
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 07-13

Adaptive integration for multi-factor
portfolio credit loss models

X. Huang, C.W. Oosterlee

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2007



Copyright c©2007 by Department of Applied Mathematical Analysis,
Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without the prior written permission from
Department of Applied Mathematical Analysis, Delft University of Technol-
ogy, The Netherlands.



Adaptive integration for multi-factor portfolio

credit loss models

Xinzheng Huanga,b,∗, Cornelis. W. Oosterleea,c

a Delft Institute of Applied Mathematics, Delft University of Technology,

Mekelweg 4, 2628CD, Delft, the Netherlands

b Group Risk Management, Rabobank,

Croeselaan 18, 3521CB, Utrecht, the Netherlands
c CWI - National Research Institute for Mathematics and Computer Science,

Kruislaan 413, 1098 SJ, Amsterdam, the Netherlands

October 15, 2007

Abstract

We propose algorithms of adaptive integration for calculation of the
tail probability in multi-factor credit portfolio loss models. We first de-
vise the classical Genz-Malik rule, a deterministic multiple integration
rule suitable for portfolio credit models with number of factors less than
8. Later on we arrive at the adaptive Monte Carlo integration, which
simply replaces the deterministic integration rule by pseudo-random
numbers. The latter can not only handle higher-dimensional models
but is also able to provide reliable probabilistic error bounds. Both
algorithms are asymptotically convergent and consistently outperform
the plain Monte Carlo method.

1 Introduction

We consider the computation of the tail probability of credit portfolio loss
L in a multi-factor model like CreditMetrics (Gupton et al. 1997). In such
latent factor models the obligors are assumed to be independent conditional
on some d latent factors, denoted by Yd. We are interested in the estimation
of the tail probability

P (L > x) =

∫

P
(

L > x |Yd

)

dP (Yd),

∗Corresponding author; E-mail: X.Huang@ewi.tudelft.nl
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especially for extreme losses x. This is essential for the determination of
the portfolio Value at Risk (VaR). The integrand P

(

L > x |Yd
)

can be
approximated with ease since conditional on Yd, the portfolio loss L reduces
to a sum of independent random variables. Various approximations exist and
prove to work very well, for example, the recursive method due to Andersen
et al. (2003), the normal approximation method as in Martin (2004) and the
saddlepoint approximation presented in Huang et al. (2007). In a one-factor
model (d = 1), the calculation of the integral can be handled efficiently by
Gaussian quadrature.

When one wishes to take into account the effects of different industries
and geographical regions, multiple factors become necessary. A multi-factor
model is certainly able to capture the correlation structure among oblig-
ors (or defaults) better. Meanwhile the computation of the tail probability
P (L > x) in a multi-factor model is much more involved. The product
quadrature rule becomes impractical because the number of function evalu-
ations grows exponentially with d and the so-called curse of dimensionality
arises.

In this article we deal with the high-dimensionality and show that adap-
tive integration algorithms are very well suited for the calculation of the
tail probability. An adaptive integration algorithm successively divides the
integration region into subregions, detects the subregions where the inte-
grand is most irregular, and places more points in those subregions. We first
devise the Genz-Malik rule (Genz & Malik 1980), a deterministic multiple
integration rule suitable for portfolio credit models with a number of factors
less than 8. Later on we arrive at the adaptive Monte Carlo integration,
which simply replaces the deterministic integration rule by pseudo-random
numbers.

The rest of the article is organized as follows. We give in section 2 an in-
troduction into a multi-factor portfolio credit loss model and derive certain
properties of the conditional tail probability as a function of the common
factors. Section 3 gives a motivation for adaptive integration by means of a
one-factor model example. In section 4 we briefly review the globally adap-
tive integration algorithm and the Genz-Malik rule. Section 5 presents a
tailor-made Genz-Malik rule for the computation of tail probability in the
context of portfolio credit loss, followed by some numerical results in section
6. We then discuss the adaptive Monte Carlo integration in section 7 and
show some numerical results in section 8. Section 9 concludes.

2 Multi-factor portfolio credit loss model

Consider a credit portfolio consisting of n obligors with exposure wi, i =
1, . . . , n. Assume that obligor i defaults if its standardized log asset value Xi
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is less than some default threshold γi after a fixed time horizon. The event of
default can be modeled as a Bernoulli random variable Di = 1{Xi<γi} with
known default probability pi = P (Xi < γi). It follows that the loss Li due
to obligor i is simply wiDi and the portfolio loss is given by

L =
n
∑

i=1

Li =
n
∑

i=1

wiDi. (1)

A key issue in portfolio credit loss modeling is the modeling of the default
dependence among obligors. It is common practice to utilize a latent factor
model. The correlations among Li are specified implicitly by a factor model
of asset correlations such that

Xi = αi1Y1 + · · · + αidYd + βiZi, (2)

where (Y1 . . . Yd) and Zi are independent for all i. (Y1 . . . Yd) are thought as
systematic factors that affect more than one obligor and Zi is an idiosyn-
cratic part that only affects an obligor itself. In case that d = 1 the model
reduces to a one-factor model, in which Y can be interpreted as the “state
of economy”. A well-known example of the one-factor model is the Vasicek
(2002) model. More factors are necessary if one wishes to take the effects
of different industries and geographical regions into account. The resulting
multi-factor model offers a better solution to identifying the correlations
among individual obligors. Write

Yd = (Y1, . . . , Yd) and αi = (αi1, . . . , αid).

It is easily deduced that Xi and Xj are conditionally independent given
the realization of Yd. This implies that Li and Lj are also conditionally
independent given Yd.

In this article we are interested in the estimation of tail probability

P (L > x) =

∫

P
(

L > x |Yd

)

dP (Yd), (3)

especially for extreme losses x. This is essential for the determination of the
portfolio Value at Risk (VaR). For now we consider the widely used Gaussian
factor model as in CreditMetrics (Gupton et al. 1997), where Y1 . . . Yd and
all Zi are i.i.d. standard normal random variables. α2

i1 + · · · + α2
id + β2

i = 1
so that the Xi are also standard normally distributed. We further assume
that all αik and βi are nonnegative.

Under this setup the probability of default of obligor i conditional on
the common factor Yd is given by

pi

(

Yd

)

= P
(

Di = 1|Yd

)

= P
(

Xi < γi|Yd

)

= Φ

(

Φ−1(pi) − αi · Yd

βi

)

,

(4)
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where Φ denotes the cumulative distribution function of the standard nor-
mal distribution. Equation (4) shows that the individual conditional de-
fault probability is non-increasing in Yd. An important consequence is that
the conditional tail probability of portfolio loss P

(

L > x |Yd
)

is also non-
decreasing in Yd. Without loss of generality, we prove the following propo-
sition.

Proposition 1. The mapping

yk 7−→ P (L > x|Y1 = y1, Y2 = y2, . . . , Yd = yd), k = 1, · · · , d,

is non-increasing in yk.

Proof. Let us write

L =
n
∑

i=1

wi1{Xi<γi} =
n
∑

i=1

wi1{αi1y1+···+αidyd+βiZi<γi}.

The conditional tail probability can be reformulated to be

P (L > x|Y1 = y1, Y2 = y2, . . . , Yd = yd) = P

(

n
∑

i=1

wi1{αi1y1+···+αidyd+βiZi<γi} > x

)

.

The indicator function

1{αi1y1+···+αidyd+βiZi<γi} = 1{Zi<
1
βi

(γi−αi1y1−···−αidyd)}

is non-increasing in yk for all k when αik and βi are nonnegative for all i. It
follows that

n
∑

i=1

wi1{αi1y1+···+αidyd+βiZi<γi}

is also non-increasing in yk for all k. This immediately leads to the assertion.

In addition it is not difficult to derive that P (L > x| −∞, . . . ,−∞) = 1
and P (L > x| + ∞, . . . , +∞) = 0.

The rest of this article hinges strongly on the validity of Proposition 1.
Note that Proposition 1 is a quite general result. Its proof is not contin-
gent on the assumption that Y1, . . . Yd are independent. The distributions
of Yd and Zi, i = 1, . . . , n are not relevant either. The only two necessary
conditions for the monotonicity are

1. Yd and Zi, i = 1 . . . n are independent, and

2. the factor loadings, αik, i = 1, · · · , n, k = 1, · · · , d are all nonnegative.
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Proposition 2. P (L > x|Y1, Y2, . . . , Yd) is continuous and differentiable
with respect to Yk, k = 1, · · · , d.

Proof. Denote by ε = (ε1, . . . , εn) = {0, 1}n a realization of (D1, . . . , Dn)
and write w = (w1, . . . , wn). The conditional tail probability is given by

P (L > x|Yd) =
∑

ε:w·ε>x

P
(

Di = εi, i = 1, . . . , n|Yd

)

As Di and Dj are independent conditional on Yd, we get

P
(

Di = εi, i = 1, . . . , n|Yd

)

=
n
∏

i=1

[

pi

(

Yd

)]εi
[

1 − pi

(

Yd

)]1−εi

.

Since pi (Y1, Y2, . . . , Yd) is continuous and differentiable in Yk for all k, so is
the tail probability P (L > x|Y1, Y2, . . . , Yd).

3 Motivation for adaptive integration: a one-

factor model

We start with a Gaussian one-factor model, motivating the need for adap-
tivity in the numerical integration. For integration we employ a straight-
forward N -point Gauss-Legendre quadrature rule. We truncate the domain
of the common factor Y to the interval [−5, 5] so that the probability of Y
falling out of this interval is merely 5.7× 10−7. Denote the Gauss nodes and
weights by Yk with Y1 > Y2 > ... > YN and uk, k = 1, . . . , N , respectively.
The tail probability P (L > x) is then approximated by

P (L > x) ≈
∫ 5

−5
P (L > x|Y )dP (Y ) ≈

N
∑

k=1

P (L > x|Yk)φ(Yk)uk, (5)

where φ denotes the probability distribution function of the standard normal
distribution.

Take as an example a homogeneous portfolio A consisting of 1000 obligors
with wi = 1, pi = 0.0033 and αi =

√
0.2, i = 1, . . . , 1000. The integrand

P (L > x|Y ) with x = 100 is illustrated in Figure 1. It is a non-increasing
function of Y . Furthermore, it decreases rapidly from its upper bound 1 to
its lower bound 0 for Y in a narrow band (between the two dashed vertical
lines in Figure 1) much smaller than the domain of Y . Note that the band
will move toward the left tail of Y as the loss level x increases. Moreover the
width of the band should further decrease as the number of the obligors n

5



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y

P(L>100|Y)

Figure 1: The integrand P (L > 100|Y ) as a function of the common factor
Y for portfolio A, which consists of 1000 obligors with wi = 1, pi = 0.0033
and αi =

√
0.2, i = 1, . . . , 1000.

increases. Asymptotically, as n → ∞, P (L > x|Y ) approaches a Heaviside
step function. Due to the law of large numbers, L(Y ) →∑

wipi(Y ) a.s. and
P (L > x|Y ) → 1{∑wipi(Y )>x}.

Generally an N -point quadrature rule demands N integrand evaluations.
However since in our problem the integrand is monotone and bounded in
[0, 1], significantly fewer evaluations are necessary with an adaptive inte-
gration algorithm for the same accuracy. Below we give a simple procedure
that utilizes the nodes of an N -point Gauss-Legendre quadrature rule. It
produces identical results for the integral (5) as the N -point quadrature but
it substantially reduces the number of integrand evaluations. For simplicity,
we write f(Y ) instead of P (L > x|Y ) and denote I = P (L > x). Basically
the algorithm first identifies the smallest node y1 giving f(y1) = 0. It then
discards all nodes larger than y1 and proceeds sequentially with decreasing
Y until we find a y2 such that f(y2) = 1. For all Y < y2 we set f(Y ) = 1.

For the above example with N = 100 this algorithm results in less than 20
integrand evaluations. It is evident that an adaptive integration algorithm
is able to effectively reduce the amount of computations in a one-factor
model. Unfortunately the above algorithm cannot be extended to a multi-
factor model by a simple product rule.

4 Globally adaptive algorithms for numerical in-

tegration

Consider now a general integral over a d-dimensional rectangular region Cd

I(f) =

∫

· · ·
∫

Cd

f(x)g(x)dx1dx2 · · · dxd, (6)

where x = (x1, x2, . . . , xd) and g(·) is a weight function.
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Algorithm 1 1D adaptive integration

Generate the N -degree Gaussian nodes Y1, . . . , YN and weights u1, . . . , uN

Find Yi = min{Yk|f(Yk) = 0, k = 1, . . . , N}
j = i + 1, I = 0
while j ≤ N, f(Yj) < 1 do

I = I + f(Yj) · φ(Yj) · uj

j = j + 1
end while

I = I +
∑N

k=j φ(Yk) · uk

Monte Carlo simulation and quasi-Monte Carlo methods are the pre-
vailing methods used to solve multi-dimensional problems in finance. Both
methods do not suffer from the dimensional effect. The Monte Carlo method
is known to be only accurate with a tremendous amount of scenarios since

its rate of convergence is O
(

1/
√

N
)

. Quasi-Monte Carlo methods use de-

terministic sequences that have better uniform properties measured by dis-
crepancy. They are usually superior to the Monte Carlo method as they
have a convergence rate of O

(

(log N)d/N
)

. The advantage of the Monte
Carlo method is however that it gives practical probabilistic error bounds.
As for quasi-Monte Carlo methods even though they are able to provide a
deterministic error bound, the bounds can be unrealistically pessimistic (cf.
Spanier & Maize 1994, Cools 2002).

Recall that integration with both Monte Carlo and quasi-Monte Carlo
methods require a transformation of integration region into the unit cube
[0, 1]d. Pseudo-random numbers or quasi-random sequences are then gener-
ated uniformly in the [0, 1]d cube. This can however be inefficient if most
of the points are placed outside the regions which are significant for the
evaluation of the integral. In this respect the better uniform properties of
quasi-Monte Carlo sequences over Monte Carlo simulation can be meaning-
less. In addition, both Monte Carlo and quasi-Monte Carlo methods are not
able to take advantage of the regularity of the integrand.

4.1 Preliminaries

An adaptive integration algorithm differs fundamentally from Monte Carlo
and quasi-Monte Carlo methods in that it successively divides the integra-
tion region into subregions, detects the subregions where the integrand is
most irregular, and places more points in those subregions.

We restrict ourselves to the globally adaptive algorithms for multi-
dimensional integration, which typically have a structure that consists of
the following steps:
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1. Choose a subregion from a collection of subregions and subdivide the
chosen subregion.

2. Apply an integration rule to the resulting new subregions; update the
collection of subregions.

3. Update the global integral and error estimate; check whether a prede-
fined termination criterion is met; if not, go back to step 1 .

The two important ingredients of an adaptive algorithm are

1. an integration rule for estimating the integral in each subregion.

2. an error estimate for each subregion.

Definition 1. An integration rule for the cube [−1, 1]d is fully symmet-

ric if, whenever the rule contains a point x = (x1, x2, ..., xd) with associated
weight u, it also contains all points that can be generated from x by per-
mutations and/or sign-changes of the coordinates with the same associated
weight.

Example 1. If a fully symmetric integration rule for the square [−1, 1]2

contains (x1, x2), with x1 6= x2, then it also contains the following points,
(x1,−x2), (−x1, x2), (−x1,−x2), (x2, x1), (x2,−x1), (−x2, x1), (−x2,−x1).

A variety of fully symmetric polynomial interpolation rules for multiple
integration in a d-rectangle are available. An integration rule has polynomial
degree m if it integrates exactly all monomials xk1

1 xk2
2 . . . xkd

n with
∑

ki ≤ m
and fails to integrate exactly at least one monomial of degree m + 1. For a
comprehensive review see Stroud (1971), Cools & Rabinowitz (1993), Cools
(1999).

An error estimate ε is generally taken to be the difference of two quadra-
ture rules with different degrees of exactness m1 and m2,

ε = Im1 − Im2 , m1 > m2.

It is expected that Im1 is a better approximation to I than Im2 , i.e.,

|I − Im1 | ≤ |Im1 − Im2 |, m1 > m2 (7)

so that |Im1 − Im2 | acts as a conservative estimate of the integration error.

The use of the error estimate is usually two-fold. The subregions with
the largest error estimates in absolute value will be chosen for subdivision.
Besides, the (local) error estimates for each subregion can be aggregated
over the whole integration region Cd to attain a global error estimate. The
global absolute/relative error can serve as a termination criterion for sub-
division. Subdivision will continue until either the global absolute/relative
error falls below a level or a maximum number of function evaluations has
been reached, or a combination of them.
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4.2 The Genz-Malik rule

The Genz & Malik (1980) rule is a fully symmetric degree 7 rule. It gives an
integration rule in the square [−1, 1]d but can be readily generalized to any
rectangular region by an affine transformation. The degree 7 rule is given as
follows

I7(f) =u1f(0, 0, . . . , 0) + u2

∑

FS

f(λ2, 0, 0, . . . , 0) + u3

∑

FS

f(λ3, 0, 0, . . . , 0)+

+ u4

∑

FS

f(λ4, λ4, 0, 0, . . . , 0) + u5

∑

FS

f(λ5, λ5, . . . , λ5), (8)

where
∑

FS denotes a fully symmetric summation over all permutations of
coordinates including sign changes and

λ2
2 =

9

70
, λ2

3 = λ2
4 =

9

10
, λ2

5 =
9

19
,

u1 = 2d(12824 − 9120d + 400d2)/19683,

u2 = 2d(980/6561),

u3 = 2d(1820 − 400d)/19683,

u4 = 2d(200/19683),

u5 = 6859/19683.

All integration nodes are inside the integration domain. The degree 7 inte-
gration rule requires 2d + 2d2 + 2d + 1 integrand evaluations for a function
of d variables and is thus known to be most advantageous for problems with
d ≤ 8. We remark that, by contrast, a Gauss-Legendre quadrature rule of de-
gree 7 would require 4d integration evaluations, which is significantly larger
for d ≥ 3.

Example 2. The Genz-Malik rule in the square [−1, 1]2 evaluates a func-

tion at the following 17 points, (0, 0), (±
√

9
70 , 0), (0,±

√

9
70), (±

√

9
10 , 0),

(0,±
√

9
10), (±

√

9
10 ,±

√

9
10), (±

√

9
19 ,±

√

9
19).

The Genz-Malik rule distinguishes itself from other multiple integration
rules in that it has an embedded degree 5 rule for error estimation. The
degree 5 rule uses a subset of points of the degree 7 rule, which means that
no additional integrand evaluations are necessary. This is highly desirable
for multidimensional problems. The embedded degree 5 rule is given by

I5(f) =u′
1f(0, 0, . . . , 0) + u′

2

∑

FS

f(λ2, 0, 0, . . . , 0) + u′
3

∑

FS

f(λ3, 0, 0, . . . , 0)+

+ u′
4

∑

FS

f(λ4, λ4, 0, 0, . . . , 0), (9)
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with
u′

1 = 2d(729 − 950d + 50d2)/729,

u′
2 = 2d(245/486),

u′
3 = 2d(265 − 100d)/1458,

u′
4 = 2d(25/729).

As pointed out in the preceding section, an error approximation for each
subregion is simply the difference of these two rules, i.e.,

ε = I7 − I5. (10)

Starting from the whole integration region, in every step the (sub)region with
the largest error estimate in absolute value will be chosen for subdivision.
The division rule used to determine along which direction to divide is due
to van Dooren & de Ridder (1976). To avoid an exponential explosion in the
number of subregions, the chosen region is not divided into 2d subregions but
only into two. In particular, the direction that has the largest fourth divided
difference is halved. Five points are used in the direction i = 1, . . . , d,

xi = −λ3,−λ2, 0, λ2, λ3, and xj = 0 for j 6= i.

And the fourth divided differences are given by

Difi = [f(−λ3) − 2f(0) + f(λ3)] −
λ2

2

λ2
3

[f(−λ2) − 2f(0) + f(λ2)]. (11)

Note that no additional integrand evaluations are required here either.

It follows that after K − 1 subdivisions, the integration region Cd is
divided into K non-overlapping rectangular subregions. For any subregion k,

the Genz-Malik rule gives a local integral estimate I
(k)
7 , a local error estimate

ε(k) and a direction s(k) that has the largest fourth divided difference given
by (11), which is then chosen for the next subdivision. Aggregating the local
information over Cd we obtain a global integral estimate to I(f) as follows,

I7(f) =
K
∑

k=1

I
(k)
7 (f), (12)

where I
(k)
7 (f) is calculated by (8) with suitable affine transformation. Mean-

while the K local error estimates sum to a global error estimate i.e.,
ε =

∑K
k=1 ε(k).

A remark is that when a region is subdivided, integrand values evalu-
ated in this region are discarded and the integration rule is applied in both
new subregions. Roughly this means that in the long run only half of the
integrand evaluations is used for the calculation of the integral, the other
half is abandoned in the process of subdivision.
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5 A tailor-made adaptive Genz-Malik rule

We restate our problem as calculating

I(f) =

∫

· · ·
∫

Cd

f(Yd)φ(Yd)dY1 · · · dYd, (13)

where f(Yd) = P (L > x|Yd) is bounded in [0, 1] and φ(Yd) is the proba-
bility density function of d-dimensional normal distribution with zero mean
and identity covariance matrix.

A major problem with the Genz-Malik rule is that the weights ui can be
negative: u1 < 0 for 2 ≤ d ≤ 21 and u3 < 0 for d ≥ 5. Consequently even
though our integrand is always positive in some subregions a straightforward
Genz-Malik rule may give negative results for the integral. This however can
be rather easily dealt with in our context. Recall from Prop. 1 that f(Yd)
should be bounded in any rectangular (sub)region [a1, b1] × [a2, b2] . . . ×
[ad, bd], more specifically,

f(b) ≤ f(Yd) ≤ f(a), (14)

where a = (a1, a2, . . . , ad) and b = (b1, b2, . . . , bd). As a result we have for
I(k)(f), superscript (k) indicating subregion k, both an upper bound and a
lower bound, i.e.,

f(b(k))
d
∏

i=1

(

Φ(b
(k)
i ) − Φ(a

(k)
i )
)

≤ I(k)(f) ≤ f(a(k))
d
∏

i=1

(

Φ(b
(k)
i ) − Φ(a

(k)
i )
)

.

(15)
Denote by U (k), L(k) the upper bound and lower bound respectively for sub-
region k. Positivity of the integrand can be easily preserved by the following
correction,

I
(k)
7 (f) = I

(k)
7 (f)1{L(k)≤I

(k)
7 (f)≤U(k)} +L(k)1{I(k)

7 (f)<L(k)} +U (k)1{I(k)
7 (f)>U(k)}.

(16)
The last term in Eq. (16) in addition corrects possible overshooting of the
integration rule to some extent. More importantly, the local bounds over
all subregions can be aggregated to a global upper bound and a global
lower bound for the whole integration region Cd. It follows that the estimate
to the integral should asymptotically converge to I(f) if we continue the
subdivision until the global upper bound and lower bound coincide.

It is also important to recognize that the integral can be calculated ex-
actly for subregions where the integrand is constantly 0 or 1. These subre-
gions can be identified by simply evaluating the integrand at the end points
a(k) and b(k). By bounded monotonicity we have

I(k)(f) =

{

0 if f(a(k)) = 0,
∏d

i=1

(

Φ(b
(k)
i ) − Φ(a

(k)
i )
)

if f(b(k)) = 1.
(17)
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In these subregions we should set ε(k) = 0 .

We are now in a position to present our adaptive integration algorithm
based on a tailor-made Genz-Malik rule. It is presented as Algorithm 2. For
clarity in notation we use superscript l for local estimates in any subregion.
s denotes the subdivision direction of a subregion.

Algorithm 2 adaptive integration based on the Genz-Malik rule

Apply the GM rule over the integration region,
return I l

7, εl and subdivision direction s, impose (16)
while termination criteria not met do

Choose the (sub)region with largest εl and divide along direction s.
Compute f(a) and f(b) for the resulting two subregions.
if f(a) = 0 or f(b) = 1 then

Apply (17), let εl = 0.
else

Apply the GM rule to both subregions, return I l
7, εl and s, impose

(16).
end if

Update I7, ε and the subregion collection.
end while

The error estimate ε deserves further investigation. Typically it not only
determines the region for subdivision in each step, but it is also used to check
whether the termination criteria are met. According to Lyness & Kaganove
(1976), Berntsen (1989), error estimates based on differences of two rules can
in general be unreliable. The inequality (7) is not necessarily satisfied, thus
it is possible that, while the actual error is very large, the estimated error is
marginal. Schürer (2001) shows that in particular the Genz-Malik rule per-
forms rather poor in terms of error estimation. Various ways of improving
the reliability of error estimates can be found in Berntsen (1989), Berntsen
et al. (1991), among which a simple approach is to use more than two in-
tegration rules for error estimation. Following this we take a parsimonious
change by including the degree 1 midpoint rule for the square [−1, 1]d,

I1 = f(0, 0, . . . , 0),

which is also embedded in the degree 7 rule, as a second check on error.
Thus the error estimate is defined to be

ε = (I7 − I5)1{|I7−I5|≥|I7−I1|} + (I7 − I1)1{|I7−I5|<|I7−I1|}. (18)

The new error estimate is more reliable but also conservative. In fact I7− I5

is already too conservative an error estimate for the degree 7 rule since it
is rather an error estimate for the degree 5 rule. A stop rule based on such
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absolute/relative errors can consequently be ineffective. It may well happen
that while the integration rule is giving accurate results, the error estimate
remains above a given precision level and the subdivision carries on more
than necessary, see e.g. Genz & Kass (1997). Hence a stop rule that does
not rely on ε is desirable. In return, when an error estimate is not used as
a termination criterion for subdivision, it no longer needs to provide a good
approximation for I(f) − I7(f). Instead, an error estimate is of sufficient
quality if for any two subregions k1 and k2, ε(k1) > ε(k2) implies

∣

∣

∣
I(k1)(f) − I

(k1)
7 (f)

∣

∣

∣
>
∣

∣

∣
I(k2)(f) − I

(k2)
7 (f)

∣

∣

∣

with a great probability. In this sense (18) is likely to outperform (10) as the
former will more often than not magnify the error estimate for subregions in
which the integrand varies substantially but provides little change in smooth
subregions.

An alternative termination criterion is suggested in Genz & Kass (1997).
They propose to compare the integral estimate after every h subdivision and
the algorithm is stopped when there is negligible change in successive results.
This is not difficult to understand. We have a converging sequence of integral
estimates in the process of subdivision. For K ′ < K, the relative error
estimate |ÎK′ − ÎK |/ÎK provides an indication whether the approximation
has converged. When the changes become sufficiently small it is reasonable
to stop further division. A similar criterion is also adopted by Paskov &
Traub (1995) to control the generation of quasi-Monte Carlo sequences. The
algorithm however has the disadvantage that it can only be stopped after a
multiple of h divisions. To make the stop rule more flexible it is possible to
define a moving window with bandwidth h and replace |IK − IK−h| by

max
K−h≤K′<K

|IK − IK′ | ,

where K need not to be a multiple of h. In this way the algorithm can
be terminated for all K > h, and is also somehow more robust since the
maximum of the differences is used.

Variants of the stop rule can be further explored. Unfortunately these
stop rules share a common disadvantage that a practical error bound is lack-
ing. Therefore we would rather stay with the simplest termination criterion:
maximum number of integrand evaluations or similarly, maximum number
of subdivisions. This also saves us from the delicate problem of choosing
suitable parameters such as h, which can be quite arbitrary.

6 Numerical results I

Here we first illustrate by a two-factor model example how the adaptive
integration algorithm works. For some arbitrary portfolio and suitable loss
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level x, Figure 2(a) gives the conditional tail probability P (L > x|Y1, Y2)
for (Y1, Y2) truncated to the square [−5, 5]2. The integrand turns out to
contribute nothing to the integral value in almost 7/8 of the area, which
suggests that an adaptive algorithm should be favored. Figure 2(b) shows
a scatterplot of the subregion centers generated by the adaptive integra-
tion algorithm 2. It is clearly seen that the adaptive algorithm does focus
its integrand evaluation in the subregions where the integrand values vary
rapidly.
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Figure 2: Adaptive integration for a two-factor model. (a) integrand P (L >
x|Y1, Y2); (b) centers of the subregions generated by adaptive integration.

Let us consider again credit portfolio A with 1000 obligors with wi = 1,
pi = 0.0033, i = 1, . . . , 1000. However, we now move to a five-factor model
such that the obligors are grouped into 5 buckets of 200 obligors. Within
each bucket, the obligors have identical factor loadings

αi =











































(
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6
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6
, 1√

6
, 1√

6

)

, i = 1, . . . , 200,
(

1√
5
, 1√

5
, 1√

5
, 1√

5
, 0
)

, i = 201, . . . , 400,
(

1√
4
, 1√

4
, 1√

4
, 0, 0

)

, i = 401, . . . , 600,
(

1√
3
, 1√

3
, 0, 0, 0

)

, i = 601, . . . , 800,
(

1√
2
, 0, 0, 0, 0

)

, i = 800, . . . , 1000.

We compute tail probabilities over a wide range of 20 loss levels from 75
to 550, with an increment of 25. These losses correspond to quantiles of the
portfolio loss distribution roughly from 99% to 99.99%. As a benchmark we
use simulation with a tremendous amount of scenarios. Integrand evaluation
is accomplished by the normal approximation and is considered to be exact.
We compare the results obtained by the adaptive Genz-Malik rule (ADGM),
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the Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods with a sim-
ilar number of integrand evaluations, denoted by N . For the quasi-Monte
Carlo method we choose the SOBOL sequence. The sequence is generated
by the GSL library, which is based on Antonov & Saleev (1979).

We control the number of integrand evaluations rather than computation
time in the course of subdivision because the latter can vary substantially
for different portfolios, different methods for integrand evaluation and dif-
ferent data structures of the subregion collection. The approximation error
is measured by the unsigned relative error (RE) defined as

|Î(f) − I(f)|
I(f)

,

where I(f) is the result given by the benchmark and Î(f) denotes any esti-
mate to I(f). The relative errors reported for the Monte Carlo method are
averaged over 100 different runs. Alongside the mean error we also show the
95% confidence interval of the signed relative error. Since Monte Carlo sim-
ulation gives an unbiased estimate, the confidence interval is simply ±1.96
times of the error standard deviation.

We first show in Figure 3(a) the average performance of each method over
all 20 loss levels with different numbers of integrand evaluations N ranging
from 50, 000 to 220. Note that for the adaptive integration, these correspond
roughly to K, the number of subregions, from 250 to 5, 000 because the Genz-
Malik rule samples in five dimensions around 100 points in each subregion.
Apparently the adaptive integration consistently outperforms both Monte
Carlo and the quasi-Monte Carlo methods for all levels of N . Its relative
errors are around one-third of those obtained from plain Monte Carlo given
the same amount of integrand evaluations. Contrary to common knowledge,
the quasi-Monte Carlo method is here inferior to the Monte Carlo method,
especially for low N ≤ 218. The quasi-Monte Carlo method does show a
higher convergence rate than the plain Monte Carlo method, but that is
only because it is so deviant for small N . For example, the average relative
error of quasi-Monte Carlo with 65, 536 (= 216) evaluations is more than
35%, while plain Monte Carlo and the adaptive integration with around
50, 000 evaluations yield 12.4% and 5.8% respectively.

The poor performance of the quasi-Monte Carlo method, especially for
small N , is not unexpected. Let’s go back to the one-factor model example in
section 3 and consider the binary van der Corput sequence, a one-dimension
quasi-Monte Carlo sequence, with the total number of points N = 2s −1 for
some s ∈ Z+. We concentrate on the interval Y ≤ −3 as this is the interval
where the integrand makes the most contribution according to Figure 1. In
Figure 3(b) we show for 9 ≤ s ≤ 14 the percentages of quasi-Monte Carlo
points falling in this interval compared to Monte Carlo points. Note the more
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points are in this interval, the more accurate the integration result will be.
The percentage with the Monte Carlo method is constantly Φ−1(−3) =
0.0013 by expectation. The van der Corput sequence has no points at all in
the interval with s = 9 and only catches up with the Monte Carlo method
for s ≥ 13.
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Figure 3: (a) Estimation relative errors of the adaptive Genz-Malik rule
(ADGM), Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods over
20 loss levels. The number of total integrand evaluations N ranges from
50, 000 to 220. (b) The percentages of Monte Carlo (MC) and quasi-Monte
Carlo (QMC) points that fall in the interval Y ≤ −3. The total number of
points is N = 2s − 1 with 9 ≤ s ≤ 14.

With around N = 106 evaluations, it seems that all three methods pro-
duce satisfactory results. Relative errors are, respectively, 0.9% (ADGM),
3.0% (QMC) and 3.1% (MC). Figure 4 further compares the performance
of the different methods with around 106 evaluations for various loss levels.
Monte Carlo and quasi-Monte Carlo methods are quite accurate for low loss
levels but deteriorate notably as the loss level increases. An upward trend
in the relative error is conspicuous for both methods. In particular, for the
loss level x = 550, Monte Carlo has an error 8.8% and quasi-Monte Carlo
gives 12.8%. By contrast, the relative error of the adaptive integration for
the same loss level is merely 0.5%. Even though at some low loss levels adap-
tive integration is not superior to the other two methods, it dominates its
two opponents for loss levels larger than 300. The adaptive integration is
remarkably distinct from Monte Carlo and quasi-Monte Carlo methods in
that it is not sensitive to the portfolio loss level of interest. As a consequence,
the adaptive integration becomes more and more advantageous compared to
Monte Carlo and quasi-Monte Carlo methods for increasing loss levels. This
is especially attractive for the purpose of determining the portfolio VaR,
which always involves large loss levels.

A close-up look to the three methods for different loss levels is presented
in Figure 5. We show results for four loss levels, x = 75, 300, 400, 550,
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Figure 4: Estimation relative errors of the adaptive Genz-Malik rule
(ADGM), Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods with
around N = 106 evaluations for various loss levels.

which correspond to roughly quantiles 99%, 99.9%, 99.95% and 99.99%,
respectively. Two issues of the adaptive integration need to be addressed.
First, increasing the number of subregions K, generally improves the quality
of an approximation but it is not guaranteed. Second, as the accuarcy of an
approximation is not sensitive to the portfolio loss level, a stop rule seems to
be less important. For example, any K between 1, 000 and 2, 000 can serve
as a reasonable termination criterion.

7 Adaptive Monte Carlo integration

We have shown that adaptive integration based on the Genz-Malik rule
provides an efficient tool for calculating credit portfolio loss distribution in
a multi-factor framework. It is particularly advantageous in the tail of the
loss distribution. However the adaptive Genz-Malik rule still suffers from
two problems. First, the integration rule is only able to handle models with
relatively low dimension, say d ≤ 8. This is due to the fact that the number
of integrand evaluations is fully determined by d and grows exponentially.
Second, no practical error bounds are available for the estimates. The second
problem also applies to other multiple integration techniques such as quasi-
Monte Carlo methods and sparse grids.

A natural alternative that does not suffer from the above two problems is
Monte Carlo integration. A Monte Carlo integration embedded in a globally
adaptive algorithm is able to provide an unbiased estimate of the integral
and also probabilistic error bounds for the estimate. In the mean-time it
has higher accuracy and faster convergence than the plain Monte Carlo
integration. The idea of adaptive Monte Carlo integration is not new. Two
well-known algorithms can be found in Press & Farrar (1990) and Lepage
(1990, 1980). It has however, to our knowledge, never been used in the
context of credit portfolio loss modeling.
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(a) x = 75
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(b) x = 300
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(c) x = 400
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(d) x = 550

Figure 5: Relative estimation error of P (L > x) by all methods for four
different loss levels x. PD= 0.0033, ρ = 0.2, d = 5.

Our adaptive Monte Carlo integration replaces the degree 7 Genz-Malik
rule with uniform random numbers as the integration rule. Let us go back
to Eq. (13) and write ξ = f · φ. The tail probability as in Eq. (12) can then
be approximated by

Î(ξ) =
K
∑

k=1

Î(k)(ξ) =
K
∑

k=1

v(k)
M
∑

j=1

ξ
(k)
j

M
, (19)

where K is the number of subregions, M is number of points in each sub-
region and v(k) denotes the volume of subregion k. This estimate Î(ξ) is
unbiased since it is an independent sum of unbiased Monte Carlo estimates.
The variance of Î(ξ) is given by

V ar
(

Î(ξ)
)

=
K
∑

k=1

V ar



v(k)
M
∑

j=1

ξ
(k)
j

M



 =
K
∑

k=1

(

v(k)
)2

M
V ar

(

ξ(k)
)

, (20)

where V ar
(

ξ(k)
)

can be estimated from the simulated sample. If we use the
unbiased version of sample variance for each subregion, Eq. (20) gives an
unbiased estimate as well.
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Additionally an upper bound for the variance can be derived. Recall that
for any subregion both an upper bound and a lower bound for the integral
are available. We denote them by U (k), L(k) respectively for subregion k and
let δ(k) = U (k) − L(k). It is immediate to see that

V ar
(

ξ(k)
)

= E
(

ξ(k) − E
(

ξ(k)
))2

≤ E
(

U (k) − L(k)
)2

=
(

δ(k)
)2

.

It follows that the upper bound for the variance is

V ar
(

Î(ξ)
)

≤
K
∑

k=1

(

v(k)δ(k)
)2

M
. (21)

To reduce the variance we minimize its upper bound. This is achieved
by simply choosing in each step the subregion with the largest vδ for subdi-
vision. A large vδ generally implies a large variance, but the converse does
not hold due to simulation noise in the sample variance, esp. for small M .
In this sense it is more robust to rely on vδ than on the estimated vari-
ance. In particular, given any collection of subregions, the subregion chosen
for the next subdivision is deterministic and requires no simulation at all.
Furthermore, the upper bound of variance given by (21) is strictly decreas-
ing in the process of subdivision but this is not necessarily the case for the
estimated variance. Similar to the adaptive Genz-Malik rule, the integral
estimate should asymptotically converge to I(f) if we continue the subdivi-
sion until the upper bound and lower bound of I(f) in Cd coincide and the
variance vanishes.

We still need a subdivision rule replacing the fourth divided differences
as in (11), since simulated samples cannot be fully symmetric. Consider a
subregion centered at the origin. Let yi denote the element of y in direction
i. A convenient substitute in the spirit of divided differences is the following

Difi =
∣

∣

∣

∑

ξ(y)
(

1{yi>0} − 1{yi<0}
)

∣

∣

∣
, (22)

if along each direction, a simulated sample always contains the same num-
ber of points in the positive and negative axes. For this purpose we gen-
erate random numbers antithetically rather than randomly. Since antithetic
variates are no longer independent, the variance estimated needs a slight
modification. Suppose that ξ and ξ̄ are obtained from antithetic pairs, then
the variance should be estimated by M/2 pairs of averaged antithetic pairs
(ξ + ξ̄)/2, i.e.,

V ar
(

Î(ξ)
)

=
K
∑

k=1

(

v(k)
)2

M/2
V ar

(

ξ(k) + ξ̄(k)

2

)

. (23)

It is well-known that the variance is reduced by antithetic variates if ξ(y)
is monotonic. In our case ξ is a product of a monotonic function f and a
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unimodal density φ and it is thus not monotonic in the whole integration
region Cd. As a consequence variance reduction is not theoretically guaran-
teed, although it is usually found to be achieved in most subregions. This is
mainly due to the local monotonicity of ξ.

We should now be able to summarize the algorithm of adaptive Monte
Carlo integration for the calculation of tail probability in a multi-factor
credit portfolio loss model. This is presented as Algorithm 3. Note that
constraint (15) used in Algorithm 2 is dropped to ensure that (19) gives an
unbiased estimate.

Algorithm 3 adaptive Monte Carlo integration

Generate M antithetic uniform random variables over the integration re-
gion,
return I l, V ar(I l), vl, δl and subdivision direction is
while termination criteria not met do

Choose the (sub)region with largest vlδl and divide along direction is.
Compute f(a) and f(b) for the resulting two subregions.
if f(a) = 0 or f(b) = 1 then

Apply (17), let V ar(I l) = δl = 0.
else

Generate M antithetic uniform random variables in both subregions,
return I l, vl, δl and is.

end if

Update I, V ar(I) and the subregion collection.
end while

Unlike the deterministic Genz-Malik rule, Monte Carlo integration allows
flexibility in the choice of M , the number of sample points in each subregion.
Suppose we would like to double the total number of integrand evaluations,
we can double either M or K.

If we double M , then the new variance is

V ar
(

Î(ξ)
)

=
K
∑

k=1

V ar



v(k)
2M
∑

j=1

ξ
(k)
j

2M



 =
K
∑

k=1

(

v(k)
)2

2M
V ar

(

ξ(k)
)

, (24)

the convergence rate is thus O
(

1/
√

N
)

, the same as the plain Monte Carlo

simulation.

It is more difficult to derive a variance estimate if we keep M unchanged
and double K. The new collection of subregions can vary from problem to
problem since the subregion for subdivision is chosen dynamically in each
subdivision step. The worst case in terms of error convergence seems to
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be that all subregions are divided exactly once regardless of their v and
δ. Suppose subregion k is divided into two subregions k1 and k2. Its new
variance becomes

V ar
(

Î(k)(ξ)
)

=

(

v(k1)
)2

M
V ar

(

ξ(k1)
)

+

(

v(k2)
)2

M
V ar

(

ξ(k2)
)

=

(

v(k)
)2

4M

[

V ar
(

ξ(k1)
)

+ V ar
(

ξ(k2)
)]

=

(

v(k)
)2

2M

[

V ar
(

ξ(k)
)

− 1

4

(

Eξ(k1) − Eξ(k2)
)2
]

. (25)

The last equality shows that subdivision gives an error convergence rate at
least 1/

√
N . This is also a standard result on stratified sampling, see e.g.,

Glasserman et al. (1999). It follows that

V ar
(

Î(ξ)
)

≤
K
∑

k=1

(

v(k)
)2

2M
V ar

(

ξ(k)
)

. (26)

We emphasize that by employing a subdivision rule based on (22) we al-
ways divide a region along the direction that is expected to give the largest
(

Eξ(k1) − Eξ(k2)
)2

, hence leading to maximal variance reduction. Conse-
quently, increasing the number of subregions is always more favorable than
increasing the number of samples in all subregions.

We should finally remark that, in terms of accuracy, the adaptive Monte
Carlo integration is not necessarily inferior to the adaptive algorithm based
on fully symmetric interpolation rules like the Genz-Malik rule, although the
latter is supposed to provide more accurate approximation for smooth inte-
grands. Since, with a fixed number of samples N = MK, the adaptive Monte
Carlo integration may choose an M much less than the samples required for
the Genz-Malik rule and may therefore obtain many more subregions K.

8 Numerical results II

We continue our numerical experiments with the five-factor model for port-
folio A in section 6 and compare adaptive Monte Carlo integration to plain
Monte Carlo integration. Rather than the relative error, we report the stan-

dard deviation normalized by benchmark, i.e.,

√

V ar(Î(ξ))/I.

Figure 6(a) shows the estimated tail probability for the loss level x =
400 by adaptive Monte Carlo integration along with the corresponding 95%
confidence interval. It is evident that the adaptive Monte Carlo integration
indeed gives a convergent estimate with reliable error bounds. By contrast,
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the error estimate given by adaptive Genz-Malik rule (based on Eq. (10))
can be less reliable. It is shown by Figure 6(b) that for the same loss level,
although the relative error of the tail probability estimate given by the
adaptive Genz-malik rule is only around 2%, the estimated error by Eq.
(10) is more than 20%.
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Figure 6: (a) Tail probability P (L > 400) computed by adaptive Monte
Carlo integration and their corresponding 95% confidence intervals (dotted
lines). The dashed line is our Benchmark. (b) Relative errors of the adaptive
Genz-Malik rule for P (L > 400) compared to its associated error estimates
(dotted lines) based on Eq. (10). The number of integrand evaluations ranges
from 50, 000 to 106.

We have pointed out that Monte Carlo integration allows flexibility in
the choice of M , the number of sample points in each subregion. Figure
7(a) compares performance of the adaptive Monte Carlo integration with
M = 10 and M = 100. It confirms that with a fixed number of samples
N = MK, a large K is favored over a large M . In Figure 7(b) we present
the error convergence of adaptive Monte Carlo integration by doubling M
and doubling K. We also include the error convergence rate of plain Monte
Carlo method for reference. The error convergence rate by doubling M and
with K fixed at 5000 is similar to the plain Monte Carlo method, whereas
doubling K and fixing M = 10 displays a better convergence than 1/

√
N .

These results are in line with our analysis in the previous section. After
all, adaptive Monte Carlo integration consistently outperforms plain Monte
Carlo integration in terms of standard deviation.

We further demonstrate in Figure 8 the performance of the adaptive
Monte Carlo integration with M = 10 for four different loss levels as in
section 6. It comes with no surprise that, just like the adaptive Genz-Malik
rule, the adaptive Monte Carlo integration is not sensitive to the portfolio
loss level. At the loss level x = 300, the adaptive Monte Carlo integration
with around 50 thousand integrand evaluations is already comparable to the
plain Monte Carlo integration with 1 million integrand evaluations, which
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Figure 7: Adaptive Monte Carlo integration for loss level x = 400. (a) Nor-
malized standard deviation obtained from Adaptive Monte Carlo integration
with M = 10 and M = 100; (b) Error convergence of adaptive Monte Carlo
integration by doubling M and doubling K.

is a reduction of a factor of 20.

Finally, we would like to point out that the grid generated by the adap-
tive Monte Carlo integration may also provide a good basis for the calcula-
tion of the marginal VaR contributions (VaRC), i.e., wiE(Di|L = x). As an
example we present in Table 1 the VaRC of the obligors in different buck-
ets for the loss level x = 300. The estimates obtained from the adaptive
Monte Carlo integration are based on 50 thousand integrand evaluations.
The standard deviations (std) are calculated with 20 independent trials and
in parentheses are the standard deviations as a percentage of their corre-
sponding benchmark. Both the VaRC estimates and standard deviations are
similar to those given by plain Monte Carlo integration with 1 million in-
tegrand evaluations. This is in line with the performance regarding the tail
probability.

9 Conclusions

In this article we proposed algorithms of adaptive integration for the cal-
culation of the tail probability in multi-factor credit portfolio loss models.
The problem is important as the tail probabilities are essential for the deter-
mination of the portfolio VaR. We showed that under mild conditions, the
conditional tail probability, as a function of the common factors, is mono-
tone and differentiable. Starting with an algorithm in one dimension, we
devise an adaptive Genz-Malik rule suitable for portfolio credit models with
a number of factors 2 ≤ d ≤ 8. The algorithm based on the Genz-Malik
rule is asymptotically convergent and particularly attractive for large loss
levels. An adaptive algorithm differs fundamentally from Monte Carlo or
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Figure 8: Standard deviations of the tail probability estimates given by plain
Monte Carlo (MC) and Adaptive Monte Carlo (ADMC) for four loss lev-
els. Standard deviations are reported as a percentage of the respective tail
probabilities. For plain MC standard deviations are computed based on 100
independent runs of simulation and for Adaptive MC, standard deviations
are estimated by Eq. (20.)

quasi-Monte Carlo methods in that it successively divides the integration
region into subregions, detects the difficult subregions for integration, i.e.,
those where the integrand is most irregular, and places more points in those
subregions. It consistently outperforms the plain Monte Carlo and quasi-
Monte Carlo methods in terms of approximation error. Finally we arrive at
the adaptive Monte Carlo integration, which simply replaces the Genz-Malik
rule by pseudo-random numbers. The algorithm is advantageous in that it
can handle higher-dimensional models and is able to provide reliable proba-
bilistic error bounds. The error convergence rate of the adaptive Monte Carlo

integration is shown to be at worst O
(

1/
√

N
)

. In summary, especially for

higher-dimensional problems the adaptive Monte Carlo method seems the
clear favorite, whereas for lower-dimensional problems both adaptive meth-
ods, the deterministic and the Monte Carlo version, work very well.
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bucket Benchmark MC std ADMC std

1 0.4331 0.4258 0.0239 (5.5%) 0.4293 0.0163 (3.8%)
2 0.4498 0.4504 0.0141 (3.1%) 0.4489 0.0127 (2.8%)
3 0.3467 0.3526 0.0167 (4.8%) 0.3475 0.0120 (3.5%)
4 0.2022 0.2037 0.0129 (6.4%) 0.2076 0.0157 (7.8%)
5 0.0683 0.0676 0.0089 (13.0%) 0.0667 0.0069 (10.1%)

Table 1: The VaR contributions of the obligors in different buckets for the
loss level x = 300. The adaptive Monte Carlo (ADMC) integration uses
50 thousand integrand evaluations and plain Monte Carlo (MC) integra-
tion uses 1 million integrand evaluations. The standard deviations (std) are
calculated with 20 independent trials and in parentheses are the standard
deviations normalized by benchmark.
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