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Abstract

In the classical multiple scales perturbation method for ordinary difference equations
(O∆Es) as developed in 1977 by Hoppensteadt and Miranker, difference equations are re-
placed at a certain moment in the perturbation procedure by ordinary differential equations
(ODEs). Taking into account the possibly different behaviour of the solutions of an O∆E

and of the solutions of a nearby ODE, one can not always be sure that the constructed
approximations by the Hoppensteadt-Miranker method indeed reflect the behaviour of the
exact solutions of the O∆Es. For that reason an improved version of the multiple scales
perturbation method for O∆Es will be presented and formulated in this paper completely
in terms of difference equations. The goal of this paper is not only to present this improved
method but also to show how this method can be applied to regularly perturbed O∆Es and
to singularly perturbed, linear O∆Es.

Keywords. ordinary difference equation, multiple scales perturbation method, regularly and singularly per-
turbed problems, asymptotic validity.

1 Introduction

Nowadays the multiple time-scales perturbation method for differential equations is a well-developed,
well accepted, and very popular method to approximate solutions of weakly nonlinear differen-
tial equations. This method was developed in the period 1935-1962 by Krylov and Bogoliubov,
Kuzmak, Kevorkian and Cole, Cochran, and Mahony. In the early 1970s Nayfeh popularized this
method by writing many papers and books on this subject (see for instance [18]). More recent
books on this method and its historical development are for instance the books by Andrianov
and Manevitch [4], Holmes [5], Kevorkian and Cole [10], Murdock [17], and Verhulst [22]. The
development of the multiple scales perturbation method for ordinary difference equations (O∆Es)
started in 1960 with the work of Torng [21]. In this paper a second order O∆E is reduced to a
system of two first order O∆Es by means of the method of variation of parameters for O∆Es.
Then, nonlinear terms are expanded in discrete Fourier series, and a Krylov-Bogoliubov method
(or equivalently, an averaging method) is applied to obtain the equations that describe the slow
dynamics of the problem approximately. A similar method was presented in 1970 by Huston in [7].
From the results in [7] and in [21] it is clear that the solution of a weakly perturbed (non-) linear
O∆E behaves differently on different iteration scales. In 1977 Hoppensteadt and Miranker intro-
duced in [6] the multiple scales perturbation method for O∆Es. For a problem with two significant
iteration scales these authors assume that the solution xn of an O∆E for instance depends on n and
s = ǫn (that is, depends on a fast iteration scale and on a slow iteration scale). In the O∆E xn+1

is then replaced by x(n+1, ǫ(n+1)) = x(n+1, s+ ǫ). In the perturbation scheme x(n+1, s+ ǫ) is
expanded in a Taylor polynomial, that is, x(n+1, s+ǫ) = x(n+1, s)+ǫ∂x

∂s
(n+1, s)+O(ǫ2), and to

avoid unbounded terms (or secular terms) in the perturbation expansion for xn one finally has to

∗Delft Institute of Applied Mathematics (DIAM), Delft University of Technology, Mekelweg 4, 2628 CD Delft,
The Netherlands. (W.T.vanHorssen@tudelft.nl, M.C.terBrake@tudelft.nl).

1



On the multiple scales perturbation method for difference equations. 2

solve ordinary differential equations (ODEs) due to the derivatives in the Taylor expansions. So,
in the perturbation procedure O∆Es are replaced (partly) by ODEs. A slightly different multiple
scales perturbation method for O∆Es was introduced in [20] by Subramanian and Krishnan in
1979. In their approach the difference operator ∆ is replaced by partial difference operators. For
a problem with two significant iteration scales the authors of [20] introduced:

xn+1 − xn = ∆xn = ∆x(n, s) = ∆n(n, s) + ǫ∆sx(n, s), (1)

where ∆nx(n, s) = x(n + 1, s) − x(n, s), and ∆sx(n, s) = x(n, s + ǫ) − x(n, s). This replacement
is based on the two-timescales perturbation method for ODEs, where x(t) is replaced by x̃(t, τ)
with τ = ǫt and

dx(t)

dt
=

∂x̃(t, τ)

∂t
+ ǫ

∂ñ(t, τ)

∂τ
.

Nowadays the method of Hoppensteadt and Miranker is assumed to be the standard form of the
multiple scales perturbation method for O∆Es (see for instance [5, 14, 15, 16]). Also recently this
method was “rediscovered” by Luongo [11] and by Maccari [12]. It should be observed, however,
that many results concerning ODEs carry over quite easily to corresponding results for O∆Es,
while other results are completely different from their continuous counterparts. To illustrate some
of these differences the following examples can be considered.

Example 1:
Consider the following ODE for x = x(t):

dx

dt
= ax(1 − x), t > 0, (2)

where a is a positive constant, and x(0) = x0. A forward Euler method is applied with positive
stepsize h, and xn is an approximation of x(t) at t = nh. The corresponding O∆E becomes:

xn+1 = xn + ahxn(1 − xn)

for n = 0, 1, 2,.... Introducing xn = (1+ah)
ah

yn, and b = (1 + ah) > 0 the following O∆E for yn is
obtained:

yn+1 = byn(1 − yn). (3)

For all a > 0 the ODE (2) has two equilibrium points (one stable point at x = 1, and an unstable
one at x = 0), and the dynamics is simple. Whereas the logistic difference equation (3) is well-
known for its period-doublings and its chaotic behaviour for b-values between 3 and 4. So, for
certain parameter values the solution of the ODE and the solution of the (nearby) O∆E behave
quite differently.

Example 2:
Consider the following ODE for x = x(t):

ǫ
dx

dt
= −x, t > 0, (4)

where ǫ is a small positive parameter, i.e. 0 < ǫ ≪ 1, and x(0) = 1. The solution of the ODE

(4) is: x(t) = exp(− t
ǫ
). When an explicit, forward Euler method is applied to (4) with positive

stepsize h, and where xn is an approximation of x(t) at t = nh, then the following O∆E for xn

will be obtained: (for n = 0, 1, 2, ..., and x0 = 1)

xn+1 = (1 − h

ǫ
)xn ⇒ xn = (1 − h

ǫ
)n.

For a fixed value of h and for ǫ ↓ 0 xn obviously blows up, whereas x(nh) rapidly tends to zero.
When an implicit Euler method is applied to (4) then the following O∆E for xn is obtained (again
h is a positive stepsize, xn is an approximation of x(t) at t = nh, n = 0, 1, 2, ..., and x0 = 1):
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xn+1 − xn = −h

ǫ
xn+1 ⇒ xn+1 =

ǫ

h + ǫ
xn ⇒ xn =

(

ǫ

h + ǫ

)n

.

For a fixed value of h and for ǫ ↓ 0 xn behaves like ( ǫ
h
)n = exp(nln( ǫ

h
)), whereas x(nh) behaves

like exp (−nh
ǫ

). From the asymptotical point of view for ǫ ↓ 0 the behaviour of xn and x(nh) is
quite different. When the trapezoidal formula is applied to (4) then the following O∆E for xn is
obtained (again h is a positive stepsize, xn is an approximation of x(t) at t = nh, n = 0, 1, 2, ...,
and x0 = 1):

xn+1 − xn = − h

2ǫ
(xn+1 + xn) ⇒ xn+1 = − (h − 2ǫ)

h + 2ǫ
xn

⇒ xn = (−1)n (h−2ǫ)n

(h+2ǫ)n .

Now xn behaves like (−1)n exp(n(−4ǫ
h

+ O(ǫ3))), that is, xn is oscillatory (whereas x(nh) is non-
oscillatory), and the amplitudes of xn and x(nh) behave differently for ǫ ↓ 0.

These examples clearly indicate that the solution of an ODE and the solution of an (nearby) O∆E

can behave quite differently. The reader is referred to [1,2,3,5,8,9,15] for some further striking
differences (and similarities) in the theory for ODEs and for O∆Es. In the multiple scales
perturbation method for O∆Es as developed in [6] by Hoppensteadt and Miranker difference
equations are replaced at a certain moment by differential equations. Taking into account the
possibly different behaviour of the solutions of an O∆E and of the solutions of an (nearby) ODE

one can not always be sure that the constructed approximations by the Hoppensteadt-Miranker
method indeed reflect the behaviour of the exact solutions of the O∆E. For that reason an
improved version of the multiple scales perturbation method for O∆Es will be presented and
formulated in this paper completely in terms of difference equations.
The goal of this paper is not only to present this improved method, but also to show how this
method can be applied to regularly perturbed O∆Es and to singularly perturbed O∆Es.
This paper is organized as follows. In section 2 of this paper the multiple scales perturbation
method for O∆Es will be presented completely in terms of difference operators. How this method
can be applied to a second order regularly perturbed, weakly nonlinear O∆Es will be shown in
section 3 of this paper. The asymptotic validity of the constructed approximations on sufficiently
long iteration scales will be discussed in section 4. How solutions of singularly perturbed, linear
O∆Es can be approximated will be shown in section 5. Compared to the existing rescaling
procedures for singularly perturbed ODEs and O∆Es (see for instance [10,13,19,22]) also a slightly
revised rescaling procedure will be presented in section 5 of this paper to find the significant scalings
for some singularly perturbed, linear O∆Es. Finally, in section 6 of this paper some conclusions
will be drawn, and some remarks on future research will be made.

2 The multiple scales perturbation method for O∆Es

In this section the multiple scales perturbation method for O∆Es will be presented in a complete
“difference operator” setting. Before introducing this method several operators have to be defined
(and motivated). The well-known shift operator E, the difference operator ∆, and the identity
operator I are defined as follows:

Exn = xn+1, ∆xn = xn+1 − xn, and Ixn = xn. (5)

The relationship between these operators easily follows from (5):

E = ∆ + I ⇔ ∆ = E − I. (6)
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The solution of a weakly perturbed O∆E usually contains a rapidly changing part in n, and a
slowly changing part in n. This is usually referred to as multiple scales behaviour. Consider the
following functions:

an = 3n ⇒ ∆an = 3n+1 − 3n = (3 − 1)3n = 2an = O(an),
bn = eǫn ⇒ ∆bn = eǫ(n+1) − eǫn = O(ǫbn),
cn = (1 + ǫ)n ⇒ ∆cn = (1 + ǫ)n+1 − (1 + ǫ)n = O(ǫcn),
dn = 3n(1 + ǫ)n ⇒ ∆dn = 3n+1(1 + ǫ)n+1 − 3n(1 + ǫ)n = (2 + 3ǫ)dn.

(7)

From (7) it is obvious that an only has a rapidly changing part in n, that bn and cn only have
a slowly changing part in n, and that dn has a rapidly changing part in n and a slowly one. To
make this behaviour more clear in notation the following notations are proposed: an = a(n),
bn = b(ǫn), cn = c(ǫn), and dn = d(n, ǫn). It should be observed that these notations are similar
to the ones used in the multiple timescales perturbation method for ODEs. Now it is assumed
that xn = x(n, ǫn). This assumption implies that the solution of the O∆E depends on two
variables. So, the O∆E actually becomes a partial difference equation. For that reason also partial
shift operators and partial difference operators have to be defined. The following definitions are
proposed:

E1x(n, ǫn) = x(n + 1, ǫn),
Eǫx(n, ǫn) = x(n, ǫ(n + 1)),
∆1x(n, ǫn) = x(n + 1, ǫn) − x(n, ǫn) = (E1 − I)x(n, ǫn),
∆ǫx(n, ǫn) = x(n, ǫ(n + 1)) − x(n, ǫn) = (Eǫ − I)x(n, ǫn).

(8)

From (5), (6), and (8) it follows that (assuming xn = x(n, ǫn)):
∆xn = xn+1 − xn = x(n + 1, ǫ(n + 1)) − x(n, ǫn) = E1Eǫx(n, ǫn) − Ix(n, ǫn)

= (∆1 + I)(∆ǫ + I)x(n, ǫn) − Ix(n, ǫn) =
= (∆1 + ∆ǫ + ∆1∆ǫ)x(n, ǫn).

And so, it follows that
∆ = ∆1 + ∆ǫ + ∆1∆ǫ, and E = E1Eǫ. (9)

Furthermore, for the partial difference operators ∆1 and ∆ǫ it is assumed that (also based on (7)):

∆1x(n, ǫn)= O(x(n, ǫn)), and
∆ǫx(n, ǫn)= O(ǫx(n, ǫn)).

(10)

From (9) it is obvious that in 1) the operator ∆1∆ǫ is missing (see also [20]). When xn depends
on m + 1 scales the given definitions can readily be generalized, yielding: (for j = 0, 1, ..., m)

xn = x(n, ǫn, ǫ2n, ..., ǫmn),
Eǫj x(n, ..., ǫmn = x(n, ǫn, ..., ǫj(n + 1), ..., ǫmn),
∆ǫj x(n, ...ǫmn) = (Eǫj − I)x(n, .., ǫmn),
E = E1EǫEǫ2 ...Eǫm ,

∆ = (∆1 + I)(∆ǫ + I)...(∆ǫm + I) − I,

∆ǫj x(n, ..., ǫmn) = O(ǫjx(n, ..., ǫmn)).

(11)

Now it will be shown how these operators can be used. For that reason a simple example will be
treated. Consider the weakly perturbed, linear, second order O∆E

xn+2 + ǫxn+1 + xn = 0, (12)

where ǫ is a small parameter with 0 < ǫ ≪ 1. Using (5) and (6) it follows that (12) can be
rewritten in:

E2xn + ǫExn + Ixn = 0 ⇔
(∆ + I)2xn + ǫ(∆ + I)xn + Ixn = 0 ⇔
∆2xn + (ǫ + 2)∆xn + (2 + ǫ)xn = 0.

(13)
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Assuming that xn depends on two scales (a fast scale n, and a slow scale ǫn) it follows that
xn = x(n, ǫn) and that (12) or (13) becomes

(∆1 + ∆ǫ + ∆1∆ǫ)
2x(n, ǫn) + (ǫ + 2)(∆1 + ∆ǫ + ∆1∆ǫ)x(n, ǫn)+

+(2 + ǫ)x(n, ǫn) = 0 ⇔
(∆2

1 + 2∆1 + 2)x(n, ǫn) + (2∆1(∆ǫ + ∆1∆ǫ) + 2(∆ǫ + ∆1∆ǫ)
+ǫ∆1 + ǫ)x(n, ǫn) + O(ǫ2x(n, ǫn)) = 0 ⇔
(∆2

1 + 2∆1 + 2)x(n, ǫn) + (2(∆1 + I)(∆ǫ + ∆1∆ǫ) + ǫ(∆1 + I))x(n, ǫn)
+O(ǫ2x(n, ǫn)) = 0.

(14)

To construct an approximation for xn = x(n, ǫn) one now has to substitute into (14) a formal
power series (in ǫ) for xn, that is,

x(n, ǫn) = x0(n, ǫn) + ǫx1(n, ǫn) + ǫ2x2(n, ǫn) + .... (15)

Then, by taking together those terms of equal powers in ǫ one obtains as O(1)-problem

(∆2
1 + 2∆1 + 2)x0(n, ǫn) = 0 ⇔ x0(n + 2, ǫn) + x0(n, ǫn) = 0, (16)

and as O(ǫ)-problem

ǫ(∆2
1 + 2∆1 + 2)x1(n, ǫn) +

(

2(∆1 + I)(∆ǫ + ∆1∆ǫ +
ǫ

2
)
)

x0(n, ǫn) = 0, (17)

and so on. The O(1)-problem (16) can readily be solved, yielding

x0(n, ǫn) = f0(ǫn) cos
(nπ

2

)

+ g0(ǫn) sin
(nπ

2

)

, (18)

where f0(ǫn) and g0(ǫn) are still arbitrary functions, which can be used to avoid unbounded
behaviour in x1(n, ǫn) on the O( 1

ǫ
) iteration scale.

The O(ǫ)-problem (17) now becomes:

ǫ(x1(n + 2, ǫn) + x1(n, ǫn)) + 2(x0(n + 2, ǫ(n + 1)) − x0(n + 2, ǫn)) + ǫx0(n, ǫn) = 0
⇔ ǫ(x1(n + 2, ǫn) + x1(n, ǫn)) = (2∆ǫf0(ǫn) − ǫg0(ǫn)) cos(nπ

2 )+
+ (2∆ǫg0(ǫn) + ǫf0(ǫn)) sin(nπ

2 ).
(19)

In the O∆E (19) for x1(n, ǫn) it is obvious that the righthand side contains terms (i.e., cos(nπ
2 )

and sin(nπ
2 )), which are solutions of the homogeneous O∆E. Then, to avoid unbounded or secular

behaviour in x1(n, ǫn) it follows that f0(ǫn) and g0(ǫn) have to satisfy:

2∆ǫf0(ǫn) − ǫg0(ǫn) = 0,

2∆ǫg0(ǫn) + ǫf0(ǫn) = 0.
(20)

System (20) for f0(ǫn) and g0(ǫn) can readily be solved, yielding

f0(ǫn) = a0(1 + ǫ2

4 )
n
2 cos(nµ(ǫ)) + b0(1 + ǫ2

4 )
n
2 sin(nµ(ǫ)),

g0(ǫn) = −a0(1 + ǫ2

4 )
n
2 sin(nµ(ǫ)) + b0(1 + ǫ2

4 )
n
2 cos(nµ(ǫ)),

(21)

where a0 and b0 are arbitrary constants, and where µ(ǫ) is given by cos(µ(ǫ)) = (1 + ǫ2

4 )−
1
2 , and

sin(µ(ǫ)) = ǫ
2 (1 + ǫ2

4 )−
1
2 . From these expressions µ(ǫ) can be approximated by

µ(ǫ) =
1

2
ǫ − 1

24
ǫ3 + O(ǫ5), (22)

and from (19) x1(n, ǫn) can be determined, yielding

x1(n, ǫn) = f1(ǫn) cos(
nπ

2
) + g1(ǫn) sin(

nπ

2
), (23)
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where f1(ǫn) and g1(ǫn) are still arbitrary functions which can be used to avoid secular terms in
x2(n, ǫn). At this moment, however, we are not interested in the higher order approximations. For
that reason we will take in (23) f1(ǫn) and g1(ǫn) equal to the constants a1 and b1 respectively.
So far we have constructed an approximation for the solution of the O∆E (12). In this case the
approximation x0(n, ǫn) can be compared with the exact solution of the O∆E (12). The exact
solution is given by

xn = a 1n cos(nθ(ǫ)) + b 1n sin(nθ(ǫ)), (24)

where a and b are arbitrary constants, and where θ(ǫ) is given by cos(θ(ǫ)) = − ǫ
2 and sin(θ(ǫ)) =

(1 − ǫ2

4 )
1
2 , and θ(ǫ) can be approximated by θ(ǫ) = π

2 + ǫ
2 + ǫ3

48 + O(ǫ5). The approximation
x0(n, ǫn) is given by (18), (21), and (22). This approximation can be rewritten in the following
form

x0(n, ǫn) = a0

(

1 +
ǫ2

4

)

n
2

cos
(nπ

2
+ nµ(ǫ)

)

+ b0

(

1 +
ǫ2

4

)

n
2

sin
(nπ

2
+ nµ(ǫ)

)

. (25)

From (24) and (25) it can readily be deduced that the difference between the exact solution xn

and the approximation x0(n, ǫn) is of order ǫ for n ∼ 1
ǫ
. So, the constructed approximation is

O(ǫ) accurate on an iteration scale of order 1
ǫ
. Usually of course the exact solution of a weakly

(non)linearly perturbed O∆E will not be available. In section 4 of this paper it will be shown
how for such cases the asymptotic validity of an approximation can be obtained on a sufficiently
long iteration scale. In the next section of this paper it will be shown how the multiple scales
perturbation method can be applied to a second order, weakly nonlinear, regularly perturbed
O∆E.

3 On a weakly nonlinear, regularly perturbed O∆E

In this section an approximation of the solution of a second order, weakly nonlinear, regularly
perturbed O∆E with a Van der Pol type of nonlinearity will be constructed. The O∆E can be
obtained by using a central finite difference approximation of the continuous Van der Pol equation.
The O∆E is given by

xn+2 − 2 cos(θ)xn+1 + xn = ǫ(1 − x2
n+1)(xn+2 − xn), (26)

where ǫ is a small parameter, that is, 0 < ǫ ≪ 1, and where θ is constant (which is related
to the stepsize in making the continuous Van der Pol equation discrete). It turns out that a
straightforward, naive perturbation expansion for xn(that is, x0(n) + ǫx1(n) + ǫ2x2(n) + ...) will
lead to secular behaviour in the expansion. To avoid this a two scales perturbation method will
be used with xn = x(n, ǫn). To apply the perturbation method the O∆E (26) first has to be
rewritten with difference operators (see also (5), (6)), yielding

∆2xn + (2 − 2 cos(θ))(∆xn + xn) = ǫ(1 − (∆xn + xn)2)(∆2xn + 2∆xn). (27)

Then, the operator ∆ in (27) is replaced by ∆1 + ∆ǫ + ∆1∆ǫ(see (9) or (11)), and the function
xn is replaced by x(n, ǫn). The O∆E (27) then becomes

(∆2
1 + 2∆1(∆ǫ + ∆1∆ǫ) + ∆2

ǫ + 2∆1∆
2
ǫ + ∆2

1∆
2
ǫ)x(n, ǫn) +

(2 − 2 cos(θ))(∆1 + ∆ǫ + ∆1∆ǫ + I)x(n, ǫn) =
ǫ(1 − ((∆1 + ∆ǫ + ∆1∆ǫ + I)x(n, ǫn))2)((∆2

1 + 2∆1(∆ǫ + ∆1∆ǫ)+
∆2

ǫ + 2∆1∆
2
ǫ + ∆2

1∆
2
ǫ)x(n, ǫn) + 2(∆1 + ∆ǫ + ∆1∆ǫ)x(n, ǫn)).

(28)

Then, the function x(n, ǫn) is expanded in a formal power series in ǫ, that is,
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x(n, ǫn) = x0(n, ǫn) + ǫx1(n, ǫn) + ǫ2x2(n, ǫn) + ..., (29)

and is substituted into (28). By taking together those terms of equal powers in ǫ one obtains as
O(1)-problem:

∆2
1x0(n, ǫn) + (2 − 2 cos(θ))(∆1 + I)x0(n, ǫn) = 0, (30)

and as O(ǫ)-problem

ǫ∆2
1x1(n, ǫn) + ǫ(2 − 2 cos(θ))(∆1 + I)x1(n, ǫn) =

−2∆1(∆ǫ + ∆1∆ǫ)x0(n, ǫn) − (2 − 2 cos(θ))(∆ǫ + ∆1∆ǫ)x0(n, ǫn)
+ǫ(1 − ((∆1 + I)x0(n, ǫn))2)((∆2

1 + 2∆1)x0(n, ǫn)),
(31)

and so on. The O(1)-problem (30) can readily be solved, yielding

x0(n, ǫn) = f0(ǫn) cos(nθ) + g0(ǫn) sin(nθ), (32)

where f0(ǫn) and g0(ǫn) are still arbitrary functions which can be used to avoid secular terms in
x1(n, ǫn). Then, by substituting (32) into the O(ǫ)-problem (31), and after rearranging terms, one
finally obtains as O(ǫ)-problem

ǫ∆2
1x1(n, ǫn) + ǫ(2 − 2 cos θ)(∆1 + I)x1(n, ǫn) =

cos(nθ)
{

(1 − cos(2θ))(∆ǫf0(ǫn) − ǫf0(ǫn)(1 − 1
4f2

0 (ǫn) − 1
4g2

0(ǫn)))

− sin(2θ)(∆ǫg0(ǫn) − ǫg0(ǫn)(1 − 1
4f2

0 (ǫn) − 1
4g2

0(ǫn)))
}

+

sin(nθ)
{

sin(2θ)(∆ǫf0(ǫn) − ǫf0(ǫn)(1 − 1
4f2

0 (ǫn) − 1
4g2

0(ǫn)))

+(1 − cos(2θ))(∆ǫg0(ǫn) − ǫg0(ǫn)(1 − 1
4f2

0 (ǫn) − 1
4g2

0(ǫn)))
}

+

ǫ
{

cos(3nθ + 2θ)
[

(cos(2θ) − 1)(− 1
4f3

0 (ǫn) + 3
4f0(ǫn)g2

0(ǫn))+

sin(2θ)(− 3
4f2

0 (ǫn)g0(ǫn) + 1
4g3

0(ǫn))
]

+

sin(3nθ + 2θ)
[

(cos(2θ) − 1)(− 3
4f2

0 (ǫn)g0(ǫn) + 1
4g3

0(ǫ))+

sin(2θ)( 1
4f3

0 (ǫ) − 3
4f0(ǫn)g2

0(ǫn))
]}

.

(33)

In the O∆E (33) for x1(n, ǫn) it is obvious that the righthand side contains terms (that is, cos(nθ)
and sin(nθ)), which are solutions of the corresponding homogeneous O∆E. It should be observed
that the terms involving cos(3nθ + 2θ) and sin(3nθ + 2θ) are no solutions of the homogeneous
O∆E. So, to avoid unbounded or secular behaviour in x1(n, ǫn) it follows from (33) that f0(ǫn)
and g0(ǫn) have to satisfy:

∆ǫf0(ǫn) = ǫf0(ǫn)(1 − 1
4f2

0 (ǫn) − 1
4g2

0(ǫn)),
∆ǫg0(ǫn) = ǫg0(ǫn)(1 − 1

4f2
0 (ǫn) − 1

4g2
0(ǫn).

(34)

From (34) it is obvious that when f0(ǫn) (or g0(ǫn)) is equal to zero for some n = n0 then f0(ǫn) (or
g0(ǫn)) is zero for all n ≥ n0. It also follows form (34) that g0(ǫn)∆ǫf0(ǫn) − f0(ǫn)∆ǫg0(ǫn) = 0
or equivalently (assuming that f0(ǫn) 6= 0):

∆

(

g0(ǫn)

f0(ǫn)

)

= 0 ⇔ g0(ǫn) = k f0(ǫ, n) (35)
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1 + k2 1 + k2

−2 20 f0

Figure 1: The dynamics of the solutions of the O∆E (36) for 0 < ε < 1.

for some constant k, which is determined by the initial conditions. The system of two first order
O∆Es (34) then reduces by using (35) to the following first order O∆E for f0(ǫn).

∆ǫf0(ǫn) = ǫf0(ǫn)

(

1 − 1

4
(1 + k2)f2

0 (ǫn)

)

. (36)

As far as we know there are no exact solutions available for the O∆E (36). However, for 0 < ǫ < 1
the O∆E (36) has three equilibrium points: an unstable one for f0 = 0, and two stable ones:
one for f0 = −2

√

1+k2
and one for f0 = 2

√

1+k2
. The dynamics of the solutions of the O∆E (36) is

depicted in Figure 3.1.

For ǫ ≥ 1 the dynamics becomes much more complicated (three unstable equilibrium points, period
doublings, chaotic behaviour), but since 0 < ǫ ≪ 1 that case is beyond the scope of the analysis.
From (35), (36), and Figure 3.1 it now follows that (for f2

0 (ǫn) + g2
0(ǫn) 6= 0) f2

0 (ǫn) + g2
0(ǫn)

tends (slowly) to 4 for n → ∞. From (33) x1(n, ǫn) can now be determined such that x1(n, ǫn) is
bounded for n ∼ 1

ǫ
, and from (32) and (35) it follows that

x0(n, ǫn) = f0(ǫn)
√

1 + k2 sin(nθ + ϕ), (37)

where ϕ is given by sin(ϕ) = 1
√

1+k2
and cos(ϕ) = k

√

1+k2
, and where f0(ǫn) is a solution of the

O∆E (36) (see also Figure 3.1). So far an approximation xapprox(n, ǫn) = x0(n, ǫn) + ǫx1(n, ǫn)
has been constructed, where x1(n, ǫn) still contains some arbitrary functions which can be used to
avoid secular terms in x2(n, ǫn). Since we are not interested in the higher order approximations
there arbitrary functions will or can be chosen equal to their initial values. The approximation
xapprox(n, ǫn) satisfied the O∆E (26) accurately, that is, up to O(ǫ2). In fact it can be shown that

xapprox(n + 2, ǫ(n + 2)) − 2 cos(θ)xapprox(n + 1, ǫ(n + 1)) + xapprox(n, ǫn)
−ǫ(1 − x2

approx(n + 1, ǫ(n + 1)))(xapprox(n + 2, ǫ(n + 2)) − xapprox(n, ǫn)) = ǫ2R(n, ǫn),
(38)

where R(n, ǫn) depends on x0(n, ǫn) and on x1(n, ǫn), and where R(n, ǫn) is bounded for n ∼
1
ǫ
. It requires an additional analysis to show that xapprox(n, ǫn) and x0(n, ǫn) are both O(ǫ)

accurate approximations of the solution of (26) for n ∼ 1
ǫ
. The proof of asymptotic validity of the

approximation(s) on long iteration scales (that is, for n ∼ 1
ǫ
) will be given in the next section of

this paper.

4 On the asymptotic validity of approximations

In this section a justification of the multiple scales perturbation method for O∆Es will be given,
which covers all the examples that have been presented in this paper. Consider the following
system of k first order O∆Es:

u(n + 1) = Au(n) + ǫf(u(n), n; ǫ), (39)
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where u(n) is a (k × 1)-vector, A is a (k × k)-matrix with constant and ǫ-independent elements,
ǫ is a small parameter with 0 < ǫ ≪ 1, and where f is (k × 1)-vector, with f : R

k × R → R
k.

Moreover, f satisfies the following Lipschitz condition, that is,

‖ f(u(n), n; ǫ) − f(ũ(n), n; ǫ) ‖ ≤ L ‖ u(n) − ũ(n)‖ (40)

for some constant L, and where ũ(n) is a (k× 1)-vector, and where ‖.‖ is assumed to be the maxi-
mum norm. The vector function f is not necessarily linear in u(n). Let ũ(n) be an approximation
of u(n), which has been constructed by some kind of perturbation method (for instance a multiple
scales perturbation method or another perturbation method), and let ũ(n) satisfy

ũ(n + 1) = Aũ(n) + ǫf(ũ(n), n; ǫ) + ǫm+1R(n; ǫ), (41)

where R(n; ǫ) is a (k × 1)-vector, and where m is a positive integer (usually m = 1). Now it
will be assumed that matrix A is similar to a diagonal matrix, that is, it will be assumed that
there exists a nonsingular matrix P (with ‖P‖ and ‖P−1‖ bounded by a constant M0) such that
P−1AP is a diagonal matrix with on the diagonal the eigenvalue λ1, λ2, .., λk of matrix A. When
A is not similar to a diagonal matrix (that is, when the algebraic multiplicity of an eigenvalue is
not equal to the geometric multiplicity of this eigenvalue) then a similar proof can be given by
using the Jordan form of matrix A. This almost similar proof will be omitted in this paper. Now
let u(n) = Pv(n) and ũ(n) = P ṽ(n). Then, (4.1) and (4.3) become

v(n + 1) = P−1APv(n) + ǫP−1f(Pv(n), n; ǫ),
ṽ(n + 1) = P−1APṽ(n) + ǫP−1f(P ṽ(n), n; ǫ) + ǫm+1P−1R(n; ǫ),

(42)

where P−1AP is a diagonal matrix with on the diagonal the eigenvalues λ1, ..., λk of matrix A.
Now let

λ = max |λi|.
1 ≤ i ≤ k

(43)

If λ ≤ 1 it will be assumed that for n ∼ 1
ǫ

‖R(n; ǫ)‖ ≤ M1, (44)

where M1 is a positive constant. And for λ > 1 it will be assumed that for n ∼ 1
ǫ

‖R(n; ǫ)‖ ≤ M2λ
n(1 + M3ǫ)

n, and (45)

‖f(u(n), n; ǫ)‖ ≤ M4‖u(n)‖ + M5 for ‖u(n)‖ → ∞, (46)

where M2,M3,M4, and M5 are positive constants. Condition (4.8) for λ > 1 indicates that the
linear part in (4.1) dominates the dynamics of the problem (or equivalently, the term ǫf in (4.1)
remains relatively small compared to the other terms in (4.1)). Now first the case 0 < λ ≤ 1 will
be considered. The degenerate case λ = 0 will not be considered in this paper. By subtracting the
two equations in (4.4), and by using (4.2), (4.5), and (4.6) the following estimate can be obtained.

‖v(n + 1) − ṽ(n + 1)‖ ≤ (λ + ǫLM0)‖v(n) − ṽ(n)‖ + ǫm+1M0M1 ⇒

‖v(n) − ṽ(n)‖ ≤ (λ + ǫLM0)
n‖v(0) − ṽ(0)‖ + ǫm+1M0M1(

(λ+ǫLM0)
n
−1

λ+ǫLM0−1 ). (47)

From (4.9) it follows that for 0 < λ < 1

‖v(n) − ṽ(n)‖ ≤ ‖v(0) − ṽ(0)‖ O(λneǫn
LM0

λ ) + O(ǫm+1λneǫn
LM0

λ ), (48)

and for λ = 1 that
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‖v(n) − ṽ(n)‖ ≤ ‖v(0) − ṽ(0)‖ O(eǫnLM0) + O(ǫmeǫnLM0). (49)

Now if ‖u(0) − ũ(0)‖ = O(ǫm+1) for 0 < λ < 1, and if ‖u(0) − ũ(0)‖ = O(ǫm) for λ = 1 it follows
from (4.10) that for 0 < λ < 1

‖u(n) − ũ(n)‖ = ‖P−1v(n) − P−1ṽ(n)‖ ≤ M0‖v(n) − ṽ(n)‖ = O(ǫm+1λn) (50)

for n = O( 1
ǫ
), and it follows from (4.11) that for λ = 1

‖u(n) − ũ(n)‖ = O(ǫm) (51)

for n = O( 1
ǫ
).

Now the case λ > 1 will be considered. Again consider (4.4) and let v(n) = λnw(n) and ṽ(n) =
λnw̃(n). System (4.4) then becomes

w(n + 1) = 1
λ
P−1APw(n) + ǫ

λn+1 P−1f(λnPw(n), n; ǫ),

w̃(n + 1) = 1
λ
P−1APw̃(n) + ǫ

λn+1 P−1f(λnPw̃(n), n; ǫ) + ǫm+1

λn+1 P−1R(n; ǫ).
(52)

In (4.14) it should be observed that 1
λ
P−1AP is a diagonal matrix for which the modulus of the

largest diagonal element in modules is equal to one. Then, by subtracting the two equations in
(4.14), and by using (4.2), (4.5), (4.7), and (4.8) it follows that (assuming that ‖w(0) − w̃(0)‖ =
O(ǫm))

‖w(n + 1) − w̃(n + 1)‖ ≤ 1.‖w(n) − w̃(n)‖ + ǫLM0

λ
‖w(n) − w̃(n)‖ + ǫm+1

λn+1 M0‖R(n; ǫ)‖
⇒ ‖w(n) − w̃(n)‖ ≤ (1 + ǫLM0

λ
)n{‖w(0) − w̃(0)‖ + O(ǫmeǫnM3)}

⇒ ‖w(n) − w̃(n)‖ = O(ǫm) for n ∼ 1
ǫ
.

(53)

From u(n) = Pv(n) = λnPw(n) and ũ(n) = λnPw̃(n), and from (4.15) it can then be deduced
that for λ > 1

‖u(n) − ũ(n)‖ = O(ǫmλn) (54)

for n = O( 1
ǫ
). The results which have been proved so far are summarized in the following theorem.

Theorem 4.1 Let u(n) and ũ(n) satisfy (39) and (41) respectively, where f satisfies (40) and
where matrix A is assumed to be similar to a diagonal matrix. Let λ be defined by (43), and let R

and f additionally satisfy (44) or (45)-(46) for 0 < λ ≤ 1 or λ > 1 respectively. Furthermore, let

‖u(0)− ũ(0)‖ be O(ǫm+1) for 0 < λ < 1 and O(ǫm) for λ ≥ 1. Then, for n = O( 1
ǫ
) it follows that

‖u(n) − ũ(n)‖ = O(ǫm+1λn) for 0 < λ < 1, and
‖u(n) − ũ(n)‖ = O(ǫmλn) for λ ≥ 1.

Since each k − th order O∆E can be rewritten as a system of k first order O∆Es it follows that
Theorem 4.1 directly can be applied to the examples as treated in the previous sections (see the
linear O∆E (12) and the weakly nonlinear O∆E (26)). For both examples it can be simply shown
that λ = 1 and that |xn − (x0(n, ǫn) + ǫx1(n, ǫn))| = O(ǫ) for n = O( 1

ǫ
). It also follows for

n = O( 1
ǫ
) that
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|xn − x0(n, ǫn)| = |xn − (x0(n, ǫn) + ǫx1(n, ǫn)) + ǫx1(n, ǫn)| ≤
≤ |xn − (x0(n, ǫn) + ǫx1(n, ǫn))| + ǫ|x1(n, ǫn)|
= O(ǫ) + O(ǫ) = O(ǫ)

since x1(n, ǫn) is bounded for n = O( 1
ǫ
). So, in both examples the functions x0(n, ǫn) are O(ǫ)

accurate approximation of xn for 0 ≤ n ≤ K
ǫ
, where K is an ǫ-independent constant.

5 On singularly perturbed, linear O∆Es

In this section the following three singularly perturbed, linear, second order O∆Es will be studied
for n = 0, 1, 2..:

(ǫ − 1
4 )xn+2 + ( 1

2 − 2ǫ)xn+1 + ǫxn = 0, (55)

(ǫ + 2)yn+2 − (1 + 2ǫ)yn+1 + ǫyn = 0, and (56)

zn+2 + ǫzn+1 + ǫzn = 0, (57)

where ǫ is a small parameter with 0 < ǫ ≪ 1. A singularly perturbed O∆E is characterised by
the fact that the order of the O∆E is reduced when the small parameter ǫ is taken equal to zero
(in this case). In the O∆Es (55) and (56) the order of the O∆Es will be reduced by one, whereas
for O∆Es (57) with ǫ = 0 one can hardly speak of an O∆E. When a naive, straight forward
perturbation approach is used to approximate the solution of the O∆E it is usually impossible to
satisfy all the initial conditions because of this order reduction in the O∆E. For ODEs rescaling
procedures are used to tackle this problem. In this section a rescaling procedure for O∆Es like
(55)-(57) will be proposed to solve the aforementioned problem for O∆Es. When the significant
scalings in the O∆Es are known the multiple scales perturbation method for O∆Es (as developed
in section 2 of this paper) will be applied to approximate the solutions of the O∆Es. In fact a
two scales method will be used for (55), and a three scales method will be used for (56) and for
(57). It will turn out that the constructed approximations of the solutions are accurate ones on
long iteration scales. This can be shown by using the theory as developed in the previous section
or by comparing the approximations directly with the exact solutions. Now the O∆E (55) will be
considered firstly.

5.1 The O∆E (55)

To determine the significant scalings in (55) the following rescaling procedure is proposed. Let

xn = δn(ǫ)an, (58)

where δn(ǫ) is a rescaling function which might depend on ǫ, and where an is a function which
remains O(1) on the iteration scale under consideration (usually this will be an iteration scale of
O( 1

ǫ
)). Then, (58) is substituted into (55), yielding

(ǫ − 1

4
)δn+2(ǫ)an+2 + (

1

2
− 2ǫ)δn+1(ǫ)an+1 + ǫδn(ǫ)an = 0 (59)

and a balancing procedure will be followed to determine the rescaling function(s) δn(ǫ). When the
first term and the second term in (59) are assumed to be the most significant ones then δn(ǫ) has
to satisfy
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1

4
δn+2(ǫ) +

1

2
δn+1(ǫ) = 0 ⇒ δn(ǫ) = δ02

n. (60)

It can readily be verified that the third term in (59) (that is, ǫδn(ǫ)an) is indeed smaller. So,
δ(ǫ) = 2n is indeed a significant rescaling. When the second term and the third term in (59) are
assumed to be the most significant ones then δn(ǫ) has to satisfy

1

2
δn+1(ǫ) + ǫδn(ǫ) = 0 ⇒ δn(ǫ) = δ0(−2ǫ)n. (61)

It can be verified that the first term in (59) is indeed smaller, and so, δn(ǫ) = (−2ǫ)n is another
significant rescaling. Similarly it can be checked that the first term and the third term in (59)
can not be the most significant ones simultaneously, since the second term would be in that case
larger. Now two functionally independent approximations of the solutions of the linear O∆E (55)
will be constructed. The sum of these two approximations will be an approximation of the general
solution of the O∆E (55). Firstly let xn = 2nan. The O∆E (55) then becomes

(−1 + 4ǫ)an+2 + (1 − 4ǫ)an+1 + ǫan = 0. (62)

A two scales perturbation method will be used to approximate the solution an of (62) since the
straightforward perturbation expansion will lead to secular terms. The following expansion for an

an = a(n, ǫn) = a0(n, ǫn) + ǫa1(n, ǫn) + ǫ2a2(n, ǫn) + ... (63)

is substituted into (62), and terms of equal powers in ǫ are taken together (see also section 2 of
this paper), yielding as O(1)-problem

∆2
1a0(n, ǫn) + ∆1a0(n, ǫn) = 0 ⇔ a0(n + 2, ǫn) − a0(n + 1, ǫn) = 0, (64)

and as O(ǫ)-problem

ǫ∆2
1a1(n, ǫn) + ǫ∆1a1(n, ǫn) = −2∆1(∆1∆ǫ + ∆ǫ)a0(n, ǫn)+

+4ǫ∆2
1a0(n, ǫn) − (∆1∆ǫ + ∆ǫ)a0(n, ǫn) + 4ǫ∆1a0(n, ǫn) + ǫx0(n, ǫn),

(65)

and so on. The O(1)-problem (64) can readily be solved, yielding

a0(n, ǫn) = f0(ǫn), (66)

where f0(ǫn) is an arbitrary function which will be used to avoid secular terms in a1(n, ǫn). The
O(ǫ)-problem (65) then becomes

ǫ∆2
1a1(n, ǫn) + ǫ∆1a1(n, ǫn) = −∆ǫf0(ǫn) + ǫf0(ǫn). (67)

To avoid secular terms in a1(n, ǫn) it is obvious from (67) that f0(ǫn) should satisfy

−∆ǫf0(ǫn) + ǫf0(ǫn) = 0 ⇒ f0(ǫn) = c0(1 + ǫ)n, (68)

and

a1(n, ǫn) = f1(ǫn),

where c0 is an arbitrary constant, and where f1(ǫn) is an arbitrary function which can be used
to avoid secular terms in a2(n, ǫn). Since we are not interested in the higher order approximation
f1(ǫn) will now be taken equal to its initial value c1. So far the following approximation for an

has been constructed (see (63), (66), and (68)): c0(1 + ǫ)n + ǫc1, where c0 and c1 are constants.
And so, it follows that an approximation of a solution of (55) is

2n(c0(1 + ǫ)n + ǫc1). (69)
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Another functionally independent approximation of the solution of (55) can be constructed by
using the rescaling given by (61), that is, let xn = (−2ǫ)nbn. The O∆E (55) then becomes

ǫ(1 − 4ǫ)bn+2 + (1 − 4ǫ)bn+1 − bn = 0. (70)

The following expansion for bn

bn = b(n, ǫn) = b0(n, ǫn) + ǫb1(n, ǫn) + ǫ2b2(n, ǫn) + ... (71)

is substituted into (70), and terms of equal powers in ǫ are taken together, yielding as O(1)-problem

∆1b0(n, ǫn) = 0, (72)

and as O(ǫ)-problem

ǫ∆1b1(n, ǫn) = −ǫ∆2
1b0(n, ǫn) − (∆1∆ǫ + ∆ǫ)b0(n, ǫn)

+2ǫ∆1b0(n, ǫn) + 3ǫb0(n, ǫn),
(73)

and so on. The O(1)-problem (72) can readily be solved, yielding

b0(n, ǫn) = g0(ǫn), (74)

where g0(ǫn) is an arbitrary function which will be used to avoid secular terms in b1(n, ǫn). The
O(ǫ) (73) now becomes

ǫ∆1b1(n, ǫn) = −∆ǫg0(ǫn) + 3ǫg0(ǫn). (75)

To avoid secular terms in b1(n, ǫn) it is clear from (75) that g0(ǫn) should satisfy

−∆ǫg0(ǫn) + 3ǫg0(ǫn) = 0 ⇒ g0(ǫn) = d0(1 + 3ǫ)n,

and
b1(n, ǫn) = g1(ǫn), (76)

where d0 is an arbitrary constant, and where g1(ǫn) is an arbitrary function which can be used to
avoid secular terms in b2(n, ǫn). Since we are not interested in the higher order approximations
g1(ǫn) will now be taken equal to a constant d1. So far the following approximation for bn has
been constructed (see (71), (74), and (76)): d0(1+3ǫ)n + ǫd1, where d0 and d1 are constants. And
so, it follows that an approximation of a solution of (55) is

(−2ǫ)n(d0(1 + 3ǫ)n + ǫd1). (77)

Since the O∆E (55) is linear the superposition principle can be used, and then it follows from
(69) and (77) that an approximation x(n, ǫn) of the solution xn of (55) is given by

x(n, ǫn) = 2n(c0(1 + ǫ)n + ǫc1) + (−2ǫ)n(d0(1 + 3ǫ)n + ǫd1), (78)

where c0, c1, d0, and d1 are constants which are determined by the initial conditions for n = 0, 1
(that is, when x0 and x1, and their expansions in ǫ are given). How well x(n, ǫn) approximates
the exact solution xn can now be determined in two ways. The first way is to apply Theorem 4.1
(see the previous section). For O∆E (55) we have that λ = 2 and x(n, ǫn) satisfies the O∆E (55)
upto (2 + 2ǫ)nO(ǫ2) + (−2ǫ − 6ǫ)nO(ǫ3). So, it follows from Theorem 4.1 that

|xn − x(n, ǫn)| = 2nO(ǫ) for n = O(
1

ǫ
). (79)
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From (79) it follows that the absolute error becomes large on the iteration scale of O( 1
ǫ
), but that

the relative error is small for n ∼ 1
ǫ
, that is,

| xn − x(n, ǫn)

x(n, ǫn)
|= O(ǫ) for n ∼ 1

ǫ
. (80)

Since the linear O∆E (55) has constant coefficients also the exact solution xn can be computed
directly, yielding

xn = a(1 + (1 − 4ǫ)−
1
2 )n + b(1 − (1 − 4ǫ)−

1
2 )n

= a(2 + 2ǫ + 6ǫ2 + O(ǫ3))n + b(−2ǫ − 6ǫ2 + O(ǫ3))n,
(81)

where a and b are constants. It can also readily be verified from (81) that x(n, ǫn) satisfies (79)
and (80).

5.2 The O∆E (56)

The rescaling and balancing procedure as introduced in section 5.1 can be repeated for the O∆E

(56), and it turns out that the significant scalings are

δn(ǫ) = (
1

2
)n, and δn(ǫ) = ǫn. (82)

As in the previous example two functionally independent approximations of the solutions of the
linear O∆E (56) will be constructed but in this example by using a three scales perturbation
method instead of a two scales method. By putting yn = ( 1

2 )nan the O∆E (56) becomes

(ǫ + 2)an+2 − (2 + 4ǫ)an+1 + 4ǫan = 0. (83)

Then, the following expansion for an

an = a0(n, ǫn, ǫ2n) + ǫa1(n, ǫn, ǫ2n) + ǫ2a2(n, ǫn, ǫ2n) + ... (84)

is substituted into (83), and as usual the following O(ǫm)-problems are obtained for m = 0, 1, 2, ...

(see also section 2 of this paper):
the O(1)-problem:

2∆2
1a0(n, ǫn, ǫ2n) + 2∆1a0(n, ǫn, ǫ2n) = 0 ⇔

a0(n + 2, ǫn, ǫ2n) − a0(n + 1, ǫn, ǫ2n) = 0,
(85)

the O(ǫ)-problem:

2ǫ∆2
1a1(n, ǫn, ǫ2n) + 2∆1a1(n, ǫn, ǫ2n) = −(4∆1 + 2)(∆1∆ǫ + ∆ǫ)a0(n, ǫn, ǫ2n)

−ǫ∆2
1a0(n, ǫn, ǫ2n) + 2ǫ∆1a0(n, ǫn, ǫ2n) − ǫa0(n, ǫn, ǫ2n),

(86)

the O(ǫ2)-problem:

2ǫ2∆a2(n, ǫn, ǫ2n) + 2ǫ2∆1a2(n, ǫn, ǫ2n) = −ǫ(4∆1 + 2)(∆1∆ǫ + ∆ǫ)a1(n, ǫn, ǫ2n)
−ǫ2∆2

1a1(n, ǫn, ǫ2n) + 2ǫ2∆1a1(n, ǫn, ǫ2n) − ǫ2a1(n, ǫn, ǫ2n)
−(4∆1(∆1∆ǫ2 + ∆ǫ2) + 2(∆1∆ǫ + ∆ǫ)

2)a0(n, ǫn, ǫ2n)
−ǫ(2∆1 − 2)(∆1∆ǫ + ∆ǫ)a0(n, ǫn, ǫ2n) − 2(∆1∆ǫ2 + ∆ǫ2)a0(n, ǫn, ǫ2n),

(87)

and so on. The O(1)-problem (85) readily can be solved, yielding
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a0(n, ǫn, ǫ2n) = f0(ǫn, ǫ2n), (88)

where f0(ǫn, ǫ2n) is still an arbitrary function which will be used to avoid secular terms in
a1(n, ǫn, ǫ2n) and in a2(n, ǫn, ǫ2n). The O(ǫ)-problem (86) now becomes

2ǫ∆2
1a1(n, ǫn, ǫ2n) + 2ǫ∆1a1(n, ǫn, ǫ2n) = −2∆ǫf0(ǫn, ǫ2n) − ǫf0(ǫn, ǫ2n). (89)

To avoid secular terms in a1(n, ǫn, ǫ2n) it is obvious from (89) that f0(ǫn, ǫ2n) has to satisfy

−2∆ǫf0(ǫn, ǫ2n) − ǫf0(ǫn, ǫ2n) = 0 ⇒ f0(ǫn, ǫ2n) = (1 − ǫ

2
)ng0(ǫ

2n), (90)

where g0(ǫ
2n) is still an arbitrary function which will be used to avoid secular terms in the O(ǫ2)-

problem (87). From (89) and (90) it now also follows that

a1(n, ǫn, ǫ2n) = f1(ǫn, ǫ2n), (91)

where f1(ǫn, ǫ2n) is still an arbitrary function which can be used to avoid secular terms in the
higher order problems. The O(ǫ2) -problem (87) now becomes (observe that ∆1a0 = 0 and
∆1a1 = 0):

2ǫ2∆1a2(n, ǫn, ǫ2n) + 2ǫ2∆1a2(n, ǫn, ǫ2n) = −2ǫ∆ǫf1(ǫn, ǫ2n) − ǫ2f1(ǫn, ǫ2n)
−2∆2

ǫf0(ǫn, ǫ2n) − 2∆ǫ2f0(ǫn, ǫ2n) + 2ǫ∆ǫf0(ǫn, ǫ2n).
(92)

Now it should be observed that all terms in the righthand side of (92) will lead to secular terms
in a2(n, ǫn, ǫ2n). To avoid these secular terms the righthand side of (92) should be equal to zero,
or equivalently (by using (90)):

2ǫ∆ǫf1(ǫn, ǫ2n) + ǫ2f1(ǫn, ǫ2n) = (1 − ǫ

2
)n(−2∆ǫ2g0(ǫ

2n) − 3

2
ǫ2g0(ǫ

2n)). (93)

Now all terms in the righthand side of (93) will lead to secular terms in f1(ǫn, ǫ2n). To avoid this
secular behaviour it follows from (93) that g0(ǫ

2n) has to satisfy:

−2∆ǫ2g0(ǫ
2n) − 3

2
ǫ2g0(ǫ

2n) = 0 ⇒ g0(ǫ
2n) = c0(1 − 3

4
ǫ2)n, (94)

where c0 is a constant. From (93) it then also follows that

f1(ǫn, ǫ2n) = (1 − ǫ

2
)ng1(ǫ

2n), (95)

where g1(ǫ
2n) is an arbitrary function. And from (92) it then follows that

a2(n, ǫn, ǫ2n) = f2(ǫn, ǫ2n), (96)

where f2(ǫn, ǫ2n) is an arbitrary function. From yn = ( 1
2 )nan, (84), (88), (90)-(96) it follows that

an approximation of yn is given by

c0(
1

2
)n(1 − ǫ

2
)n(1 − 3

4
ǫ2)n + O(ǫ)(

1

2
)n. (97)

In a completely similar way a second, functionally independent approximation of yn can be con-
structed (starting with yn = ǫnbn, and so on), yielding

d0ǫ
n(1 + ǫ2)n + ǫnO(ǫ), (98)

where d0 is a constant. The computations to obtain (98) are left to the reader as an exercise. From
(97) and (98) it follows by using the superposition principle that an approximation y(n, ǫn, ǫ2n)
of the general solution yn of (56) is given by
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y(n, ǫn, ǫ2n) = c0(
1

2
)n(1 − ǫ

2
)n(1 − 3

4
ǫ2)n + d0ǫ

n(1 + ǫ2)n. (99)

How accurate this approximation is, can directly be seen by comparing y(n, ǫn, ǫ2n) with the exact
solution yn which is given by

yn = a

(

1+2ǫ+(1−4ǫ)
1
2

2(ǫ+2)

)n

+ b

(

1+2ǫ−(1−4ǫ)
1
2

2(ǫ+2)

)n

= a( 1
2 − 1

4ǫ − 3
8ǫ2 + O(ǫ3))n + b(ǫ + ǫ3 + O(ǫ4))n.

(100)

From (99) and (100) it can readily be deduced that for n ∼ 1
ǫ2

| yn − y(n, ǫn, ǫ2n) | = (
1

2
)nO(ǫ).

5.3 The O∆E (57)

The rescaling and balancing procedure as introduced in section 5.1 can be repeated again for the
O∆E (57), and it turns out that only one significant scaling is present:

δn(ǫ) = (
√

ǫ)n. (101)

As in the previous examples approximations of the solution of the linear O∆E (57) will be
constructed. In this example a three scales perturbation method will be applied. By putting
zn = (

√
ǫ)nan the O∆E (57) becomes

an+2 +
√

ǫan+1 + an = 0. (102)

Then, the following expansion for an

an = a0(n,
√

ǫn, ǫn) +
√

ǫa1(n,
√

ǫn, ǫn) + ǫa2(n,
√

ǫn, ǫn) + ... (103)

is substituted into (102), and as usual the following O(ǫ
m
2 )-problems are obtained for m =

0, 1, 2, ... :
the O(1)-problem:

∆2
1a0(n,

√
ǫn, ǫn) + 2∆1a0(n,

√
ǫn, ǫn) + 2a0(n,

√
ǫn, ǫn) = 0 ⇔

a0(n + 2,
√

ǫn, ǫn) + a0(n,
√

ǫn, ǫn) = 0,
(104)

the O(
√

ǫ)-problem:

√
ǫ∆2

1a1(n,
√

ǫn, ǫn) + 2
√

ǫ∆1a1(n,
√

ǫn, ǫn) + 2
√

ǫa1(n,
√

ǫn, ǫn) =
−2(∆1 + I)(∆1∆√

ǫ + ∆√

ǫ)a0(n,
√

ǫn, ǫn) −√
ǫ(∆1 + I)a0(n,

√
ǫn, ǫn),

(105)

the O(ǫ)-problem:

ǫ∆2
1a2(n,

√
ǫn, ǫn) + 2ǫ∆1a2(n,

√
ǫn, ǫn) + 2ǫa2(n,

√
ǫn, ǫn) =

−√
ǫ(2∆√

ǫE
2
1 +

√
ǫE1)a1(n,

√
ǫn, ǫn)

−(2∆3E
2
1 + ∆2

√

ǫ
E2

1 +
√

ǫ∆√

ǫE1)a0(n,
√

ǫn, ǫn),
(106)

and so on. The O(1)-problem (104) can easily be solved, yielding

a0(n,
√

ǫn, ǫn) = f0(
√

ǫn, ǫn) cos(
nπ

2
) + g0(

√
ǫn, ǫn) sin(

nπ

2
), (107)
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where f0(
√

ǫn, ǫn) and g0(
√

ǫn, ǫn) are still arbitrary functions which will be used to avoid secular
terms in a1(n,

√
ǫn, ǫn) and in a2(n,

√
ǫn, ǫn). The O(

√
ǫ)-problem (106) now becomes

√
ǫ∆2

1a1(n,
√

ǫn, ǫn) + 2
√

ǫ∆1a1(n,
√

ǫn, ǫn) + 2
√

ǫa1(n,
√

ǫn, ǫn) =
cos(nπ

2 )(2∆√

ǫf0(
√

ǫn, ǫn) −√
ǫg0(

√
ǫn, ǫn)) +

sin(nπ
2 )(2∆√

ǫg0(
√

ǫn, ǫn) +
√

ǫf0(
√

ǫn, ǫn)).
(108)

Obviously the righthand side of (108) contains terms (i.e. cos(nπ
2 ) and sin(nπ

2 )) which are so-
lutions of the corresponding homogeneous O∆E and which consequently lead to secular terms
in a1(n,

√
ǫn, ǫn). To avoid this secular behaviour in a1(n,

√
ǫn, ǫn) it follows from (108) that

f0(
√

ǫn, ǫn) and g0(
√

ǫn, ǫn) have to satisfy

2∆√

ǫf0(
√

ǫn, ǫn) −√
ǫg0(

√
ǫn, ǫn) = 0,

2∆√

ǫg0(
√

ǫn, ǫn) +
√

ǫf0(
√

ǫn, ǫn) = 0.
(109)

System (109) can readily be solved, yielding

f0(
√

ǫn, ǫn) = α0(ǫn)(1 + ǫ
4 )

n
2 cos(nµ(ǫ)) + β0(ǫn)(1 + ǫ

4 )
n
2 sin(nµ(ǫ)),

g0(
√

ǫn, ǫn) = −α0(ǫn)(1 + ǫ
4 )

n
2 sin(nµ(ǫ)) + β0(ǫn)(1 + ǫ

4 )
n
2 cos(nµ(ǫ)),

(110)

where α0(ǫn) and β0(ǫn) are arbitrary functions which will be used to avoid secular terms in
a2(n,

√
ǫn, ǫn), and where µ(ǫ) is given by

cos(µ(ǫ)) = (1 + ǫ
4 )−

1
2 , and sin(µ(ǫ)) = 1

2

√
ǫ(1 + ǫ

4 )−
1
2 , and

µ(ǫ) = 1
2

√
ǫ − 1

24ǫ
√

ǫ + O(ǫ2
√

ǫ) for ǫ → 0.
(111)

Then, it follows from (108) that a1(n,
√

ǫn, ǫn) is given by

a1(n,
√

ǫn, ǫn) = f1(
√

ǫn, ǫn) cos(
nπ

2
) + g1(

√
ǫn, ǫn) sin(

nπ

2
), (112)

where f1(
√

ǫn, ǫn) and g1(
√

ǫn, ǫn) are arbitrary functions which can be used to avoid secular
terms in the solutions of the higher order problems. By using (107), (110), and (112) it follows
that the O(ǫ)-problem (106) now becomes

ǫ∆2
1a2(n,

√
ǫn, ǫn) + 2ǫ∆1a2(n,

√
ǫn, ǫn) + 2ǫa2(n,

√
ǫn, ǫn) =

cos(nπ
2 )

{

2
√

ǫ∆√

ǫf1(
√

ǫn, ǫn) − ǫ g1(
√

ǫn, ǫn) + 2∆ǫf0(
√

ǫn, ǫn) + ǫ
4f0(

√
ǫn, ǫn)

}

+

sin(nπ
2 )

{

2
√

ǫ∆√

ǫg1(
√

ǫn, ǫn) + ǫ f1(
√

ǫn, ǫn) + 2∆ǫg0(
√

ǫn, ǫn) + ǫ
4g0(

√
ǫn, ǫn)

}

.

(113)

To avoid secular terms in a2(n,
√

ǫn, ǫn) it is obvious from (113) that f1, g1, f0, and g0 have to
satisfy

2
√

ǫ∆√

ǫf1(
√

ǫn, ǫn) − ǫ g1(
√

ǫn, ǫn) = −(2∆ǫα0(ǫn) + ǫ
4α0(ǫn))(1 + ǫ

4 )
n
2 cos(nµ(ǫ))

−(2∆ǫβ0(ǫn) + ǫ
4β0(ǫn))(1 + ǫ

4 )
n
2 sin(nµ(ǫ)),

2
√

ǫ∆√

ǫg1(
√

ǫn, ǫn) + ǫ g1(
√

ǫn, ǫn) = (2∆ǫα0(ǫn) + ǫ
4α0(ǫn))(1 + ǫ

4 )
n
2 sin(nµ(ǫ))

−(2∆ǫβ0(ǫn) + ǫ
4β0(ǫn))(1 + ǫ

4 )
n
2 cos(nµ(ǫ)).

(114)

Since (1 + ǫ
4 )

n
2 cos(nµ(ǫ)), and (1 + ǫ

4 )
n
2 sin(nµ(ǫ)) are solutions of the homogeneous system (114)

it is obvious that these terms lead to secular behaviour in f1(
√

ǫn, ǫn), and in g1(
√

ǫn, ǫn). To
avoid this secular behaviour it follows from (114) that α0(ǫn) and β0(ǫn) have to satisfy

2∆ǫα0(ǫn) + ǫ
4α0(ǫn) = 0,

2∆ǫβ0(ǫn) + ǫ
4β0(ǫn) = 0.

(115)
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System (115) can readily be solved, yielding

α0(ǫn) = k0(1 − ǫ
8 )n,

β0(ǫn) = l0(1 − ǫ
8 )n,

(116)

where k0 and l0 are arbitrary constants. From (114) f1 and g1 can now be determined, and from
(113) a2 can be determined, yielding

f1(
√

ǫn, ǫn) = α1(ǫn)(1 + ǫ
4 )

n
2 cos(nµ(ǫ)) + β1(ǫn)(1 + ǫ

4 )
n
2 sin(nµ(ǫ)),

g1(
√

ǫn, ǫn) = −α1(ǫn)(1 + ǫ
4 )

n
2 sin(nµ(ǫ)) + β1(ǫn)(1 + ǫ

4 )
n
2 cos(nµ(ǫ)),

a2(n,
√

ǫn, ǫn) = f2(
√

ǫn, ǫn) cos(nπ
2 ) + g2(

√
ǫn, ǫn) sin(nπ

2 ),

where α1, β1, f2, and g2 are arbitrary functions. To determine these functions completely the
O(ǫ

√
ǫ)-problem and the O(ǫ2)-problem have to be solved. Since we are not interested in the

higher order approximations at this moment we will take α1, β1, f2, and g2 equal to constants
(such that the initial conditions (if present) can be satisfied up to O(ǫ)). From (107), (110), (111),
and (116) it follows that a0(n,

√
ǫn, ǫn) is given by

a0(n,
√

ǫn, ǫn) = k0(1 − ǫ
8 )n(1 + ǫ

4 )
n
2 cos(nπ

2 + nµ(ǫ)) +
l0(1 − ǫ

8 )n(1 + ǫ
4 )

n
2 sin(nπ

2 + nµ(ǫ)),
(117)

where k0 and l0 are constants. The exact solution of the O∆E (102) is given by

an = k 1n cos(nθ(ǫ)) + l 1n sin(nθ(ǫ)), (118)

where k and l are constants, and where θ(ǫ) is given by

cos(θ(ǫ)) = − 1
2

√
ǫ, and sin(θ(ǫ)) = (1 − ǫ

4 )
1
2 , and

θ(ǫ) = π
2 + 1

2

√
ǫ + 1

48ǫ
√

ǫ + O(ǫ2
√

ǫ) for ǫ → 0.

From (117) and (118) it is not difficult to deduce that

|an − a0(n,
√

ǫn, ǫn)| = O(
√

ǫ) for n = O(
1

ǫ
).

The examples as presented in this section and in section 2 and 3 of this paper clearly prove that
the multiple scales perturbation method gives accurate approximations on long iteration scales.

6 Conclusions and remarks

In this paper an improved version of the multiple scales perturbation method for O∆Es has been
presented and formulated completely in terms of difference equations. It has been shown how this
improved method can be applied to regularly perturbed O∆Es and to singularly perturbed, linear
O∆Es. The relative and/or absolute errors in the constructed approximations of the solutions of
the O∆Es have been determined, and it has been shown that these approximations are valid on
long iteration scales.
It is to be expected that the presented perturbation method also can be applied successfully
to weakly perturbed partial difference equations, and to singularly perturbed, weakly nonlinear
O∆Es. Of course, these extensions will be interesting subjects for future research. Finally, it
should be remarked that the presented perturbation method also can be used in the numerical
analysis of certain classes of regularly or singularly perturbed differential equations to see whether
the solutions of the discretized equations (i.e. the difference equations) have the same type of
behaviour as the solutions of the differential equations or not.



On the multiple scales perturbation method for difference equations. 19

Acknowledgements.

Part of the research presented in this paper was performed by the first author as a visiting professor
at the department of Applied Mathematics of the University of Washington in Seattle during the
spring quarter of 2007. The hospitality of the members of the department and the many discussions
with Professor R.E. O’Malley, Jr. on mathematics in general and on differential and difference
equations in particular are highly appreciated.

References

[1] R.P.Agarwal, Difference Equations and Inequalities, Theory, Methods, and Applications, Mar-
cel Dekker Inc., New York, 1992.

[2] R.Agarwal, M.Bohner, D.O’Regan, and A.Peterson, Dynamic equations on time scales: a
survey, J. of Comp. and Appl.Math., 141(2002), pp.1-26.

[3] S.Elaydi, An Introduction to Difference Equations, Springer-Verlag, New York, third edition,
2005.

[4] I.V.Andrianov, and L.I.Manevitch, Asymptotology, Ideas, Methods, and Applications, Kluwer
Academic Publishers, Dordrecht, 2002.

[5] M.H.Holmes, Introduction to Perturbation Methods, Springer-Verlag, New York, 1995.

[6] F.C.Hoppensteadt, and W.L.Miranker, Multitime methods for systems of difference equations,
Studies in Appl.Math., 56 (1977), pp. 273-289.

[7] R.L. Huston, Krylov-Bogoljubov method for difference equations, SIAM J. on Appl. Math., 19
(1979), pp. 334-339.

[8] M.K.Kadalbajoo, and K.C.Patidar, A survey of numerical techniques for solving singularly
perturbed ordinary differential equations, Appl.Math. and Computation, 130 (2002), pp.457-
510.

[9] W.G.Kelly, and A.C.Peterson, Difference Equations, An Introduction with Applications, Aca-
demic Press Inc., New York, 1991.

[10] J.Kevorkian, and J.D.Cole, Multiple Scale and Singular Perturbation Methods, Springer-
Verlag, New York, 1996.

[11] A.Luongo, Perturbation methods for nonlinear autonomous discrete-time dynamical systems,
Nonlinear Dynamics, 10(1996), pp.317-331.

[12] A.Maccari, A perturbation method for nonlinear two-dimensional maps, Nonlinear Dynamics,
19(1999), pp.295-312.

[13] R.E.O’Malley, Jr., Singular Perturbation Methods for Ordinary Differential Equations ,
Springer-Verlag, New York, 1991.

[14] A.Marathe, and A.Chatterjee, Wave attenuation in nonlinear periodic structures using har-
monic balance and multiple scales, J. of Sound and Vibration, 289 (2006), pp.871-888.

[15] R.E.Mickens, Difference Equations,Van Nostrand Reinhold Company, New York, 1987.

[16] R.E.Mickens, Periodic solutions of second order nonlinear difference equations containing
a small parameter-IV. Multi-discrete time method, J. of the Franklin Institute, 324 (1987),
pp.263-271.

[17] J.A.Murdock, Perturbations, Theory and Methods, John Wiley and Sons, New York, 1991.



On the multiple scales perturbation method for difference equations. 20

[18] A.H.Nayfeh,Perturbation Methods, Wiley-Interscience, New York, 1973.

[19] T. Sari, and T. Zerizer, Perturbations for linear difference equations, J.Math.Anal.Appl., 305
(2005), pp. 43-52.

[20] R. Subramanian, and A. Krishnan, Non-linear discrete time systems analysis by mutiple time
perturbation techniques, J. of Sound and Vibration, 63 (1979), pp. 325-335.

[21] H.C. Torng, Second order non-linear difference equations containing small parameters, J. of
the Franklin Institute, 269 (1960), pp. 97-104.

[22] F.Verhulst, Methods and Applications of Singular Perturbations, Springer-Verlag, New York,
2005.


