflation vectors k and also the con-
trast ǫ of the density.

Method k = 22 k = 42 k = 82

# It. ||x− xi||2 # It. ||x− xi||2 # It. ||x − xi||2
PREC 135 1.8 × 10−5 135 1.8 × 10−5 135 1.8 × 10−5

AD 157 1.9 × 10−6 160 1.3 × 10−6 59 1.1 × 10−6

DEF1 146 1.7 × 10−6 144 1.2 × 10−6 39 1.8 × 10−6

DEF2 146 1.7 × 10−6 144 1.2 × 10−6 39 1.8 × 10−6

A-DEF1 192 3.8 × 10−5 NC 3.4 × 10−4 45 1.5 × 10−6

A-DEF2 146 1.7 × 10−6 144 1.2 × 10−6 40 1.1 × 10−6

BNN 146 1.7 × 10−6 144 1.2 × 10−6 40 1.1 × 10−6

R-BNN1 146 1.7 × 10−6 144 1.2 × 10−6 40 1.1 × 10−6

R-BNN2 146 1.7 × 10−6 144 1.2 × 10−6 40 1.1 × 10−6

Table 4.3: Number of required iterations for convergence and the 2−norm of the exact error of all pro-

posed methods for TP3 with ǫ = 10−3, n = 642 and standard parameters. ‘NC’ means no convergence
within 250 iterations.

Observation 4.3. Considering both Table 4.3 and Figure 4.6, we observe that

• all methods perform the same, except for PREC, AD and A-DEF1.

• A-DEF1 converges badly in some experiments, especially for the cases with k = 22

and k = 42;

• in the cases of k = 22 and k = 42, the number of deflation vectors is apparently
too few to capture all eigenvectors corresponding to the small eigenvalues which is
the result of the presence of the bubbles. Therefore, we hardly see improvements by
comparing all projection methods to PREC. Note moreover that in these cases PREC
requires less iterations than the other methods (which is unexpected and undesired),
but the corresponding solution is somewhat less accurate than the others.
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(c) k = 82.

Figure 4.6: Exact errors in the A−norm for TP3 with ǫ = 10−3, n = 642 and standard parameters.
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Subsequently, the results with ǫ = 10−6 can be found in Table 4.4 and Figure 4.7.

Method k = 22 k = 42 k = 82

# It. ||x− xi||2 # It. ||x− xi||2 # It. ||x − xi||2
PREC 180 1.7 × 10−6 180 1.7 × 10−6 180 1.7 × 10−6

AD 185 1.3 × 10−4 194 9.0 × 10−4 60 1.1 × 10−6

DEF1 213 1.5 × 10−6 212 2.8 × 10−6 NC 1.1 × 100

DEF2 216 1.2 × 10−6 211 3.2 × 10−6 NC 1.2 × 10+2

A-DEF1 NC 2.8 × 10−2 NC 1.1 × 10−1 46 1.4 × 10−6

A-DEF2 213 2.5 × 10−6 211 4.5 × 10−6 41 1.0 × 10−6

BNN 216 1.2 × 10−6 211 1.6 × 10−6 41 1.0 × 10−6

R-BNN1 216 2.2 × 10−6 211 5.1 × 10−6 41 1.0 × 10−6

R-BNN2 221 1.8 × 10−6 211 2.6 × 10−6 41 1.2 × 10−6

Table 4.4: Number of required iterations for convergence and the 2−norm of the exact error of all pro-

posed methods for TP3 with ǫ = 10−6, n = 642 and standard parameters. ‘NC’ means no convergence
within 250 iterations.

Observation 4.4. Considering both Table 4.4 and Figure 4.7, we notice that

• the methods A-DEF2, BNN, R-BNN1 and R-BNN2 perform more or less the same.

• as in the previous subsection with ǫ = 10−3, A-DEF1 has some problems for the
cases with k = 22 and k = 42 where the method hardly converges;

• the projection methods perform again worse compared to PREC for k = 22 and
k = 42;

• both DEF1 and DEF2 diverge in the case of k = 82. In the figure we see that they do
not reach a high accuracy in contrast to the other methods. Apparently, DEF1 and
DEF2 are sensitive for the value of the contrast ǫ. It seems that these methods can
not reach the required accuracy for this ill-conditioned problem.
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(b) k = 42.
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(c) k = 82.

Figure 4.7: Exact errors in the A−norm for TP3 with ǫ = 10−6, n = 642 and standard parameters.
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4.3 Numerical Results using Inaccurate Coarse Solves

In practice it can be difficult to find an accurate solution y of the coarse system
Ey = z at each iterate of a projection method. Instead, only a approximated solu-
tion ỹ may be available if one applies for instance an iterative solver for Ey = z
with a relatively large stopping tolerance. In this case, ỹ can be interpreted as

ỹ = Ẽ−1x where Ẽ is an inexact matrix based on E. This motivates our next ex-
periment where we use Ẽ−1, which is defined as follows:

Ẽ−1 := (I + ψR)E−1(I + ψR), ψ > 0, (4.5)

where R ∈ R
n×n is a symmetric random matrix with elements from the interval

[−0.5, 0.5]. Note that this perturbed matrix Ẽ−1 is not general, since it is constant
at each iterate. The sensitivity of the methods to this inaccurate coarse matrix with
various values of ψ will be investigated in this section. Note that the results for
PREC are not influenced by this adaption of E−1. In this section they are are only
included for reference.

The numerical experiments and results considering all test problems will be
presented in the same manner as in the previous section.

4.3.1 Test Problem 1: Laplace Problem

The results of TP1 with n = 292 and k = 5 can be found in Table 4.5 and Figures 4.8
and 4.9.

Method ψ = 10−8 ψ = 10−6 ψ = 10−4

# It. ||x− xi||2 # It. ||x− xi||2 # It. ||x− xi||2
PREC 57 4.4 × 10−7 57 4.4 × 10−7 57 4.4 × 10−7

AD 47 9.1 × 10−7 47 9.1 × 10−7 47 9.0 × 10−7

DEF1 44 1.5 × 10−6 177 9.2 × 10−7 135 1.1 × 10−7

DEF2 44 1.5 × 10−6 NC 1.9 × 10+3 NC 2.1 × 10+3

A-DEF1 44 9.9 × 10−7 44 9.9 × 10−7 44 1.0 × 10−6

A-DEF2 45 2.1 × 10−7 45 2.1 × 10−7 45 2.1 × 10−7

BNN 45 2.1 × 10−7 45 2.1 × 10−7 45 2.1 × 10−7

R-BNN1 45 4.3 × 10−7 45 2.8 × 10−5 71 8.3 × 10−4

R-BNN2 45 1.2 × 10−6 NC 1.0 × 10−4 NC 1.1 × 10−2

Method ψ = 10−2 ψ = 100

# It. ||x− xi||2 # It. ||x− xi||2
PREC 57 4.4 × 10−7 57 4.4 × 10−7

AD 48 7.4 × 10−7 74 2.0 × 10−6

DEF1 90 4.7 × 10−7 74 4.9 × 10−7

DEF2 NC 1.1 × 10+3 NC 1.1 × 10+2

A-DEF1 44 1.8 × 10−6 NC 8.0 × 100

A-DEF2 45 2.5 × 10−7 NC 1.3 × 10+1

BNN 45 2.1 × 10−7 52 2.8 × 10−5

R-BNN1 130 4.3 × 10−7 75 3.5 × 10−5

R-BNN2 NC 8.3 × 10−1 NC 1.1 × 10+1

Table 4.5: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP1 with parameters n = 292, k = 5 and inaccurate E−1.

Observation 4.5. Considering Table 4.5 and Figure 4.8 and 4.9, we observe that
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• for ψ ≤ 10−8, all methods converge appropriately;

• BNN is the most stable method in all test cases, although it also shows some problems
in the case of ψ = 100. Therefore, in fact ψ = 10−2 is the smallest perturbation
which can be chosen for a fair comparison between the methods;

• for ψ ≤ 10−2, AD, BNN, A-DEF1 and A-DEF2 show good results and, hence, they
are the most stable methods;

• DEF2 and R-BNN2 do not converge at all for all perturbations ψ ≥ 10−6, while
R-BNN1 converges only properly for sufficiently small ψ.

• DEF1 converges to the solution, but with a slow speed. Therefore it is more robust
than for instance DEF2. Notice that the speed of convergence of DEF1 is faster for
larger ψ. The explanation is that the smallest eigenvalues are nearly zero for small
ψ, while for larger ψ the smallest eigenvalues also become larger resulting in faster
convergence.

4.3.2 Test Problem 2: Poisson Problem

Similar to the previous subsection, the results considering TP2 can be found in
Table 4.6 and Figure 4.10. Note that we use a different range of ψ compared to TP1,
since the condition of matrix E is different in these test problems.

Method ψ = 10−16 ψ = 10−12 ψ = 10−8 ψ = 10−4

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
PREC 101 2.2 × 10−7 101 2.2 × 10−7 101 2.2 × 10−7 101 2.2 × 10−7

AD 60 4.9 × 10−7 60 5.0 × 10−2 60 4.5 × 10−7 53 1.9 × 10−5

DEF1 53 2.2 × 10−7 NC 2.3 × 10−2 234 2.1 × 10−6 91 2.1 × 10−1

DEF2 53 2.2 × 10−7 NC 2.8 × 10+4 NC 3.7 × 10+4 NC 3.5 × 10+5

A-DEF1 60 7.3 × 10−7 60 7.0 × 10−7 60 7.9 × 10−7 77 1.4 × 10−5

A-DEF2 53 2.6 × 10−7 53 2.4 × 10−7 53 2.5 × 10−7 57 5.4 × 10−6

BNN 53 2.5 × 10−7 53 2.3 × 10−7 53 2.4 × 10−7 49 1.6 × 10−5

R-BNN1 53 2.4 × 10−7 53 1.9 × 10−5 53 1.9 × 10−1 78 1.1 × 10−3

R-BNN2 53 2.2 × 10−7 53 5.7 × 10−5 54 5.7 × 10−1 NC 4.1 × 10+3

Table 4.6: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP2 with parameters n = 292, k = 5, ǫ = 10−6 and inaccurate E−1.

Observation 4.6. Considering both Table 4.6 and Figure 4.10, the following observations
can be made:

• the most stable methods are AD, BNN, A-DEF2. Note that for ψ ≥ 10−8, A-DEF1,
R-BNN1 and R-BNN2 converge, but not always to the correct solution.

• DEF1 and DEF2 are obviously the worst methods, although DEF1 becomes better
for larger ψ.

4.3.3 Test Problem 3: Bubbly Flow Problem

The results for TP3 can be found in Table 4.7 and Figure 4.11.

Observation 4.7. Based on Table 4.7 and Figure 4.11, we observe that

• all methods are stable as long as ψ ≤ 10−12;
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Method ψ = 10−12 ψ = 10−8 ψ = 10−4 ψ = 10−2

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
PREC 135 1.8 × 10−5 135 1.8 × 10−5 135 1.8 × 10−5 135 1.8 × 10−5

AD 59 1.1 × 10−6 59 1.1 × 10−6 59 1.3 × 10−6 66 3.8 × 10−5

DEF1 39 1.8 × 10−6 NC 2.0 × 10−2 NC 4.6 × 100 NC 1.6 × 10+1

DEF2 39 1.8 × 10−7 NC 1.5 × 10+4 NC 8.4 × 10+3 NC 1.0 × 10+3

A-DEF1 46 8.1 × 10−6 46 8.1 × 10−7 43 2.1 × 10−6 NC 2.0 × 10+1

A-DEF2 40 1.1 × 10−6 40 1.1 × 10−6 40 1.2 × 10−6 NC 2.3 × 10+1

BNN 40 1.1 × 10−6 40 1.1 × 10−6 40 1.1 × 10−6 43 6.6 × 10−4

R-BNN1 40 1.1 × 10−6 40 1.5 × 10−4 NC 6.7 × 10−3 NC 3.4 × 10−1

R-BNN2 40 1.1 × 10−6 NC 1.4 × 10−3 NC 6.6 × 100 NC 3.6 × 10+1

Table 4.7: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP2 with parameters n = 642, k = 82, ǫ = 10−3 and inaccurate E−1.

• the most stable methods appear to be AD and BNN in the test cases, although A-
DEF1 and A-DEF2 perform appropriately for ψ ≤ 10−4;

• obviously, DEF1, DEF2 and also R-BNN1 and R-BNN2 converge badly for most
ψ ≥ 10−8. Note that for ψ = 10−8, R-BNN1 converges but not to an accurate
solution.
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(a) ψ = 10−8.
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(b) ψ = 10−6.

50 100 150 200 250

10
−6

10
−4

10
−2

10
0

10
2

Iteration

A
−

no
rm

 o
f t

he
 R

ea
l E

rr
or

s

Test Problem 1 (Laplace): Comparison of the Real Errors in A−norm

 

 
AD
DEF1
DEF2
A−DEF1
A−DEF2
BNN
R−BNN1
R−BNN2

(c) ψ = 10−4.

Figure 4.8: Exact errors in the A−norm for TP1 with n = 292, k = 5, ψ = 10−4, 10−6, 10−8 and

inaccurate E−1.
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(a) ψ = 10−2.
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(b) ψ = 100.

Figure 4.9: Exact errors in the A−norm for TP1 with n = 292, k = 5, ψ = 10−2, 100 and inaccurate

E−1.
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(a) ψ = 10−16.
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(b) ψ = 10−12 .
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(c) ψ = 10−8.
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(d) ψ = 10−4.

Figure 4.10: Exact errors in the A−norm for TP2 with n = 292, k = 5, ǫ = 10−6 and inaccurate E−1.
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(a) ψ = 10−12.
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(b) ψ = 10−8.
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(c) ψ = 10−4.
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(d) ψ = 10−2.

Figure 4.11: Exact errors in the A−norm for TP3 with n = 642, k = 82, ǫ = 10−3 and inaccurate E−1.
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4.4 Numerical Results using Severe Termination Cri-

teria

In the previous numerical experiments we applied the following termination cri-
terion for the iterative process:

||zj+1||2
||z1||2

< δ, δ = 10−8. (4.6)

In this section we perform numerical experiments using various values of δ. In
other words, we investigate the behavior of the methods by using different toler-
ances. Note that sometimes δ will be chosen (too) small leading to non-realistic
experiments. In these cases, the results have no physical meaning anymore since
the machine precision (which depends on the condition number of A) is reached.
However, the goal of this section is to test the sensitivity of and to give insights
into the methods to δ, rather than to perform realistic experiments.

4.4.1 Test Problem 1: Laplace Problem

The results of TP1 with different values of δ can be found in Table 4.8 and Fig-
ure 4.12.

Method δ = 10−8 δ = 10−12 δ = 10−16 δ = 10−20

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
PREC 57 4.4 × 10−7 74 1.4 × 10−11 85 8.1 × 10−13 106 8.1 × 10−13

AD 47 9.1 × 10−7 67 2.4 × 10−11 80 8.3 × 10−13 92 8.3 × 10−13

DEF1 44 5.0 × 10−7 59 6.6 × 10−11 NC 8.6 × 10−6 NC 8.6 × 10−6

DEF2 44 5.0 × 10−6 59 6.6 × 10−11 NC 2.2 × 10+3 NC 2.2 × 10+3

A-DEF1 44 9.9 × 10−7 73 7.4 × 10−11 110 7.9 × 10−13 167 7.9 × 10−13

A-DEF2 45 2.1 × 10−7 60 4.3 × 10−11 73 8.4 × 10−13 84 8.4 × 10−13

BNN 44 5.2 × 10−7 60 4.3 × 10−11 73 7.8 × 10−13 84 7.8 × 10−13

R-BNN1 45 2.1 × 10−7 60 4.3 × 10−11 73 8.0 × 10−13 84 8.0 × 10−13

R-BNN2 45 2.1 × 10−7 60 4.3 × 10−11 73 7.0 × 10−13 NC 7.0 × 10−13

Table 4.8: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP1 with parameters n = 292, k = 5 and various termination criterion.

Observation 4.8. Based on Table 4.8 and Figure 4.12, we see that

• all methods perform well as long as δ ≥ 10−12;

• DEF1 and DEF2 show problems where DEF2 even diverges for δ ≤ 10−16. More-
over, for δ ≤ 10−20, A-DEF1 and R-BNN2 also have difficulties;

• AD, A-DEF2, BNN and R-BNN1 give good convergence results for all cases and,
therefore, they are extremely stable in this experiment.

4.4.2 Test Problem 2: Layer Problem

The results with TP2 are given in Table 4.9 and Figure 4.13.

Observation 4.9. Considering both Table 4.8 and Figure 4.12, identical observations as
in TP1 can be seen:

• all methods perform well for δ ≥ 10−12;



44 Chapter 4. Numerical Experiments

Method δ = 10−8 δ = 10−12 δ = 10−16 δ = 10−20

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
PREC 101 2.2 × 10−7 131 3.8 × 10−8 201 3.6 × 10−8 220 3.6 × 10−8

AD 60 5.0 × 10−7 76 2.0 × 10−8 87 2.0 × 10−8 106 2.0 × 10−8

DEF1 53 2.2 × 10−7 69 6.3 × 10−8 NC 1.4 × 10−6 NC 1.4 × 10−6

DEF2 53 2.2 × 10−7 69 7.7 × 10−8 NC 2.3 × 10+5 NC 2.3 × 10+5

A-DEF1 60 4.6 × 10−7 97 2.5 × 10−8 136 2.5 × 10−8 167 2.5 × 10−8

A-DEF2 53 2.5 × 10−7 69 7.0 × 10−9 81 7.0 × 10−9 97 7.0 × 10−9

BNN 53 2.4 × 10−7 69 6.0 × 10−9 81 6.1 × 10−9 97 6.1 × 10−9

R-BNN1 53 2.2 × 10−7 69 2.9 × 10−8 81 2.9 × 10−8 103 2.9 × 10−8

R-BNN2 53 2.2 × 10−7 69 7.7 × 10−8 NC 7.7 × 10−8 NC 7.7 × 10−8

Table 4.9: Number of required iterations for convergence and the 2−norm of the exact error of all pro-

posed methods for TP2 with parameters n = 292, k = 5, ǫ = 10−6 and various termination criterion.

• for δ ≤ 10−16, DEF1 and DEF2 are troublesome and additionally A-DEF1 and
R-BNN2 show difficulties as well for δ ≤ 10−20.

• finally, PREC, AD, A-DEF2, BNN and R-BNN1 give good convergence results for
all cases.

4.4.3 Test Problem 3: Bubbly Flow Problem

The results for TP3 are presented in Table 4.10 and Figure 4.14.

Method δ = 10−8 δ = 10−10 δ = 10−12 δ = 10−14

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
PREC 135 1.8 × 10−5 162 6.7 × 10−9 170 9.2 × 10−11 177 6.7 × 10−11

AD 59 1.1 × 10−6 71 1.9 × 10−8 86 3.1 × 10−10 NC 6.1 × 10−10

DEF1 39 1.8 × 10−6 51 2.0 × 10−8 NC 6.5 × 10−9 NC 6.5 × 10−9

DEF2 39 1.8 × 10−6 51 2.0 × 10−8 NC 9.8 × 10−7 NC 9.8 × 10−7

A-DEF1 45 1.5 × 10−6 58 1.5 × 10−8 71 9.2 × 10−11 87 8.7 × 10−11

A-DEF2 40 1.1 × 10−6 52 1.1 × 10−8 61 1.3 × 10−10 194 8.0 × 10−11

BNN 40 1.1 × 10−6 52 1.1 × 10−8 61 1.4 × 10−10 193 1.1 × 10−10

R-BNN1 40 1.1 × 10−6 52 1.1 × 10−8 61 1.2 × 10−10 198 8.8 × 10−11

R-BNN2 40 1.1 × 10−6 52 1.1 × 10−8 71 2.6 × 10−10 NC 1.2 × 10−10

Table 4.10: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP2 with parameters n = 642, k = 82, ǫ = 10−3 and various termination
criterion.

Observation 4.10. Considering both Table 4.10 and Figure 4.14, we observe that

• all methods perform the same if δ ≥ 10−10,;

• for δ ≤ 10−12, DEF1 and DEF2 become unstable due to the fact that after a certain
moment in the iteration process, the zero-eigenvalues (which are in fact nearly zero-
eigenvalues) play a role and cause the bad convergence;

• for δ ≤ 10−14, A-DEF1, A-DEF2, BNN and R-BNN1 are the only methods which
still converge.
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(a) δ = 10−8 .
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(b) δ = 10−12 .
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(c) δ = 10−16 .
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(d) δ = 10−20.

Figure 4.12: Exact errors in the A−norm for TP1 with n = 292, k = 52 and various termination
criterion.
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(b) δ = 10−12 .
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(c) δ = 10−16 .
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(d) δ = 10−20.

Figure 4.13: Exact errors in theA−norm for TP2 with n = 292, k = 5 and various termination criterion.
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(a) δ = 10−8 .
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(b) δ = 10−10 .
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(c) δ = 10−12 .
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(d) δ = 10−14.

Figure 4.14: Exact errors in the A−norm for TP3 with n = 642, k = 82, ǫ = 10−3 and various termina-
tion criterion.
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4.5 Numerical Results using Perturbed Starting Vec-

tors

In the methods DEF2, A-DEF2, R-BNN1 and R-BNN2 we have to use the special
starting vector xs defined by

xs := Qb+ PTx0, x0 is random. (4.7)

If BNN is also based on xs then we have shown in Section 3.3 that the methods
are theoretically identical. Hence, these methods perform the same in exact arith-
metics. In this section, we will perturb xs in DEF2, A-DEF2, R-BNN1 and R-BNN2,
denoted as x̃s which is defined as follows:

x̃s := (1 + γy0)xs, γ ≥ 0, (4.8)

where y0 is a random vector with elements from the interval [−0.5, 0.5]. Using
x̃s for different γ, we perform the same numerical experiments as in the previous
sections and investigate whether the associated methods are sensitive for these
perturbed starting vectors.

Recall that if we use the original starting vector in DEF2, A-DEF2, R-BNN1
and R-BNN2, then they give exactly the same results and solution as BNN in ex-
act arithmetic. Although DEF2, R-BNN1 and R-BNN2 correspond to a singular
operator, a unique solution can be obtained in this case. However, in the case of
perturbed starting vectors, there are no equivalences anymore between BNN and
the other methods. If DEF2, R-BNN1 or R-BNN2 converges, the solution is non-
unique. Therefore, if one of these methods converges but not to the right solution,
then we correct this non-unique solution in the experiments using the ‘uniqueness’
step, similar to DEF1 mentioned in Remark 2.21. Note that this uniqueness step is
not required in the A-DEF2 method since it corresponds to a non-singular operator.

4.5.1 Test Problem 1: Laplace Problem

The results considering TP1 can be found in Table 4.11 and Figure 4.15.

Method γ = 0 γ = 10−8 γ = 10−6 γ = 100

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
DEF2 44 5.0 × 10−7 44 5.4 × 10−7 NC 1.7 × 10+12 NC 2.5 × 10+18

A-DEF2 45 2.1 × 10−7 45 2.1 × 10−7 45 2.1 × 10−7 51 5.6 × 10−7

R-BNN1 45 2.1 × 10−7 45 2.1 × 10−7 45 2.1 × 10−7* 44 4.5 × 10−7*
R-BNN2 45 2.1 × 10−7 45 4.4 × 10−7 NC 3.0 × 10−5 NC 7.7 × 100

Table 4.11: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP1 with parameters n = 292 and k = 5 and perturbed starting vectors. An
asterisk (*) means that an extra uniqueness step is applied in that test case.

Observation 4.11. Considering both Table 4.11 and Figure 4.15, it can be seen that

• for γ ≤ 10−8, all involved methods perform well;

• for γ ≥ 10−6, DEF2 and R-BNN2 fail to converge, while A-DEF2 and R-BNN1
still work appropriately. This latter observation even holds for relatively large γ,
although A-DEF2 requires somewhat more iterations.
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Method γ = 0 γ = 10−8 γ = 10−6 γ = 100

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
DEF2 53 2.2 × 10−7 53 2.2 × 10−7 NC 1.2 × 10+12 NC 4.0 × 10+18

A-DEF2 53 2.5 × 10−7 53 2.5 × 10−7 53 2.1 × 10−7 54 2.5 × 10−7

R-BNN1 53 2.3 × 10−7 53 2.5 × 10−7 53 2.3 × 10−7* 53 2.7 × 10−7*
R-BNN2 53 2.2 × 10−7 53 2.5 × 10−7 53 1.6 × 10−5* NC 1.6 × 10+1

Table 4.12: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP2 with parameters n = 292, k = 5, ǫ = 10−6 and perturbed starting vectors.
An asterisk (*) means that an extra uniqueness step is applied in that test case.

4.5.2 Test Problem 2: Layer Problem

Results of TP2 can be found in Table 4.12 and Figure 4.16.

Observation 4.12. Considering both Table 4.12 and Figure 4.16, similar results as in the
previous subsection can be obtained, i.e.,

• for δ ≤ 10−8, we see that all involved methods converge appropriately;

• for δ ≥ 10−6, it can be observed that DEF2 and R-BNN2 fail in convergence or
converge to the wrong solution (even after the uniqueness step), while A-DEF2 and
R-BNN1 still converge.

4.5.3 Test Problem 3: Bubbly Flow Problem

Results of TP3 are presented in Table 4.13 and Figure 4.17.

Method γ = 0 γ = 10−8 γ = 10−6 γ = 100

# It. ||x− xi||2 # It. ||x − xi||2 # It. ||x− xi||2 # It. ||x− xi||2
DEF2 39 1.1 × 10−6 NC 7.3 × 10+2 NC 5.0 × 10+4 NC 2.3 × 10+10

A-DEF2 40 1.1 × 10−6 40 1.1 × 10−6 40 1.1 × 10−6 41 1.2 × 10−6

R-BNN1 40 1.1 × 10−6 40 1.1 × 10−6 40 1.1 × 10−6* 40 1.5 × 10−6*
R-BNN2 40 1.1 × 10−6 40 1.6 × 10−6 NC 6.5 × 10−5 NC 4.3 × 10+1

Table 4.13: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP3 with parameters n = 642, k = 82, ǫ = 10−3 and perturbed starting vectors.
An asterisk (*) means that an extra uniqueness step is applied in that test case.

Observation 4.13. Considering both Table 4.13 and Figure 4.17, we observe that

• all involved methods perform well for γ ≤ 10−8, except for DEF2 which fails in the
case of γ = 10−8.

• for γ ≥ 10−6, DEF2 and R-BNN2 fail in convergence, while A-DEF2 and R-BNN1
still work fine. The latter observation even holds for relatively large γ.
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(b) γ = 10−8 .
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(c) γ = 10−6.
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(d) γ = 1.

Figure 4.15: Exact errors in the A−norm for TP1 with n = 292, k = 52 and perturbed starting vectors.
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(c) γ = 10−6.
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Figure 4.16: Exact errors in the A−norm for TP2 with n = 292, k = 52 and perturbed starting vectors.
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Figure 4.17: Exact errors in the A−norm for TP3 with n = 642, k = 82 and perturbed starting vectors.
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4.6 Reorthogonalization Strategies for Non-Converging

Methods

In each of the previous sections we have seen some test cases where several meth-
ods show divergence, stagnation or erratic behavior by considering the exact er-
rors. One of the reasons is that the residuals within the iteration process gradually
lost the orthogonality with respect to the columns of Z , which is also observed by
e.g. Saad et al. [29]. For example, in DEF1 we should have

ZT r̂j = ZTPrj = 0, j = 1, 2, . . . , (4.9)

where we have used Lemma 3.2d. Moreover, due to the starting vector xs in DEF2,
A-DEF2, R-BNN1 and R-BNN2, the following expression should be satisfied in
these methods:

ZT rj = 0, j = 1, 2, . . . , (4.10)

see also Exp. (3.6). However, it appears that in the bad converging methods, the
corresponding Equations (4.9) and (4.10) do not hold during the iteration process.

One remedy to recover orthogononality in the bad-converging methods is de-
scribed in e.g. [29]. Define first the so-called reorthogonalization operator W as

W := I − Z(ZTZ)−1ZT . (4.11)

Then, W is orthogonal to the deflation subspace matrix Z , i.e.,

ZTW := ZT (I − Z(ZTZ)−1ZT ) = ZT − ZT = 0. (4.12)

Subsequently, orthogonality of the residuals within the iterative process can be
preserved by multiplying rj by W right after rj is computed in the algorithms:

rj := Wrj , j = 1, 2, . . . . (4.13)

For the DEF1 algorithm, one substitutes r̂j(= Prj) into rj of Exp. (4.13). As a
consequence, the new residuals satisfy (4.9) or (4.10) due to (4.12).

Remark 4.2. Relations like (4.9) and (4.10) do not hold in the algorithms of AD, A-DEF1
and BNN. In the case of AD and BNN, this is not bad because they appear extremely stable
in the most test cases. This is in contrast to A-DEF1 which is unstable in several numerical
experiments. The instability of A-DEF1 in these cases can not be resolved using the above
described reorthogonalization strategies.

Remark 4.3. Note that the reorthogonalization operator (4.13) is relatively cheap. Due to
the construction of the subdomain deflation vectors, ZTZ is also a diagonal matrix which is
cheap to obtain. Furthermore, the other operations within the reorthogonalization-operator
W are also cheap to perform.

In the next subsections, a few numerical experiments of the previous sections
will be repeated, using the above described reorthogonalization strategy for the
non-converging methods.
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4.6.1 Results using Standard Parameters: TP3 with k = 8
2 and

ǫ = 10
−6

We reconsider TP3 with k = 82 and ǫ = 10−6 (Subsection 4.2.3). In this test case,
we have seen that DEF1 and DEF2 did not converge within 250 iterations, whereas
the other methods converged appropriately. The original results and the new re-
sults using reorthogonalization of the residuals of DEF1 and DEF2 can be found in
Table 4.14 and Figure 4.18.

Method # It. ||x− xi||2
PREC 180 1.7 × 10−6

AD 60 1.1 × 10−6

DEF1 40 (NC) 4.4 × 10−3 (1.1 × 100)
DEF2 40 (NC) 4.8 × 10−3 (1.2 × 10+2)
A-DEF1 46 1.4 × 10−6

A-DEF2 41 1.0 × 10−6

BNN 41 1.0 × 10−6

R-BNN1 41 1.0 × 10−6

R-BNN2 41 1.2 × 10−6

Table 4.14: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP3 with parameters n = 642, k = 82, ǫ = 10−3 and standard parameters. The
reorthogonalization strategy has been used for DEF1 and DEF2. The results without reorthogonaliza-
tion are given in the brackets.

Observation 4.14. Based on Table 4.14 and Figure 4.18 we observe that

• after reorthogonalization of the residuals for DEF1 and DEF2, all proposed methods
converge smoothly by considering the residuals;

• however, the consequence of the modifications of the residuals is that we do not ob-
tain an accurate solution by investigating the exact errors; the exact errors of both
DEF1 and DEF2 stagnate using the reorthogonalization process and the final ex-
act error is not below the smallest exact error during the iteration process without
reorthogonalization.

4.6.2 Results using Inaccurate Coarse Solves: TP1 with ψ = 10
−4

We consider again TP1 with ψ = 10−4 (Subsection 4.3.1), where DEF2 and R-BNN2
have not converged within 250 iterations, while DEF1 and R-BNN1 did converge
but not to an accurate solution. The original and new results using reorthogonal-
ization of the residuals for DEF1, DEF2, R-BNN1 and R-BNN2 can be found in
Table 4.15 and Figure 4.19.

Observation 4.15. Based on Table 4.15 and Figure 4.19, the same observations as in the
previous subsection can be done:

• after reorthogonalization of the residuals for DEF1, DEF2, R-BNN1 and R-BNN2,
all proposed methods converge smoothly by considering the residuals;

• the exact errors of DEF1, DEF2, R-BNN1 and R-BNN2 stagnate using the reorthog-
onalization process and the final exact error is not below the smallest exact error
during the original iteration process.
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(a) Residuals without reorthogonalization.
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Figure 4.18: Residuals in the 2−norm and exact errors in the A−norm for TP3 with n = 642, k =

82, ǫ = 10−3 and standard parameters in the cases without and with reorthogonalization of DEF1 and
DEF2.

4.6.3 Results using Severe Termination Criteria: TP2 with δ =

10
−16

We reconsider TP2 with δ = 10−16 (Subsection 4.4.2). In this test case, we have seen
that DEF1, DEF2 and R-BNN2 do not converge within 250 iterations. The old and
new results of DEF1, DEF2 and R-BNN2 can be found in Table 4.16 and Figure 4.20.

Observation 4.16. Considering Table 4.16 and Figure 4.20, the same observations as in
the previous subsections can be made:

• after reorthogonalization of the residuals for DEF1, DEF2 and R-BNN2, all proposed
methods converge appropriately by considering the residuals;

• we do not obtain accurate solutions for DEF1, DEF2 and R-BNN2 by investigating
the exact errors.

4.6.4 Results using Perturbed Starting Vectors: TP3 with k = 8
2, ǫ =

10
−3 and γ = 10

−6

We reconsider TP3 with γ = 10−6 (Subsection 4.5.3). In this test case, DEF2 and R-
BNN2 did not converge. Both original and new results using reorthogonalization
for DEF2 and R-BNN2 can be found in Table 4.17 and Figure 4.21.
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Method # It. ||x− xi||2
PREC 57 4.4 × 10−7

AD 47 9.0 × 10−7

DEF1 44 (135) 1.1 × 10−2 (1.1 × 10−7)
DEF2 44 (NC) 1.1 × 10−2 (2.1 × 10+3)
A-DEF1 44 1.0 × 10−6

A-DEF2 45 2.1 × 10−7

BNN 45 2.1 × 10−7

R-BNN1 45 (71) 1.1 × 10−2 (8.3 × 10−4)
R-BNN2 45 (NC) 1.1 × 10−2 (1.1 × 10−2)

Table 4.15: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP1 with parameters n = 292, k = 5 and inaccurate coarse solves (ψ = 10−4).
The reorthogonalization strategy has been used for DEF1, DEF2, R-BNN1 and R-BNN2. The results
without reorthogonalization are given in the brackets.

Method # It. ||x− xi||2
PREC 201 3.6 × 10−8

AD 87 2.0 × 10−8

DEF1 81 (NC) 6.0 × 10−8 (1.4 × 10−6)
DEF2 81 (NC) 7.7 × 10−8 (2.3 × 10+5)
A-DEF1 136 2.5 × 10−8

A-DEF2 81 7.0 × 10−9

BNN 81 6.1 × 10−9

R-BNN1 81 2.9 × 10−8

R-BNN2 81 (NC) 7.7 × 10−8 (7.7 × 10−8)

Table 4.16: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP2 with parameters n = 292, k = 5 and severe termination criterion (δ =

10−16). The reorthogonalization strategy has been used for DEF1, DEF2 and R-BNN2. The results
without reorthogonalization are given in the brackets.

Method # It. ||x− xi||2
DEF2 39 (NC) 5.9 × 10−3 (5.0 × 10+4)
A-DEF2 40 1.1 × 10−6

R-BNN1 40 1.1 × 10−6

R-BNN2 NC (NC) 1.2 × 10−1 (6.5 × 10−5)

Table 4.17: Number of required iterations for convergence and the 2−norm of the exact error of all

proposed methods for TP3 with parameters n = 642, k = 82, ǫ = 10−3 and perturbed starting vector
(γ = 10−6). The reorthogonalization strategy has been used for DEF2 and R-BNN2. The results without
reorthogonalization are given in the brackets.
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(a) Residuals without reorthogonalization.
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(b) Residuals with reorthogonalization.
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Figure 4.19: Residuals in the 2−norm and exact errors in theA−norm for TP1 with n = 292, k = 5 and
standard parameters in the cases without and with reorthogonalization of DEF1, DEF2, R-BNN1 and
R-BNN2.

Observation 4.17. Based on Figure 4.21, we notice that

• by considering the residuals, DEF2 converges whereas R-BNN2 still show very er-
ratic behavior (as seen earlier in some test cases of DEF1) after reorthogonalization;
This may be caused by the nearly zero-eigenvalues which contribute to the conver-
gence;

• by considering the exact errors, DEF2 stagnates while R-BNN2 shows erratic be-
havior.
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(a) Residuals without reorthogonalization.
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(b) Residuals with reorthogonalization.

50 100 150 200 250

10
−5

10
0

10
5

Iteration

A
−

no
rm

 o
f t

he
 R

ea
l E

rr
or

s

Test Problem 2 (Layers): Comparison of the Real Errors in A−norm

AD
DEF1
DEF2
A−DEF1
A−DEF2
BNN
R−BNN1
R−BNN2

(c) Exact errors without reorthogonalization.
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Figure 4.20: Residuals in the 2−norm and exact errors in theA−norm for TP2 with n = 292, k = 5 and

severe termination criterion (δ = 10−16) in the cases without and with reorthogonalization of DEF1,
DEF2 and R-BNN2.
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(a) Residuals without reorthogonalization.
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(b) Residuals with reorthogonalization.
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(c) Exact errors without reorthogonalization.
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Figure 4.21: Residuals in the 2−norm and exact errors in the A−norm for TP3 with n = 642, k =

82, ǫ = 10−3 and perturbed starting vector (γ = 10−6) in the cases without and with reorthogonaliza-
tion of DEF2 and R-BNN2.
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CHAPTER 5

Conclusions

In this paper we have compared several projection methods coming from defla-
tion, domain decomposition and multigrid, both theoretically and numerically.
The conclusions are drawn below.

Theoretical Results with Eigenvalue Distributions

Theoretically, it has been proved that DEF1 is the best method [23–25]. In this pa-
per, we have seen that the operators of all projection methods, except for additive
coarse grid correction, have comparable eigenvalue distributions. In fact, there are
two classes consisting of identical methods in the sense of eigenvalues. The first
class consists of DEF1, DEF2, R-BNN1 and R-BNN2 and the second class includes
BNN, A-DEF1 and A-DEF2. It has also been shown that the associated spectrum
of the methods of the first class is more favorable than those of the second class.
This means for instance that in numerical experiments one should apply deflation
rather than balancing provided that both methods are stable in these experiments.

Theoretical Results with Special Starting Vectors

It has been shown that the expensive operator of the BNN method can be reduced
to simplier operators which are used in the DEF2, A-DEF2, R-BNN1 and R-BNN2
methods for special starting vectors. Hence, some methods of the two classes with
the same spectral properties are the same in exact arithmetics.

Numerical Results with Standard Parameters

From a numerical point of view, we have observed that the theoretical results only
hold for standard parameters with exact computations of the coarse matrices E−1,
appropriate choices for the termination criterion, no perturbations in the starting
vectors etcetera. In these cases the numerical results confirm the theory that all
projection methods perform more or less the same, although A-DEF1 shows prob-
lems in some test cases. The last observation gives no lose of generalization since
the application of the non-SPSD operator of A-DEF1 in CG can not be fully under-
stood theoretically.

61
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Numerical Results with Inaccurate Coarse Solves

If the dimensions of the coarse matrix E become large, it is not beneficial to per-
form the computations with E−1 in a direct manner; one should turn to for exam-
ple iterative solvers and it will be favorable to do that inaccurately to save compu-
tational time. For small perturbations, the projection methods still work fine using
these iterative solvers. However, in the second part of the experiments we have
seen that DEF1, DEF2 and also R-BNN1 and R-BNN2 are sensitive for perturba-
tions in E−1. Hence, these methods do not look to be appropriate for inaccurate
coarse solves with large perturbations. The best methods in these experiments are
BNN, A-DEF1 and A-DEF2.

Numerical Results with Severe Termination Criterion

If matrix A is ill-conditioned and the tolerance of the termination criterion chosen
by the user becomes too severe, it will be advantageous if the projection method
will not fail to converge. By doing some numerical experiments with varying tol-
erances, we have seen that both DEF1 and DEF2 have problems for a too strict
tolerance while the other methods work properly for severe termination criteria.
In other words, BNN, A-DEF1, A-DEF2, R-BNN1 and R-BNN2 have no problems
with strict tolerances.

Numerical Results with Perturbed Special Starting Vector

As mentioned above, BNN is theoretically equal to DEF2, A-DEF2, R-BNN1 and
R-BNN2 if the special starting vector has been used. Besides the fact that some of
these reduced variants (namely R-BNN1 and R-BNN2) are not able to deal with
inaccurate coarse solves, some of them are also sensitive for perturbations in the
special starting vector. Both DEF2 and R-BNN2 are unstable, while BNN, A-DEF2
and R-BNN1 still work fine after these perturbations. These can be of importance
if one uses multigrid-like subdomains where the number of subdomains k is very
large and the starting vector can not be obtained accurately.

Numerical Results with Reorthogonalization Techniques

Reorthogonalization of the update residuals during the iterative process may im-
prove the non-converging methods in the sense that a solution can be found in
considerable time. However, due to these corrections accurate solutions can not be
obtained and, therefore, these reorthogonalization techniques do not seem to be an
appropriate remedy for non-converging projection methods.

Main Conclusions

DEF1 is the best method considering the theory and the amount of work per iter-
ation. In numerical experiments, DEF1 also works fine, if one applies a realistic
stopping criterion and relatively small perturbations of E−1. If one should choose
between DEF1 and DEF2, it is obvious to choose for DEF1, although they both
show the same stability properties. However, the main difference is that DEF2 is
the only method which diverges if it is unstable, while DEF1 is more robust in the
sense that if it is unstable then the solution stagnates or the convergence is slow.

Moreover, one should realize that if one wants to perform BNN at low cost
by choosing a special starting vector then these variants are as unstable as DEF1
or DEF2. If one uses perturbed starting vectors, then DEF2 and the most reduced
variants of BNN are unstable. As a consequence, DEF1 can be better applied rather
than these methods.
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Finally, after doing the numerical experiments and considering all numerical
aspects, we conclude that BNN and A-DEF2 are the best c.q. the most stable meth-
ods. However, in the operators of BNN two deflation matrices are involved, which
makes the method expensive in use. On the other hand, we have A-DEF2 which
behaves like BNN both theoretically and numerically, but the advantage of A-DEF2
is that computations with the associated operator can be done at lower cost since
only one deflation matrix is involved. Hence, A-DEF2 is the best method consid-
ering the theory, numerical experiments and the computational costs.
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