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Abstract

The discrepancy between observed measurements and their model predicted an-
titheses can be used to improve either the model output alone or both the model
output and the parameters that underlie the model. In case of parameter estima-
tion, methods exist that can efficiently calculate the gradient of the discrepancy to
changes in the parameters, assuming that there are no uncertainties in addition to
the unknown parameters. Usually many different parameter sets exist that locally
minimize the discrepancy, so the gradient must be regularized before it can be used
by gradient-based minimization algorithms. This article proposes a method for cal-
culating a gradient in the presence of additional model errors, through the use of
representer expansions. The representers are data-driven basis functions that per-
form the regularization. All available data can be used during every iteration of
the minimization scheme, as is the case in the classical Representer Method (RM).
However, the method also allows adaptive selection of different portions of the data
during different iterations to reduce computation time; the engineer now has the free-
dom to choose the number of basis functions and revise this choice at every iteration.
The method also differs from the classic RM by the introduction of measurement
representers in addition to state, adjoint and parameter representers and by the fact
that no correction terms need to be calculated. Unlike the classic RM, where the
minimization scheme is prescribed, the new RM provides a gradient that can be used
in any minimization algorithm.

The new RM is first explained and then its applicability to an advection-diffusion
problem is illustrated.
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1 Introduction

1.1 Gradient-based parameter estimation

Data assimilation methods aim to improve numerical models by comparing actual measure-
ments of a physical system with the numerical model predictions of these measurements.
As the parameters of the numerical model are changed, so do the predicted state variables
and the predicted measurements. The discrepancy between the ”measured measurements”
and the ”predicted measurements” can be used to update only the state variables (state
estimation) or also the parameters (parameter estimation) in order to decrease this dis-
crepancy. When only the state of the model is predicted, the model itself is not corrected.
Alternatively, the model parameters, and hence the model itself, may be changed until
the predicted output lie satisfactorily close to the measurements. Parameter estimation
aims at improving the predictive ability of the model, whereas state estimation does not.
Estimating initial states falls in the category parameter estimation, estimating all other
states is state estimation. When the output of the model is used to make decisions, state
estimation is appropriate for time scales on which the error in the model’s predictive abil-
ity can be neglected. When the model is used for making long-term decisions, parameter
estimation algorithms must be used.

This article focusses on gradient-based parameter estimation algorithms. More pre-
cisely, it proposes a method for calculating the gradient of the discrepancy with respect to
changes in the parameters, in the presence of model errors.

1.2 Model errors; strong and weak constraints

Often, the discrepancy between measured measurements and predicted measurements is
formulated using the Euclidean norm. The objective of the data assimilation is then to
minimize the square of this norm with respect to the model parameters while the numerical
model is used as a (strong) constraint.

However, there is an additional phenomenon that may cause the discrepancy; the model
is an approximation, so even if the parameters were known, the model might still produce
incorrect output. These errors can be modelled as extra parameters, which are also added
to the objective function using the 2-norm. The model is then used as a weak constraint
in the minimization problem.

1.3 Notation

The state variables at time ti are denoted by xi, i ∈ {0, · · · , n}. Running the model is
denoted by

g (xi,xi−1, a, εi) = 0

where the model parameters are collected in the vector a and the model errors on interval
[ti−1, ti] are contained in the vector εi. The initial states may be part of the parameter
estimation process, so x0 = x0 (a). The minimization relies on the availability of the first
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(mean) and second (covariance) order statistics of the model parameters and model errors.
These are denoted by aprior, Pa, ε

prior
i = 0 and Pεi

.
In the strong constraint case, the model errors are explicitly set to zero. The objective

function that has to be minimized is
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1

2

(
h
(
x{0,··· ,n}

)
− m

)T
P−1

h

(
h
(
x{0,··· ,n}

)
−m

)
+ (1)

+
1

2

(
a − aprior

)T
P−1

a

(
a− aprior

)
+

n∑

i=1

λT
i g (xi,xi−1, a, 0)

where m contains the actual physical measurements, possibly taken at different times, and
h is the measurement operator that operates on all state variables at all time steps. Ph

represents the uncertainty in the measurements in the form of an error covariance matrix.
The last term of Eq. (1) represents the system equations g that have been adjoined
to the objective function with the aid of Lagrange multipliers λi in the usual fashion
[Bennett, 2006].

When model errors εi are taken into account, they are no longer explicitly set to zero,
but they become additional parameters in the minimization process. They are assumed to
be zero-mean, so the objective becomes
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1.4 Representer Method

In literature, the Representer Method (RM) [Bennett and McIntosh, 1982]
[Eknes and Evensen, 1997, Bennett, 2002, Valstar et al., 2004, Baird and Dawson, 2005]
[Janssen et al., 2006, Przybysz et al., 2007] is usually derived as an iterative method that
solves the weak constraint least-squares minimization problem Eq. (2). Simultaneously it
decomposes the deviation of the estimated parameters from the prior parameters into the
isolated effects of every measurement. This regularizes the minimization problem and it
also gives information that can be used to quantify the usefulness of every single measure-
ment.

In this article, a new Representer Method is derived as a postprocessor that evaluates
the effect of the measurements on the solution of the weak constraint minimization prob-
lem. It is then reformulated to produce a regularized gradient that can be used by any
gradient-based minimization algorithm in order to find the solution of the weak constraint
minimization problem. The method allows decomposition of the parameter vector into
a general number of basis functions rather than a number that necessarily needs to be
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equal to the number of measurements as in the classical method. This makes the method
computationally more attractive for applications where many measurements are available.
Due to a new linearization, no correction terms have to be calculated, as was the case in
the earlier versions of the RM as applied to non-linear problems. In our opinion, this new
formulation of the non-linear RM is less complex and therefore easier to understand.

2 Gradient of the strong constraint minimization prob-

lem

2.1 Obtaining a gradient

The derivatives of Eq. (2) with respect to λi, εi, xi and a are

(
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For tn, the term including λi+1 is missing from Eq. (5). This can be done by introducing
λn+1 = 0. For t0, the term including λi is missing. In case the initial states x0 are part of
the parameter estimation process, the term

(
∂x0 (a)

∂a

)T (
∂g (x1,x0, a, ε1)

∂x0

)T

λ1

should be added to Eq. (6). For the strong constraint case, where εi is explicitly set to 0,

the gradient of the objective function with respect to the model parameters,
(

∂J
∂a

)T
, can

be calculated using Eq. (6), where the model states xi and adjoint states λi follow from

sequentially solving Eq. (3) and Eq. (5) with the left-hand sides,
(

∂J
∂λi

)T

and
(

∂J
∂xi

)T

, set

to zero. Eq. (4) does not need to be used; instead εi = 0 is used.
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2.2 Using the gradient

To solve the strong constraint minimization problem, a numerical routine must be imple-

mented that evaluates J , Eq. (1), and
(

∂J
∂a

)T
, as given in section 2.1. This routine can

then be passed to any gradient-based minimization software package, together with a set
of initial parameters (usually ainit = aprior) and some appropriate minimization options
that are algorithm-dependent.

Often the objective function has multiple local minima and the minimization process
needs to be regularized. If low-order parameters b are introduced such that a = aprior+Qb,

with QTQ = I, then a regularized gradient can be found as QQT
(

∂J
∂a

)T
. The orthogonal

matrix Q can for example be obtained by selecting several left-singular vectors (section
3.7) of a square root L of the covariance matrix Pa = LLT .

3 Gradient of the weak constraint minimization prob-

lem

3.1 Local minimizer

In a stationary point (denoted by superscript s) of Eq. (2), all gradients are equal to zero,
so

g
(
xs

i ,x
s
i−1, a

s, εs
i

)
= 0 (7)

εs
i = −Pεi

(
∂g (xi,xi−1, a, εs

i )

∂εi

)T

λs
i (8)




∂h
(
xs
{0,··· ,n}

)

∂xs
i




T

P−1
h

(
m − h

(
xs
{0,··· ,n}

))
= (9)

=

(
∂g
(
xs

i ,x
s
i−1, a

s, εs
i

)

∂xs
i

)T

λs
i +

(
∂g
(
xs

i+1,x
s
i , a

s, εs
i+1

)

∂xs
i

)T

λs
i+1

P−1
a

(
aprior−as

)
=

n∑

i=1

(
∂g
(
xs

i ,x
s
i−1, a

s, εs
i

)

∂as

)T

λs
i (10)

Unlike section 2.1, the forward equations Eq. (7) and the adjoint equations Eq. (9) are
now coupled because the model errors εs

i are no longer equal to zero; they are related to
the adjoint states λs

i by Eq. (8).

3.2 Basis functions

The minimization algorithm is started with astart = aprior and εstart
i = λstart

i = 0. Applying
these prior conditions to Eq. (7) gives the prior system states x

prior
i . Given the prior states,
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also prior measurements can be predicted, h
(
x

prior

{0,··· ,n}

)
. The causes why the variables move

away from their prior are parameterized by b. In the classic Representer Method there is
a 1-1-relationship between one such cause and an isolated measurement in space and time.
In this article, this assumption is abandoned. Moreover, for computational purposes, it
is interesting to assume that the number of parameters in the vector b is (much) smaller
than the number of measurements.

The deviations from the priors are now decomposed as

xs
i − x
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i = Aib (11)
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i = Bib (12)
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The columns of Ai, Bi, C and D contain the state representers, the adjoint representers,
the parameter representers and the measurement representers respectively. When the
measurement operator h is linear, the measurement representers D can be constructed
by applying h to the matrix that is obtained by concatenating the state representers Ai

as row blocks. Alternatively, the RM can be formulated in terms of state representers
without defining measurement representers, as is done in the classic RM. Only when the
measurement operator is non-linear, the introduction of measurement representers has
added value. Theoretically, it is also possible to introduce error representers

εs
i = Eib

However, looking at Eq. (8), these are nothing more than modified adjoint representers
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and they have no practical application.

3.3 Representer equations

Substitution of Eq. (11), Eq. (12) and Eq. (13) into Eq. (9) and Eq. (10) results in
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Cb = −Pa
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Eq. (15) can be simplified by requiring
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The matrix Q is explained in section 3.7. Using this requirement provides a means to
calculate the adjoint representers Bi:
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The parameter representers C follow by removing b from Eq. (16)
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has to be added to Eq. (19) for estimating the initial states. The state representers Ai are
obtained by differentiating Eq. (7) with respect to the representer coefficients b
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and the same is done with Eq. (14) to obtain the measurement representers D

D =
n∑

i=0

∂h
(
xs
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)

∂xs
i

Ai (21)

Substitution of Eq. (14) into Eq. (17) indicates that the representer coefficients b should
be obtained as the least-squares solution of

(D+PhQ)b = m − h
(
x

prior

{0,··· ,n}

)
(22)
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3.4 Representer Method as iterative minimizer

The representer method can be used as post-processor after a local minimum of Eq. (2)
has been found by another method. Only equations Eq. (18) and Eq. (19) need to be
calculated. If no such local minimum has yet been found, the representer method can also
be used to iteratively approach a minimum. The steps that need to be taken then are
(superscript s now stands for estimate, rather than stationary point):

1. Initialize the parameter estimate as equal to the parameter prior aprior.

2. Initialize the adjoint states λs
i and model errors εs

i equal to zero.

3. Run the non-linear model Eq. (7).

4. Choose Q (section 3.7).

5. Calculate the adjoint representers Eq. (18).

6. Calculate the parameter representers Eq. (19).

7. Calculate the state representers Eq. (20).

8. Calculate the measurement representers Eq. (21).

9. Calculate new representer coefficients Eq. (22).

10. Calculate new adjoint states Eq. (12).

11. Calculate the model errors Eq. (8).

12. Calculate new parameters. Eq. (13) can be used, or a line search can be included

as
new = (1 − α)as

old + α
(
aprior + Cb

)

13. Go to 3 if stopping criterion has not been fulfilled.

3.5 Obtaining a gradient

After step 3 of section 3.4 has finished, the measurements can be predicted. Together with
the input parameters (step 1) and the model errors (step 11), the objective Eq. (2) can be
evaluated. Instead of step 12, a direction that decreases the objective can be calculated as

ddecrease = aprior + Cb− as
old

so a (approximate) gradient is given by

(
∂J

∂as

)T

= as − aprior − Cb
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3.6 Using the gradient

The objective and its gradient cannot directly be used in standard gradient-based mini-
mization algorithms. A routine that evaluates the objective and the gradient also modifies
the values of the adjoint states and model errors. However, the interface of the minimiza-
tion algorithm is not equipped to handle these variables. Moreover, during a line search of
the minimization algorithm, the gradient routine modifies the model errors. When the line
search method rejects a step, the model errors must be reset to the last accepted values.

Modifications to the minimization algorithm:

• Before the gradient routine is called, the global boolean variables ”bFirst” and
”bStep” are set to ”true” and ”false” respectively.

• After every successful line search, ”bStep” is set to ”true”.

Modifications to the objective and gradient routine:

• The values of the model errors must be ”remembered” from a previous call to the
routine (”static” variable in C++ or ”persistent” in Matlab).

• At the beginning of the routine, the model errors must be initialized by zero if
”bFirst” is equal to ”true”, after which ”bFirst” is set to ”false”.

• All changes to the model errors are stored in temporary variables, which are ”re-
membered” between successive calls to the routine.

• At the beginning of the routine, the model errors are overwritten by the temporary
values if ”bStep” equals ”true”, after which ”bStep” is set to ”false”.

Especially because of the second modification to the minimizer, the method is not
suited to interface with third party software without the availability of the source code.
However, if the source code is available, making the modifications is almost trivial.

Unlike the gradient of the strong constraint problem that needs regularization, section
2.2, the gradient of the weak constraint problem, section 3.5, is already regularized by the
representer expansions.

3.7 Choosing Q

Eq. (18) states that Q must be chosen such that several rows of
∂h(xs

{0,··· ,n})
∂xs

i

are removed

by the multiplication

QT
∂h
(
xs
{0,··· ,n}

)

∂xs
i
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Here, the terms ∂h

∂xs
i

are column blocks of the full measurement sensitivity matrix

Jh =
∂h
(
xs
{0,··· ,n}

)

∂xs
{0,··· ,n}

=
[

∂h(xs
{0,··· ,n})
∂xs

0

· · ·
∂h(xs

{0,··· ,n})
∂xs

n

]
(23)

It makes sense to remove rows of Jh rather than of the individual blocks. In other words,
the same linear transformation is used to remove rows of all individual blocks, or Q is the
same for all time steps. Eq. (18) allows Q to be different for different time steps, but then
the operation in Eq. (22) would no longer be well defined.

For example, a singular value decomposition of Jh can be used, so Jh = UΣVT , where
Σ has the form

Σ =




σ1 0 0
. . . 0 0

σm 0 0




and the bottom part of VT is filled with zeros. Extra zero-rows can be created in the
product ΣVT = UTJh by setting the smallest singular values to zero, which is equivalent
to removing rows of UT . Therefore the Q matrix that is proposed in this article is

Q = U[:,1:k]

which means that Q is formed by calculating the left-singular vectors of Jh in a matrix
U and then only k columns are kept. The singular values in Σ can even help to make
a decision on the number of representer functions k, based on a preservation of energy
principle.

4 Numerical experiments

4.1 Twin experiment: advection-diffusion

Experiments were done on a 2D advection-diffusion problem originating from petroleum
reservoir engineering. One liquid phase (water) is injected into a petroleum reservoir to
displace the other liquid phase (oil) towards the production wells. The state of the reservoir
is described by pressure and water saturation in all 21x21x1 grid blocks of 10x10x20 m.
The saturation of a liquid phase is the volume fraction of that phase within the total
liquid volume. The evolution of the pressure with time is described by a diffusion equation
and the evolution of saturation is described by an advection equation. Due to capillary
forces in the pores of the reservoir rock, the pressure of the water and oil phase will not
be equal. However, this effect is ignored, as well as gravity effects. Pressure differences
can be translated into a velocity field which drives the advection equation. The diffusion
coefficient of the diffusion equation is linearly dependent on the absolute permeability,
which is a measure for how easy a liquid can flow through the pores of the reservoir
rock. The diffusion coefficient is also weakly non-linear dependent on the pressure itself,
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since the fluid properties like density and viscosity are usually prescribed by empirical
functions of pressure. The saturation from the advection equation non-linearly affects the
diffusion equation, since the reduction of the permeability of one phase is highly non-
linearly influenced by the presence of the other phase. This effect is usually dealt with by
empirical functions of saturation in the form of relative permeability curves.

In the experiments, synthetic data is generated by injecting water in the middle of the
reservoir and producing oil (and unfortunately also water) at the corners. Water is injected
at a rate of 1 pore volume per year. A pore volume is the total reservoir volume that is
not occupied by rock, so the volume that is accessible to liquids. The pressures in the
wells are measured after 100 and 200 days, resulting in 10 measurements. A database with
1000 possible permeability fields was available. One realization, Fig. (1) was used as ”the
truth”. The others are used to construct a covariance matrix that is used in the objective
function that has to be minimized. They are also used to construct basis functions that
regularize the gradient of the strong constraint problem. In the twin experiment, the
synthetic measurements are used to reconstruct the permeability field.

original true permeability

5 10 15 20

5

10

15

20

permeability projected on basis functions and back

5 10 15 20

5

10

15

20−31

−30

−29

−31

−30

−29

Figure 1: True permeability data [ln (m2)] used to synthesize pressure data in the wells
and best possible reconstruction using 25 basis functions.

4.2 Reservoir simulator in weak or stochastic mode

The 2-phase reservoir simulator can be written as

d

dt
(f1 (x)) = f2 (x, a)

where x contains the water saturation and water pressure (equal to oil pressure) for every
grid block and a contains the permeabilities of all grid blocks. f1 describes the presence
of water and oil mass in the grid blocks and f2 models the flow through the grid block
interfaces. Injection/production is modelled as sources/sinks, which are included in f2.

A fully implicit time discretization is used

g̃ (xi,xi−1, a) = f1 (xi) − (ti − ti−1) f2 (xi, a) − f1 (xi−1) = 0 (24)
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The model errors are introduced as additional sources/sinks in all grid blocks. In other
words; after xi has been solved from Eq. (24), the water and oil masses in the grid blocks
have not correctly been predicted and must still be modified. The prediction gets worse as
the time step (ti − ti−1) gets larger. Therefore the correction is modelled proportional to
(ti − ti−1). If the additional sources become too strong, then unrealistically high pressures
will be observed. If the additional sinks become too strong, then saturations outside [0, 1]
will occur. In this article, the additional sinks are non-linearly constrained by f1. The
stochastic reservoir simulator has the form

g (xi,xi−1, a, εi) = (25)

= f1 (xi) − (ti − ti−1) f2 (xi, a) − f1 (xi−1) + min {f1 (xi) , (ti − ti−1) εi} = 0

For the synthetic truth, εi is generated as white noise, Fig. (2). Applying this stochastic
forcing to the reservoir simulator results in wiggly pressure and saturation responses in the
wells, Fig (3). Although the pressure is not smooth in time, it is still smooth in space, Fig
(4). This is not the case for the water saturation.

0 0.5 1 1.5 2

x 10
7

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3
Model errors

0 0.5 1 1.5 2

x 10
7

−3

−2

−1

0

1

2
x 10

5 Cumulative model errors

Figure 2: Model errors as functions of time

4.3 Permeability reconstructed

Four cases were examined; zero / low / middle / high model errors with standard devia-
tions of 0, 5 ·10−4, 5 ·10−3 and 5 ·10−2 [kg s−1] respectively. For the first case, the gradient
of the strong constraint problem was used and regularized by the leading 25 left-singular
vectors of Pa. The best possible permeability that can be reconstructed using these basis
functions is shown in Fig. (1). The gradient of the weak constraint problem was ob-
tained and regularized by the Representer Expansions for the other cases. The figures
from section 3.3 were obtained from the case with the highest model errors. The gradi-
ents were used in a steepest descent scheme with constant step size, and in the LBFGS
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Figure 3: Pressure and saturation response in the wells when simulating with large model
errors
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[Gao and Reynolds, 2006, Ulbrich, 2002] algorithm with a line search based on Wolfe con-
ditions [Nocedal and Wright, 1999]. Fig (5) shows the decrease of the objective function
as function of iteration number for both minimization algorithms and all four cases.
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Figure 5: Objective function as function of iteration number. From left to right:
zero/low/middle/high model errors. In red: steepest descent; in blue: LBFGS

The prior permeability as well as the final reconstructions for the cases with zero /
low / middle / high model errors using LBFGS are shown in Fig. (6). In the strong
constraint case, the gradient was regularized using 25 basis functions that were obtained
as left-singular vectors of the permeability covariance matrix. The effect of different basis
functions is shown in Fig. (7). The last picture is obtained using Representer Expansions;
steps 2, 10 and 11 of section 3.4 can be ignored when the RM is used for solving a strong
constraint problem.

4.4 Additional output from minimization process

Besides reconstructing parameters, the Order-reduced Non-linear Representer Method
gives additional information. Fig. (8) shows the model errors that were reconstructed by
LBFGS for the case where the truth was synthesized using high model errors. Compared
to the original, Fig. (2), they are underestimated, smoothed and biased. Fig. (9) shows
the reconstructed pressure and saturation responses in the wells. These are smoothed as
well. The parameter representers multiplied by their representer coefficients are plotted in
Fig. (10). Notice the different scales; some measurements have a larger impact on the final
permeability estimate than others, both in space (different columns) and time (different
rows).

4.5 Order reduction

Fig. (6) was obtained without any order reduction (Q equal to identity matrix). Fig. (11)
was created using an order reduction by a factor two; Q is obtained by a permutation of
the columns of the identity matrix and then adding the right most columns to the left
most columns. The resulting columns are then normalized. The permutation is different
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and random for every evaluation of the gradient. The stopping criterion is already reached
after one iteration. If the columns of Q are lumped even more, there comes a point where
LBFGS reaches the stopping criterion after zero iterations.

5 Discussion

5.1 Strong constraint solver and the RM as post-processor

In theory, the weak constraint minimization problem can easily be turned into a strong
constraint minimization problem by treating the model errors as additional model param-
eters

ã =
[
aT εT

1 · · · εT
n

]T
(26)

Now any strong constraint solver can be used to solve the weak constraint problem. How-
ever, strong constraint solvers highly depend on regularization techniques or methods to
reduce the order of the parameter space. Usually basis functions are chosen and used
during the entire minimization process. The result is then accepted as the solution of the
minimization problem. The RM discussed in this article can be used as a post-processor
to evaluate the outcome of the strong constraint solver and to update or overwrite the
user-defined basis function to initialize a new strong constraint solve.

5.2 Variable time steps

Most modern simulators are equipped with a time stepping mechanism that detects insta-
bilities or unphysical values for the state variables and decreases the time step. Whenever
possible the time step is increased again to reduce computation time. In an iterative
method the length and the number of time steps therefore varies.

Building a strong constraint minimization problem out of a weak constraint one, as
described in section 5.1, is not possible when successive iterations use different time steps,
because the parameter vector Eq. (26) is only defined for one iteration. However, the
Order-reduced Non-linear Representer Method can still be used. The model errors εs

i that
were calculated in the old iteration must be interpolated to run the model in the new
iteration Eq. (7). Here an integral average

ε
j
i =

1

t
j
i − t

j
i−1

t
j
i∫

t
j

i−1

εj−1dt

is used, where εj−1 is the step function that is defined by

{
t
j−1
0 , · · · , tj−1

n

}
×
{
ε

j−1
1 , · · · , εj−1

n

}

from the old iteration.
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An improvement in the parameters may cause the simulator to use more time steps,

which may cause the term 1
2
εTP−1

ε ε with εT =
[
ε1 · · · εn

]T
in Eq. (2) to increase

disproportionately. Normalization factors can be added, so

J =
1

2 |m|

(
h
(
x{0,··· ,n}

)
−m

)T
P−1

h

(
h
(
x{0,··· ,n}

)
− m

)
+ (27)

+
1

2 |a|

(
a− aprior

)T
P−1

a

(
a − aprior

)
+

1

2 |ε|
εT P−1

ε ε+

+
n∑

i=1

λT
i g (xi,xi−1, a, εi)

where |·| stands for counting the number of elements in a vector.

5.3 Measure of success

Variational data assimilation methods are designed to minimize some data-misfit objective,
Eq. (2). Their success can be measured by which (local) minimum they can find and how
fast they can find it. However, different performance measures can be explored as well.
For example in closed-loop reservoir management [Jansen et al., 2005], figures Fig. (3) and
Fig. (9) can be compared. When water breaks through in production wells, they become
financially less profitable and eventually have to be shut in. The goal is to predict water
breakthrough long before the water actually arrives at the production wells, so different
control strategies can be applied to postpone the water breakthrough. An alternative
measure of success for a data assimilation algorithm can be how well the saturation profiles
in the wells are reconstructed. The difference between Fig. (3) and Fig. (9) must therefore
be quantified somehow. [Cheng et al., 2005] proposes to shift the curves in time to find a
best fit; the shift quantifies how well the water breakthrough is estimated in time, the fit
quantifies how well the behavior of the water during the breakthrough is estimated.

5.4 Use of parameter representers to quantify the impact of mea-

surements

Fig. (10) shows the effect of every measurement on the final parameter estimate. Even
when the new RM is used in order-reduced mode, then one extra iteration can be made
after convergence of the method to produce all the parameter representers by running in full
mode. Using the parameter representers, the usefulness of measurements must somehow
be quantified, preferably as a monetary value. Care must be taken when interpreting these
quantities. For example, a measurement can give a better understanding of the subsurface,
but it might also indicate that oil production will be lower than prognosed. This does not
mean than the impact of the measurement should be quantified with a negative number.
Research in this area is ongoing. Once the effect of measurements can be quantified, this
quantification technique can help in designing measurement strategies; it may for example
help in seismic acquisition.
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5.5 Data selection

Attempts have been made to preprocess the data and discard the data with the most
uncertainty to reduce the number of representer functions and reduce the computation
time. [Schwaighofer and Tresp, 2003] mentions the Random and the Sparse Greedy Ma-
trix Approximation (SGMA) versions of the Subset of Representers Method (SRM). Such
preprocessing is based on the measurement uncertainty matrix Ph and remains unchanged
during the minimization process. This article proposes to choose a different preprocessing of

the data at every iteration based on the measurement sensitivity matrix Jh =
∂h(xs

{0,··· ,n})
∂xs

{0,··· ,n}
.

Since the preprocessing itself also costs computation time, the selection from the full dataset
can also be used for more than one iteration. These two criteria can also be combined. In
that case Ph moves from Eq. (22) to Eq. (18) and the choice of Q is based on P−1

h
Jh,

which looks like a good compromise between how much the engineer trusts the measured
data (Ph) and how sensitive the forecasted measurements are to changes in the state vari-
ables. These criteria are also used in the Greedy Posterior Approximation version of SRM
[Schwaighofer and Tresp, 2003], although the number of basis functions is fixed.

5.6 Regularization

One might get the idea that solving the representer coefficients b from Eq. (17) instead
of Eq. (22) makes the state representers, Eq. (20), and measurement representers, Eq.
(21), obsolete. This might be true if extra, user-defined, regularization is applied to the
resulting gradient, since the state- and measurement representer functions are part of the
regularization.

6 Conclusion

6.1 Summary

This article introduces a new formulation of the representer method. Since it can handle
non-linear dynamics, non-linear measurement operators and non-linear model errors, it can
handle situations that are more realistic than previous implementations [Valstar et al., 2004,
Rommelse et al., 2006, Przybysz et al., 2007]. The derivation is explained and then the
method is illustrated by estimating the permeability of a petroleum reservoir using a 2-
phase 5-spot waterflood. Experiments were done comparing a strong constraint with weak
constraints of different magnitude. The use of gradients of the strong and weak constraint
problems in steepest descent and LBFGS minimization schemes is shown. An example is
shown where the number of representers is reduced by a factor two, without degrading the
quality of the final permeability estimate.
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6.2 Classic RM and Order-reduced Non-linear RM

Things that are new in this formulation of the Representer Method:

• The new RM method does not solve the weak constraint minimization problem di-
rectly; it produces a regularized gradient that can be used by any gradient-based
minimization algorithm (after minor modifications). Solving the minimization prob-
lem is then left to this algorithm.

• In the classic RM, the number of representer coefficients is equal to the number of
measurements, meaning that D in Eq. (22) is a square matrix. Ph is also square
and can therefore be added to D without modifications; Q is thus chosen equal
to the identity matrix, Q = I. In applications where there are many measurements,
computational feasibility is created by choosing the number of representer coefficients
(much) smaller than the number of measurements. D has then more rows then
columns, and Q must be used to reduce the number of columns in PhQ so it can be
added to D in Eq. (22).

• In previous non-linear versions of RM [Valstar et al., 2004], the state variables are
decomposed around the results of the last simulation, rather than the prior. To
correct for this, an extra correction term is introduced and an additional equation
is needed to compute this correction term. The correction term is used to force a
decoupling of the representer equations in the classical method. In section 3.3 the
representer equations are decoupled and can be used in the same order as in the
classical method, without using any correction terms. In the classic method, the
state variables are essentially also decomposed around the prior, although the prior
is never explicitly available in computer memory. If it were available, the correction
term could easily be calculated as the difference between the prior and the last
available forecast of the state variables. Alternatively the equations can be rewritten
in terms of a forecast and a prior rather than a forecast and a correction, as is done
in the new RM. One might argue that a linearization around the prior is only valid
as long as variables stay close to the prior. This argument applies to both the classic
and the new RM. In both methods, the representers are calculated by evaluating the
Jacobians using the last predicted state variables. Therefore both methods use the
same linearization. An extra iteration loop can be used, where a new prior is chosen
equal to the final estimate after the method has converged. The new prior is then
used to initiate a new minimization.

• In this article the term ”measurement representers” is first introduced. The clas-
sic RM is derived without these basis functions, probably because in the case of a
linear measurement operator, the measurement representers are constructed by con-
catenating the state representers of different time steps as row blocks into one large
matrix.
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6.3 Conclusions

• The permeability estimates were better using weak constraints than strong con-
straints. In the strong constraint case, the regularization is prescribed by the user,
giving him/her an extra opportunity to introduce his/her judgement (prejudice) into
the final estimate. In the weak constraint case, the regularization is data-driven,
but can also be assisted with extra user-defined regularization or data preprocessing.
Representer Expansions can also be used in the strong constraint case, giving better
estimates at the expense of extra computation time.

• LBFGS decreases the objective function in much fewer iterations than steepest de-
scent, especially in the strong constraint case. However, due to the line search, one
iteration of LBFGS typically costs twice as much computation time than one iteration
of steepest descent. Still LBFGS is faster.

• Order reduction can be used to reduce computation time without loss of quality of the
estimated parameters. When the order is reduced to the extreme, the minimization
algorithm reaches the stopping criterion before performing any iterations.
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