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Abstract

We study two implementations of the Conjugate Gradient method for solving
large sparse linear systems of equations on a heterogeneous computing grid, using
GridSolve as grid middleware. We consider the standard CG algorithm of Hestenes
and Stiefel, and as an alternative the Chronopoulos/Gear variant, a formulation that
is potentially better suited for grid computing since it requires only one synchroni-
sation point per iteration, instead of two for standard CG. The computational work
is divided into tasks which are dynamically distributed over the available resources
using a resource–aware data partitioning strategy. We present numerical experiments
that show lower computing times and better speed–up for the Chronopoulos/Gear
variant. We also identify bottlenecks and suggest improvements to GridSolve.

Key words. grid computing, large sparse linear systems, Conjugate Gradient Method, resource–aware

partitioning.

1 Introduction

The solution of sparse linear systems is the computational bottleneck for many large scale
numerical simulations. In order to solve these systems, which may consist of millions of
equations, the combined computing power of many processors is needed. Dedicated parallel
hardware, however, is expensive.

A natural idea to provide cheap parallel computing power is to use the available non–
dedicated hardware, and thus to make better use of the existing resources. This idea has
given rise to the concepts of grid computing and of computational grids, see for exam-
ple [1]. In grid computing a pool of computational tasks is dynamically distributed over a
computational grid, which can be a local cluster of computers, but it can also be a group
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of computers at geographically different locations that are connected via the Internet.
This approach has proven to be successful for embarrassingly parallel applications where
the tasks do not require interprocessor communication, as exemplified by the well–known
SETI@home project [2].

For the numerical solution of linear systems of equations, however, inter–task com-
munication is unavoidable. For this application, developing efficient parallel numerical
algorithms for dedicated homogeneous systems is a difficult problem, but becomes even
more challenging when applied to heterogeneous systems. In particular, the heterogeneity
of the computational nodes and the variability in network performance offer new algorith-
mic problems.

In this paper we study different implementations of the Conjugate Gradient (CG)
method [3] on a computational grid. We use the GridSolve library [4] as grid middle-
ware. Load balancing is achieved using a simple resource–aware data partitioning strategy.
The number of synchronisation points in the CG algorithm which is in its standard imple-
mentation equal to two, can be reduced to one by using the implementation that has been
proposed by Chronopoulos/Gear [5]. Our numerical experiments show that by minimising
the number of synchronisation points and by careful load balancing a significant speed–up
can also be achieved for the solution of systems of equations, despite the fact that for this
application the tasks are tightly coupled.

The remainder of the paper is organised as follows. In the next section we describe
in detail our architecture–aware Conjugate Gradient algorithm and related issues, which
includes a description of GridSolve, data management strategies, and specific implementa-
tion details. Section 3 contains some experimental results and in Sect. 4 we give concluding
remarks and some suggestions for future work.

2 Heterogeneous sparse linear solvers in GridSolve

2.1 Motivation

This work is part of a larger project where we want to apply the Immersed Boundary
Method [6] to simulate general fluid–structure interaction problems using grid computers.
Examples of said problems are the swimming of fish or the airflow around wind turbine
rotor blades. These simulations involve numerically solving the governing fluid equations
on a structured grid, where the most expensive part usually consists of solving a large sparse
linear system Ax = b at each time step. Such a system typically emerges from a finite
difference discretisation of the Poisson equation with varying coefficients and Neumann
boundary conditions,

{

−∇ ·
(

1
ρ(x)

∇p(x)
)

= f(x) x ∈ Ω,

∂
∂x

p(x) = g(x) x ∈ ∂Ω.
(1)

Here, p and ρ represent the pressure and density respectively. For the purpose of this paper
we confine ourselves to a two–dimensional square domain where p is zero on the boundary.
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Nevertheless, this problem still retains much of the characteristics of the original problem.
The equation is discretised on a k × k grid using second order finite differences, resulting
in the discrete Poisson equation,
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pi,j−1 = h2fij , for 0 ≤ i, j < k. (2)

Using the lexicographic ordering of the unknowns we can set

xi+jk := pij, for 0 ≤ i, j < k, (3)

with n = k2 as the length of x. The right–hand side vector b is defined similarly. Note
that we only number the internal points. The coefficient matrix A can be written as
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where the block matrices Q are R are defined by
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(j)
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if s = t

0 otherwise
, for 0 ≤ j < k − 1. (6)

Summarizing, we need to solve the sparse linear system

Ax = b, (7)

where A is an n×n block tridiagonal symmetric positive definite sparse matrix. The reason
that we chose to solve this system using a preconditioned Conjugate Gradient method is
threefold: (1) the CG method is simple to implement, (2) it is the obvious choice for this
system, and (3) it is relatively straightforward to parallelize.
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2.2 Brief overview of GridSolve

GridSolve (GS) is a distributed programming system which uses a client–server model for
solving complex problems remotely on global networks [4, 7]. It is an instantiation of the
GridRPC model, an emerging standard for a Remote Procedure Call (RPC) mechanism
on Grid computers [8]. The GridRPC Application Programming Interface (API) is defined
within the Global Grid Forum [9]. Other projects that use the GridRPC API are DIET [10],
NetSolve [11], Ninf–G [12], and OmniRPC [13].

Software environments such as GridSolve are often called Network Enabled Servers
(NES). These systems typically consist of six components: clients, agents, servers, databases,
monitors, and schedulers. We will elaborate on the specific details of these components in
the context of the current version (0.16.0) of GS (see Fig.1). The GS servers (component 3)
are software components that are started on each computational node which may consist
of a single CPU or a cluster. The server monitors the workload of the node and keeps an
updated list of the services (or tasks) that are installed on the server. For example, a task
can be a single dgemm or a parallel MPI job. Services can be added or modified without
restarting the server.

A single GridSolve agent (component 2) actively monitors the server properties such
as CPU speed, memory size, computational services, and availability. These properties are
stored in a database on the agent node and are periodically updated. When a GridSolve
client program (component 1) written in either C, Fortran, or Matlab uses the GridRPC
API to initiate a GS call to a remote problem, the GS middleware first contacts the agent.
Based on the problem complexity, size of the input parameters, and the available compu-
tational resources, the agent then returns a list of servers sorted by minimum completion
time. The client resorts the list after performing a quick network performance test. Input
parameters are sent to the first server on the list and the task, which can be either blocking
or non–blocking, is executed on the server. The result (if any) is then sent back to the
client. If a task should fail it is transparently resubmitted to the next server on the list.

To determine the completion time of a particular task on server s, the total flop count
of the problem is divided by the effective speed of the server. The latter is calculated using

sflops × sncpu
sworkload

100
+ 1.0

, (8)

where sflops is the speed of server s in flops determined by multiplication of two dense
matrices of fixed size, sncpu is the number of CPUs in the node, and sworkload ∈ [0, 100]
denotes the periodically updated workload.

The main advantages of GridSolve are that it is easy to use, install, and maintain. It
allows for easy access to advanced remote computational resources. Furthermore, fault
tolerance is supported through a simple but effective mechanism. Nevertheless, the cur-
rent implementation has several obvious limitations. For example, the remote servers
cannot communicate directly, which imposes a severe constraint on the type of applica-
tions that can be efficiently solved using the current implementation of GridSolve. It is
therefore naturally suited for coarse–grained applications such as parametric studies and
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Figure 1: Schematic overview of GridSolve. The dashed line symbolizes distance between
client and servers.

‘embarrassingly parallel’ problems. In contrast, traditional parallel iterative solvers are
inherently fine–grained and much research needs to be done before iterative solvers can be
efficiently applied in Grid computing.

2.3 Data management

In the current GridSolve model, separate tasks communicate data through the client, re-
sulting in bridge communication. As a result, input and output data associated with a task
is continuously being sent back and forth between the client and the server using a possible
slow network connection. Also, any data that is read or generated locally during the exe-
cution of a task is lost after it finishes. Several strategies such as data persistence and data
redistribution have been proposed to tackle these deficiencies for different implementations
of the GridRPC API [14, 15, 16, 17, 18].

In GridSolve there is a partial solution to the first problem called the Distributed
Storage Infrastructure (DSI). At the Logistical Computing and Internetworking (LoCI)
Laboratory of the University of Tennessee the IBP (Internet Backplane Protocol) middle-
ware has been developed based on this approach [19]. To avoid multiple transmissions of
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the same data between the client and the server, the client can upload data to an IBP
data depot which is in close proximity to the computational servers. Subsequently a data
handle is sent to the server and the task can fetch and update the data on the IBP depot
(see component (4) in Fig. 1). Using the DSI can be considered as programming for a
shared memory model.

An approach similar to [15] in which the RPC model of NetSolve is extended to include
communication between remote servers is currently being developed for GridSolve [20]. In
the future we hope to use this extension and apply it to our problem.

2.4 Resource–aware load balancing

Algorithm 1 Resource–aware Preconditioned Conjugate Gradient Algorithm; p servers

1: Agent partitions work based on available computational resources.
2: Client sets initial values and uploads initial vectors such as b to the IBP data depot;

Set k = 0.
3: while CG not converged and k < kmax do
4: Client assigns CG tasks to p servers and waits until tasks have completed.
5: Client repartitions work if significant change in workload and/or computational

resources has occurred.
6: Set k = k + 1
7: end while
8: Client reads final answer from IBP depot.

We are interested in solving large sparse linear systems Ax = b using GridSolve with
architecture–aware dynamic load balancing. For this purpose it is insufficient to let the
agent return a sorted list based on problem complexity and available resources, as is nor-
mally being done in GridSolve. Instead, we need to use a slightly different approach.
Suppose that the client wishes to use p servers to solve a linear system. The scheduler
in the GridSolve agent has been enhanced so that it creates a simple (non–homogeneous)
partitioning of the computational work over p servers using information about currently
available resources. It then returns the partitioning and a list of said servers to the client,
after which the client initiates a series of non–blocking calls explicitly specifying the size
and location of each task. Thus we ensure that the computational task is being performed
on the intended server, in accordance with our partitioning. Unfortunately the fault–
tolerance mechanism within the original GridSolve is now being circumvented, because the
tasks cannot be resubmitted to another server should a task fail.

Algorithm 1 shows the general resource–aware CG algorithm. Note that the tasks use
DSI file handles to manipulate the vectors on the IBP depot. The specific structure of the
CG tasks will be discussed in the next section. After each timestep of the iteration the
client may decide to repartition the work and assign the work to different computational
servers in the network accordingly.
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Figure 2: Heterogeneous block–row partitioning [2, 3, 1, 2] for p = 4 and k = 8.

2.5 Partitioning algorithm and CG schemes

As was shown earlier, the matrix A originating from our discretisation of the system (1)
is a block tridiagonal matrix. Since each block–row roughly contains the same number
of non–zeros, we chose a simple non–homogeneous block–row partitioning. An example of
such a partitioning is illustrated in Fig.2 for p = 4 and k = 8. The input and output vectors
are distributed in the same manner. More specifically, the effective speed of p servers is
calculated using (8), together with the total flop count of a single CG iteration step. The
size of each task is then determined accordingly.

The standard Conjugate Gradient method was implemented first and is shown in Algo-
rithm 2. Jacobi preconditioning is used and there are two natural synchronisation barriers,
namely the two inner products for computing α and ρ. When implementing this scheme in
GridSolve, an extra synchronisation point is introduced due to technical implementation
details. By simply rearranging certain terms this can be avoided.

To increase the granularity we have also implemented the Chronopoulos/Gear variant
of CG [5, 21], which has a single synchronisation point, see Algorithm 3. Furthermore, this
scheme introduces an additional 2n flops in each iteration step compared to the original
scheme. Note that we employ matrix–free storage; each matrix element is recomputed when
it is needed. Generating the matrix resulting from discretising the Poisson equation with
varying diffusivity requires a significant amount of computation, increasing the granularity
even further.
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Algorithm 2 Standard CG with Jacobi preconditioning; Task i with three subtasks.

Require: File handles to vectors x, r, z,p,q on IBP data depot and parameter k.
Ensure: K := diag(A)
1: // Each server i does the following.

2: Read ri

3: Solve zi from Kzi = ri

4: Compute ρi = (ri, zi)
5: Update zi

6: –SYNCHRONIZE– (Client sums ρi)
7: Read zi and pi

8: if k = 1 then
9: Set pi = zi

10: else
11: Set βi = ρ/ρold

12: Set pi = zi + βipi

13: end if
14: Compute qi = Api

15: Compute αi = ρ/(pi,qi)
16: Update pi and qi

17: –SYNCHRONIZE– (Client sums αi)
18: Read xi, ri,pi, and qi

19: Set xi = xi + αpi

20: Set ri = ri − αqi

21: Update xi and ri

22: Check convergence; continue if necessary
23: Clients sets ρold = ρ

2.6 Implementation details

In this section we will discuss some specific issues concerning the various implementations.
In the normal operation of GridSolve in combination with DSI, if an input parameter of
a task is a DSI file handle, the middleware automatically retrieves the relevant data from
the IBP depot before the task is started on the server. For our purposes a task needs full
control over a DSI file, so instead we pass the DSI file handle explicitly.

Also, in the current implementation of IBP, reading and writing from and to the IBP
depot are blocking operations [22]. Although read operations by different tasks can be
performed on the same DSI file concurrently, write operations cannot, even when the write
regions do not overlap. In the Chronopoulos/Gear scheme a task has to perform six write
operations sequentially. Hence if a single DSI file is used to store data, large communication
imbalance may occur in this case. We hope to overcome this imbalance by using separate
DSI files for each vector and letting each task update the vectors in a random order. By
using the DSI functionality, it is also theoretically possible to interrupt the CG iteration
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Algorithm 3 CG method with Jacobi preconditioning; Chronopoulos/Gear variant; Task
i.

Require: Handles to x, r,w,p,q, and s on IBP data depot and parameters α and β.
Ensure: K := diag(A) and initial values: Solve w from Kw = r; s := Av; ρ :=

(r,w); µ := (s,w); α := ρ/µ.
1: // Each server i performs the following

2: Read xi and pi.
3: Depending on bandwidth of matrix read appropriate portions of vectors q, r,w, and s.
4: Set pi = wi + βpi

5: Set qi = si + βqi

6: Set xi = xi + αpi

7: Set ri = ri − αqi

8: Check convergence; continue if necessary
9: Solve wi from Kwi = ri

10: Compute si = Awi

11: Compute ρi = (ri,wi)
12: Compute µi = (si,wi)
13: Update xi, ri,wi,pi,qi, and si on the depot
14: Return ρi and µi to client
15: –SYNCHRONIZE–
16: Client sums ρi and µi for all i
17: Client sets β = ρ/ρold

18: Client computes α = ρ/(µ − ρβ/α)
19: Client sets ρold = ρ

process and restart at a later date, using possibly different computational resources.
At the end of each iteration step of the Chronopoulos/Gear variant, it may happen that

DSI data is inadvertently overwritten. Specifically, we cannot guarantee that every task
has finished reading the data from the previous iteration before other tasks have updated
the new data. We therefore use two different DSI files representing the previous and current
data and let the client swap the corresponding file handles at the end of each iteration step.

Furthermore, each server node in our experimental setup has ATLAS [23] as a BLAS
implementation which is used for the various daxpy and inner product operations. Each
task recomputes its portion of the sparse matrix A every timestep and stores it using
compressed row storage (CRS) format.

Although detection of convergence is an important issue in iterative methods, this is
currently not implemented.
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3 Experiments

In the previous sections we discussed several implementations and various suggestions
for increasing the granularity. In this section we will perform several experiments and
investigate the effect of these suggestions on the performance.

Our testbed is a local network of computers, which is a multi–user system consisting
of different processors with dynamic workloads. The servers in the network are ten single
core (AMD Athlon 64 Processor 3700 at 2.4GHz) and two dual core CPU nodes (Intel
Core 2 CPU 6700 at 2.66GHz) with 3 GB and 8 GB of memory respectively and running
Linux 2.6.18. In order to perform controlled and repeatable experiments we decided on
using idle processors and as a result the partitioning is fixed and homogeneous throughout
the experiments. We measure the wall clock times of five CG steps for different values of
n.

In the ideal case the IBP depot would be located on a dedicated node connected through
a high–speed network to the computational nodes. Unfortunately such a resource was not
available at the time of testing, and therefore we opted to start the depot on one of the
dual core nodes. As a result we expect a huge communication overhead. The client and the
agent are both running on a single core node while the servers are started on the remaining
nodes. In a typical Grid environment the client program would be located on the user’s
desktop machine.

We differentiate between four implementations:

(a). Standard CG without varying diffusivity using a single DSI file;

(b). Chronopoulos/Gear scheme without varying diffusivity using a single DSI file;

(c). Chronopoulos/Gear CG with varying diffusivity using a single DSI file; and

(d). Chronopoulos/Gear CG with varying diffusivity using separate DSI files which are
updated in a random order.

Figure 3(a) shows the total wall clock time of the first implementation for different values
of n using up to seven servers. It also demonstrates that communication overhead is
particularly an issue for small n, which is hardly surprising. In this case using more servers
does not result in improved execution times, and even results in larger wall clock times due
to communication overhead. For large n this implementation performs slightly better. The
other implementations give similar results for small n and we will therefore concentrate on
results for large systems.

In Fig. 3(b) results are given of the four different implementations for n = 4 · 106. Here
we clearly see the decrease in execution times when using the Chronopoulos/Gear variant
for a large number of servers. It is interesting to note that with implementation (b) and
using three to four servers we observe a large drop in execution time. We do not have an
explanation for this behaviour. Note that despite our attempts to improve the granularity
of the computation, we do not observe any significant improvements.
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Figure 3: Wall clock times of CG implementations in GridSolve.

Although we observed that using separate DSI files for the vectors only improved the
overall running time of the Chronopoulos/Gear scheme when using a small number of
servers, we noted that in this case the tasks finish at roughly the same time, in contrast
to the case of using a single DSI file. This is illustrated in Fig. 4 where the wall clock
times of the separate tasks are shown after five CG steps of Chronopoulos/Gear, broken
down in both computation and communication. Note that Fig. 4(b) shows that by using
separate DSI files the communication becomes more balanced, which is an encouraging
result. When using a single DSI file, Fig. 4(a) reveals increasing wall clock times for each
subsequent task, which can be explained as follows. Although the client initiates a sequence
of non–blocking calls, at the end of the first task the updates to the DSI file appears to
block subsequent updates by other tasks. These figures also clearly reveal the amount of
communication overhead.

4 Concluding remarks and future work

In this work we have described a case study where we have experimented with solving
large sparse systems in parallel on Grid computers using a specific Grid middleware and an
architecture–aware load balancing algorithm. A sparse iterative solver was implemented in
GridSolve, which is mature grid middleware for accessing remote computational resources.
Several suggestions for improving the granularity were given and implemented.

Our contribution is threefold. We have used a grid middleware to solve sparse linear sys-
tems with CG in a distributed manner. Using the middleware we have also implemented a
simple but effective architecture–aware partitioning algorithm to divide the computational
work. And finally, we have increased the granularity by using a custom version of CG that
has a single synchronisation point.
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Figure 4: Breakdown of wall clock time of tasks in communication (bottom part) and
computation.

Clearly our method is only suitable for solving very large systems. Furthermore, it
is naturally suited for linear systems with specific classes of coefficient matrices, such as
Poisson and Toeplitz matrices. This allows us to use matrix–free storage. Although we did
not have a dedicated DSI depot at our disposal the results are promising and we expect
that using such a dedicated resource will greatly improve the scalability of our approach.

There are many possible improvements and we will give some suggestions for future
work. The current implementation of GridSolve forces us to use bridge communication.
SmartGridSolve is an extension of GridSolve which is currently being developed. It will
perform similarly to SmartNetSolve [15], allowing for communication between the compu-
tational servers as well as data persistence. By combining this with sophisticated (possibly
weighted) hypergraph partitioning techniques such as used in Mondriaan [24] we hope to
greatly improve our load balancing algorithm.

To further increase the granularity of the computations, we plan to use more sophisti-
cated preconditioning techniques, such as block ILU and deflation.

Another possible improvement is incorporating network capabilities into the partition-
ing algorithm.

5 Acknowledgments

The authors would like to thank the GridSolve team for their prompt response pertain-
ing to our questions. This work was supported by the Delft Centre for Computational
Science and Engineering within the framework of the project entitled ‘Development of an
Immersed Boundary Method, Implemented on Cluster and Grid Computers, Application
to the Swimming of Fish’.

12



References

[1] Foster, I., Kesselman, C.: The Grid: Blueprint for a new Computing Infrastructure.
second edn. Morgan Kaufman Publishers (2004)

[2] Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@home:
an experiment in public–resource computing. Commun. ACM 45 (2002) 56–61

[3] Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems.
Journal of Research of National Bureau Standards 49 (1952) 409–436

[4] Dongarra, J., Li, Y., Shi, Z., Fike, D., Seymour, K., YarKhan, A.: Homepage of Net-
Solve/GridSolve (2007) http://icl.cs.utk.edu/netsolve/, latest version of Grid-
Solve is v0.16.0 (as of 2007-06-03).

[5] Chronopoulos, A.T., Gear, C.W.: S–step iterative methods for symmetric linear
systems. J. Comput. Appl. Math. 25 (1989) 153–168

[6] Mittal, R., Iaccarino, G.: Immersed Boundary Methods. Annual Review of Fluid
Mechanics 37 (2005) 239–261

[7] YarKhan, A., Seymour, K., Sagi, K., Shi, Z., Dongarra, J.: Recent Developments
in GridSolve. International Journal of High Performance Computing Applications
(IJHPCA) 20 (2006) 131–141

[8] Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., Casanova, H.:
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. In: GRID
’02: Proceedings of the Third International Workshop on Grid Computing, London,
UK, Springer-Verlag (2002) 274–278

[9] Lee, C., Nakada, H., Tanimura, Y.: GridRPC Working Group (2007)
https://forge.gridforum.org/projects/gridrpc-wg/.

[10] Caron, E., Desprez, F.: DIET: A scalable toolbox to build network enabled servers
on the Grid. International Journal of High Performance Computing Applications 20
(2006) 335–352

[11] Seymour, K., YarKhan, A., Agrawal, S., Dongarra, J.: NetSolve: Grid enabling
scientific computing environments. In Grandinetti, L., ed.: Grid Computing and New
Frontiers of High Performance Processing. Elsevier (2005)

[12] Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T., Matsuoka, S.: Ninf-G: A
reference implementation of RPC-based programming middleware for Grid computing.
Journal of Grid Computing 1 (2003) 41–51

13



[13] Sato, M., Boku, T., Takahashi, D.: OmniRPC: a Grid RPC system for parallel
programming in cluster and Grid environment. In: CCGRID ’03: Proceedings of the
3st International Symposium on Cluster Computing and the Grid, Washington, DC,
USA, IEEE Computer Society (2003) 206–213

[14] Caron, E., Del-Fabbro, B., Desprez, F., Jeannot, E., Nicod, J.M.: Managing data
persistence in network enabled servers. Sci. Program. 13 (2005) 333–354

[15] Brady, T., Konstantinov, E., Lastovetsky, A.: SmartNetSolve: High level program-
ming system for high performance Grid computing, Rhodes Island, Greece, IEEE
Computer Society (2006) CD-ROM/Abstracts Proceedings.

[16] Lastovetsky, A., Zuo, X., Zhao, P.: A non–intrusive and incremental approach to
enabling direct communications in RPC-based grid programming systems. Technical
report (2006)

[17] Zuo, X., Lastovetsky, A.: Experiments with a software component enabling NetSolve
with direct communications in a non–intrusive and incremental way. In: Proceedings of
the 21st International Parallel and Distributed Processing Symposium (IPDPS 2007),
Long Beach, California, USA, IEEE Computer Society (2007)

[18] Desprez, F., Jeannot, E.: Improving the GridRPC model with data persistence
and redistribution. In: ISPDC ’04: Proceedings of the Third International Sym-
posium on Parallel and Distributed Computing/Third International Workshop on
Algorithms, Models and Tools for Parallel Computing on Heterogeneous Networks
(ISPDC/HeteroPar’04), Washington, DC, USA, IEEE Computer Society (2004) 193–
200

[19] Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H., Dongarra, J., Moore, T.,
Obertelli, G., Plank, J., Swany, M., Vadhiyar, S., Wolski, R.: Middleware for the use
of storage in communication. Parallel Comput. 28 (2002) 1773–1787

[20] Seymour, K.: Private correspondence (2007)

[21] Dongarra, J.J., Duff, I.S., Sorensen, D.C., van der Vorst, H.A.: Numerical Linear
Algebra for High Performance Computers. Society for Industrial and Applied Math-
ematics, Philadelphia, PA, USA (1998)

[22] Zheng, Y., Bassi, A., Beck, M., Plank, J.S., Wolski, R.: In-
ternet Backplane Protocol: C API 1.4. Technical report (2004)
http://loci.cs.utk.edu/ibp/documents/IBPClientAPI.pdf.

[23] Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in sup-
porting persistently optimized BLAS. Software: Practice and Experience 35 (2005)
101–121 http://www.cs.utsa.edu/~whaley/papers/spercw04.ps.

14



[24] Vastenhouw, B., Bisseling, R.H.: A two–dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM Rev. 47 (2005) 67–95

15


