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Extension of Stochastic Volatility Models with Hull-White

Interest Rate Process

L.A. Grzelak, ∗ C.W. Oosterlee, † S. van Weeren ‡

Abstract

In recent years the financial world has focused on accurate pricing of exotic and hybrid products
that are based on a combination of underlyings from different asset classes. In this paper we present
an extension of the stochastic volatility models by a stochastic Hull-White interest rate component.
It is our goal to include this system of stochastic differential equations in the class of affine jump
diffusion - linear quadratic jump-diffusion processes (Duffie, Pan and Singleton [11], Cheng and
Scaillet [8]) so that the pricing of European products can be efficiently done within the pricing
framework of Carr-Madan [7].

Key words: hybrid products, Schöbel-Zhu-Hull-White framework, stochastic volatility and
interest rate model, affine jump-diffusion process

1 Introduction

In this paper we present a flexible multi-factor stochastic volatility (SV) model which includes the term
structure of the stochastic interest rates (IR). Our aim is to combine an arbitrage-free Hull-White IR
model in which the parameters are consistent with the bond prices implied by the zero coupon yield
curve. In order to perform option valuation using the fast Fourier transform we aim to fit this process in
the class of Affine Jump Diffusion (AJD) processes [11] (although jump processes are not included in this
work). We specify under which conditions such a general model can fall in the class of AJD processes.
We also apply the model to price some hybrid structured derivatives, which combine the different asset
classes: equity and interest rate.

A major step, away from the assumption of constant volatility in derivatives pricing, was made by
Hull and White [17], Stein and Stein [33] and Heston [16], who defined the volatility as a diffusion
process. This improved the pricing of derivatives under heavy-tailed return distributions significantly
and allowed a trader to quantify the uncertainty in the pricing. Since the development of the stochastic
volatility models, they have become very popular for derivative pricing and hedging, see, for example, [13],
however financial engineers have developed more complex exotic products, that require additionally the
modeling of a stochastic interest rate component. A derivative pricing tool in which all these features
are explicitly modeled has the potential of generating more accurate option prices for hybrid products.
These products can be designed to provide capital or income protection, diversification for portfolios
and customized solutions for both institutional and retail markets. Because of these features, the hybrid
market expands rapidly.

The approach proposed by Carr and Madan in [7] for pricing European options with the Fast Fourier
Transform (FFT) technique is state-of-the-art for parameter calibration in the financial industry. It relies
heavily on the availability of the characteristic function of the price process, which is guaranteed if we
stay within the AJD class, see Duffie-Pan-Singleton [11], Lee [20] and Lewis [21]. We examine the effect
of correlated processes for asset, stochastic volatility and interest rate on the option prices through a
comparison with, for example, the Heston model. In the evaluation of the empirical performance of the
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alternative option pricing models, we use both the relative difference and the implied Black-Scholes [4]
(BS) volatility as measures of systematic error.

The plan of this paper is as follows: In Section 2 we perform the analysis for the Schöbel-Zhu-
Hull-White stochastic volatility and interest rate model; In Subsection 2.1 we explain the general AJD
framework and in Subsection 2.2 we show that the Hull-White process fits nicely into the framework.
Subsection 2.3 is the heart of this paper, where we show that the hybrid model of interest admits a semi-
closed form for the characteristic function. Subsection 2.4 discusses an alternative hybrid model, the
Heston-Hull-White model. In Section 3, numerical experiments are performed with the Heston, Heston-
Hull-White and the Schöbel-Zhu-Hull-White models. We start with model calibration in Subsection 3.1,
after which a variety of hybrid products are priced in subsequent subsections. Section 4 concludes. The
lengthy proofs of the lemmas are placed in the appendices.

2 Extension of stochastic volatility models

In this section we present a hybrid stochastic volatility model which includes a stochastic interest rate
process. In particular, we add to the SV model the well-known Hull-White stochastic interest rate
process [18], which is a generalization of the Vasiček model [34].

We consider a three-dimensional system of stochastic differential equations, of the following form:

dSt = rtStdt+ σpt StdW
S
t (1)

drt = λ(θt − rt)dt+ ηdW r
t (2)

dσt = −κ (σt − σ) dt+ γσ1−p
t dW σ

t (3)

where p is an exponent, κ and λ control the speed of mean reversion, η represents the interest rate
volatility, and γσ1−p determines the variance of the σt process. Parameters σ and θt are the long-run
mean of the volatility and the interest rate processes, respectively. W i are correlated Wiener processes,
also governed by an instantaneous covariance matrix,

Σ =

 dWS
t dW

S
t dWS

t dW
σ
t dWS

t dW
r
t

dW σ
t dW

S
t dW σ

t dW
σ
t dW σ

t dW
r
t

dW r
t dW

S
t dW r

t dW
σ
t dW r

t dW
r
t

 =

 1 ρs,σ ρs,r
ρσ,s 1 ρσ,r
ρr,s ρr,σ 1

 dt. (4)

If we keep rt constant and p = 1
2 , we have the Heston model [16],

dSt = rStdt+
√
σtStdW

S
t ,

dσt = −κH
(
σt − σH

)
dt+ γH

√
σtdW

σ
t .

For p = 1 our model is, in fact, the generalized Stein-Stein [33] model, which is also called the Schöbel-Zhu
[30] model,

dSt = rStdt+
√
vtStdW

S
t ,

dvt = −2κ
(
vt + σtσ +

γ2

2κ

)
dt+ 2γ

√
vtdW

σ
t ,

in which the squared volatility, vt = σ2
t , represents the variance of the instantaneous stock return.

It was already indicated in [16] and [30] that the plain Schöbel-Zhu model is a particular case of
the original Heston model. We can see that, if σ = 0, the Schöbel-Zhu model equals the Heston model
in which κH = 2κ, σH = γ2/2κ, and γH = 2γ. This relation gives a direct connection between their
discounted characteristic functions (see [23]). Finally, if we set rt constant, p = 0 in equations (1), (3)
and zero correlations, the model collapses to the standard Black-Scholes model. In the following we will
choose the parameters in the equations (1), (2) and (3) such that we deal with a Schöbel-Zhu-Hull-White
model. In [14] and [8] it is was shown that the so-called linear-quadratic jump-diffusion (LQJD) models
are equivalent to the AJD models with an augmented state vector.
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2.1 Affine jump-diffusion processes

The AJD class refers to a fixed probability space (Ω,F , P ) and a Markovian n-dimensional affine process
Xt in some space D ⊂ Rn. It can be expressed in the following stochastic differential form:

dXt = µ(Xt)dt+ σ(Xt)dWt + dZt,

where Wt is Ft-standard Brownian motion in Rn, µ(Xt) : D → Rn, σ (Xt) : D → Rn×n, Zt is a
pure jump process with a fixed probability distribution ν on Rn and arrival intensity {λ (Xt) : t ≥ 0}
for arbitrary λ : D →

[
0,∞

)
with jump transform ς(c) =

∫
Rn e

c×zdν(z) for any ς ∈ Cn. Moreover,
for processes in the AJD class it is assumed that drift, volatility, jump intensities and interest rate
components are of the affine form, i.e.

µ(Xt) = a0 + a1Xt for any (a0, a1) ∈ Rn × Rn×n,
λ(Xt) = b0 + bT1 Xt, for any (b0, b1) ∈ R× Rn,

σ(Xt)σ(Xt)T = (c0)ij + (c1)TijXt, for arbitrary (c0, c1) ∈ Rn×n × Rn×n×n,
r(Xt) = r0 + rT1 Xt, for (r0, r1) ∈ R× Rn.

Then for a state vector, Xt, the discounted characteristic function (CF) is of the following form:

φ(u,XT , t, T ) = EQ
(
e−

∫ T
t
rsds+iu

T XT |Ft
)

= eA(u,τ)+BT(u,τ)Xt

where the expectation is taken under the risk neutral measure, Q. For a time lag, τ := T − t, the
coefficients A(u, τ) and BT (u, τ) have to satisfy certain complex-valued ordinary differential equations
(ODEs) [11]:

d

dτ
A(u, τ) = −r0 + BTa0 +

1
2
BT c0B + b1 (ςB− 1) (5)

d

dτ
B(u, τ) = −r1 + aT1 B +

1
2
BT c1B + b0 (ςB− 1) . (6)

The dimension of these ODEs corresponds to the dimension of the state vector, Xt. Typically, multi-
factor models provide a better fit to the observed market data than the one-factor models. However, as
the dimension of SDE system increases, the ODEs to be solved to get the CF are increasingly complex.
If an analytical solution to the ODEs cannot be obtained, one can apply well-known numerical ODE
techniques. This may require substantial computational effort, which essentially makes the model useless
for practical applications. Therefore, in this paper we will set up a model for which an analytic solution
to most of the ODEs appearing can be obtained. We will not consider jumps in this paper, so the b0-
and b1-parts in (5),(6) disappear.

For several years now the pricing of plain vanilla options is common practice in the Fourier domain.
These solution methods rely on the availability of the CF of the logarithm of the stock price. Although
originally based on the Gil-Palaez inversion formula [35], the popularity of numerical integration and
Fourier transformation increased with the efficient pricing method by Carr and Madan [7], with which
vanilla options for a whole range of strikes can be priced in one computation. In 1D, a damped version
of the European call price with damping factor α, strike K, and maturity T can be expressed in the
following form:

Π(t, T,K, α) =
e−α logK

π
<
(∫ +∞

0

e−iu logKψT (u)du
)
,

with i the imaginary unit, <(·) denotes taking the real part of the expression in brackets, and

ψT (u) =
EQ
(
e−

∫ T
t
rsdselog (ST )(1+α+iu)|Ft

)
α+ α2 − u2 + iu(2α+ 1)

.

Here the expectation under the risk neutral measure, Q, can be recognized as a discounted CF, i.e.,

φ ((u− i(1 + α)) , ST , t, T ) ≡ EQ
(
e−

∫ T
t
rsdse(1+α+iu) log (ST )|Ft

)
.
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The pricing algorithm assumes the existence of the CF of the log stock price, which is often available in
analytic form (although the density is not known in closed form). The trapezoidal rule formula for the
Fourier transform of the option price reads,

Π(t, T, kj) ≈
e−αkj

π
<

{
∆u

(
N∑
n=1

ω
(n−1)(j−1)
N ei(n−1)∆ubψT (un)−

1
2

(g(u1) + g(uN ))

)}
,

with the imposed condition, ∆u∆k = 2π/N , and where kj = −b+∆k(j−1), j = 1 . . . N and b = N∆k/2 ∈
R, the lower boundary of the log-strike domain. Further, g(u) ≡ e−iukψT (u), and ωN = exp(− 2πi

N )
provided that g(u1) = g(0).

The expression can be easily computed with the help of the FFT. The availability of such a pricing
formula is particularly useful in a calibration procedure, in which the parameters of the stochastic
processes need to be approximated. In practice, option pricing models are calibrated to a large number
of market observed call option prices. It is therefore desirable for such a parameter estimation procedure
to be highly efficient. A (semi-)closed form for an option pricing formula is mandatory.

In fact, for the CF resulting from hybrid SDE system (1), (2), (3) the choice of damping parameter α
is quite sensitive and requires numerical testing. There exist however alternative highly efficient pricing
methods, also based on the availability of the CF, that do not require a damping parameter, like the
CONV method [22], or the COS method [12] based on Fourier cosine expansions.

2.2 The Hull-White model

Here, as a start, we consider the Hull-White, single-factor, no-arbitrage yield curve model in which the
short-term interest rate is driven by an extended Ornstein-Uhlenbeck (OU) mean reverting process,

drt = λ (θt − rt) dt+ ηdW r
t (7)

where θt > 0, t ∈ R+ is a time-dependent drift term, included to fit the theoretical bond prices to
the yield curve observed in the market. Parameter η determines the overall level of volatility and the
reversion rate parameter λ determines the relative volatilities. A high value of λ causes short-term rate
movements to damp out quickly, so that the long-term volatility is reduced.

In the first part of our analysis we present the derivation for the CF of the interest rate process.
Integrating equation (7), we obtain, for t ≥ 0,

rt = r0e
−λt + λ

∫ t

0

e−λ(t−s)θsds+ η

∫ t

0

e−λ(t−s)dWQ
s .

It is easy to show that rt is normally distributed with

EQ (rt| F0) = r0e
−λt +

∫ t

0

λe−λ(t−s)θsds,

and

V arQ (rt| F0) =
η2

2λ

(
1− e−2λ(t−s)

)
.

It is known that
lim
t→∞

EQ (rt|F0) = θt,

i.e., for large t the first moment of the process convergences to the time-dependent drift.
In order to simplify the derivations to follow we use the following proposition (see Arnold [3], Ok-

sendal [27]).

Proposition 2.1 (Hull-White decomposition). The Hull-White stochastic interest rate process (7) can
be decomposed into rt = r̃t + ψt, where

ψt = e−λtr0 + λ

∫ t

0

e−λ(t−s)θsds,

and
dr̃t = −λr̃tdt+ ηdWQ

t ,with r̃0 = 0.
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Proof. We have drt = dr̃t + dψt with dψt = −λψtdt+ λθtdt, ψ0 = r0. Thus,

drt = −λr̃tdt+ ηdWQ
t − λψtdt+ λθtdt

= −λ(rt − ψt)dt+ ηdWQ
t − λψtdt+ λθtdt = λ(θt − rt)dt+ ηdWQ

t

The advantage of this transformation is that the stochastic process r̃t is now a basic OU mean
reverting process, determined only by λ and η, independent of function ψt. It is easier to analyze than
the original Hull and White model [17].

We investigate the discounted conditional characteristic function (CF) of spot interest rate rt,

φHW (u, rt, t, T ) = EQ
t

(
e−

∫ T
t
rsds+iurT |Ft

)
= EQ

t

(
e−

∫ T
t
ψsds+iuψT e−

∫ T
t
r̃sds+iur̃T |Ft

)
= e−

∫ T
t
ψsds+iuψT φHW (u, r̃t, t, T ),

and see that process r̃t is affine. Hence according to [11] the discounted CF for the affine interest rate
model for u ∈ C is of the following form:

φHW (u, r̃t, τ) = EQt
(
e−

∫ T
t
r̃sds+iur̃T |Ft

)
= eA(u,τ)+B(u,τ)r̃t , (8)

with τ = T − t. The necessary boundary condition accompanying (8) is φHW (u, r̃t, 0) = eiur̃t , so that,
A(u, 0) = 0 and B(u, 0) = iu. The solutions for A(u, τ) and B(u, τ) are provided by the following lemma:

Lemma 2.2 (Coefficients for discounted CF for the Hull-White model). The functions A(u, τ) and
B(u, τ) in (8) are given by:

A(u, τ) =
η2

2λ3

(
λτ − 2

(
1− e−λτ

)
+

1
2
(
1− e−2λτ

))
− iu

η2

2λ2

(
1− e−λτ

)2
−1

2
u2 η

2

2λ
(
1− e−2λτ

)
,

B(u, τ) = iue−λτ − 1
λ

(
1− e−λτ

)
.

Proof. The proof can be found in Appendix A.1.

By simply taking u = 0, we obtain the risk-free pricing formula for a zero coupon bond P (t, T ):

φHW (0, rt, τ) = EQ
t

(
e−

∫ T
t
rsds · 1|Ft

)
= P (t, T ) = e−

∫ T
t
ψsds+A(0,τ)+B(0,τ)r̃t .

Moreover, we see that a zero coupon bond can be written as the product of a deterministic factor and
the bond price in an ordinary Vasiček model with zero mean, under the risk neutral measure Q. We
recall that process r̃t at time t = 0 is equal to 0, so

P (0, T ) = exp

(
−
∫ T

0

ψsds+A(0, T )

)
,

which gives

ψT = − ∂

∂T
logP (0, T ) +

∂

∂T
A(0, T ) = f(0, T ) +

η2

2λ2

(
1− e−λT

)2
,

where f(t, T ) is an instantaneous forward rate.
This result shows that ψT can be obtained from the initial forward curve, f(0, T ). The other time-

invariant parameters, λ and η, have to be estimated using market prices of, in particular, interest rate
caps. Now from Proposition 2.1 we have θt = 1

λ
∂
∂tψt + ψt which reads,

θt = f(0, t) +
1
λ

∂

∂t
f(0, t) +

η2

2λ2

(
1− e−2λt

)
.

Moreover, the CF, φHW (u, rt, τ), for the Hull-White model can be simply obtained by integration of ψs
over the interval [t, T ].
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2.3 Schöbel-Zhu-Hull-White hybrid model

In this section we derive an analytic pricing formula in (semi-)closed form for European call options under
the Schöbel-Zhu-Hull-White (SZHW) asset pricing model with a full matrix of correlations, defined by
(4). For the state vector Xt = [St, rt, σt]

T let us fix a probability space (Ω,F , P ) and a filtration
Fn = {Ft : t ≥ 0}, which satisfies the usual conditions. Furthermore, Xt is assumed to be Markovian
relative to Ft. The Schöbel-Zhu-Hull-White hybrid model can be expressed by the following 3D system
of SDEs  dSt = rtStdt+ σtStdW

S
t ,

drt = λ (θt − rt) dt+ ηdW r
t ,

dσt = −κ(σt − σ)dt+ γdW σ
t ,

(9)

with the parameters as in equations (1), (2), (3), and p = 1.
By extending the space vector (as in [8]) with another stochastic process, defined by vt := σ2

t , and
choosing xt = logSt, we obtain the following 4D system of SDEs,

dxt =
(
r̃t + ψt − 1

2vt
)
dt+ σtdW

S
t

dr̃t = −λr̃tdt+ ηdW r
t

dvt =
(
−2vtκ+ 2κσtσ + γ2

)
dt+ 2σtγdWσ

t

dσt = −κ(σt − σ)dt+ γdW σ
t ,

(10)

where we also used rt = r̃t + ψt, as in Subsection 2.2. Note that θt is now included in ψt. We see that
model (10) is indeed affine in the state vector Xt = [xt, r̃t, vt, σt]

T . By the extension of the vector space
we have obtained an affine model which enables us to apply the results from [11]. In order to simplify
the calculations, we introduce a variable xt := x̃t + Ψt where Ψt =

∫ t
0
ψsds and

dx̃t = (r̃t −
1
2
vt)dt+ σtdW

S
t .

According [11] the discounted CF for u ∈ C4 is of the following form,

φSZHW (u,Xt, t, T ) = EQ
t

(
e−

∫ T
t
rsdseiu

T XT |Ft
)

(11)

= e−
∫ T

t
ψsds+iu

T [ΨT ,ψT ,0,0]
T

EQ
t

(
e−

∫ T
t
r̃sds+iu

T X∗
T |Ft

)
(12)

= e−
∫ T

t
ψsds+iu

T [ΨT ,ψT ,0,0]
T

eA(u,τ)+BT (u,τ)X∗
t (13)

where X∗t = [x̃t, r̃t, vt, σt]T and B(u, τ) = [Bx(u, τ), Br(u, τ), Bv(u, τ), Bσ(u, τ)]
T . Now we set u =

[u, 0, 0, 0]T , so that at time T we obtain the obvious boundary condition:

φSZHW (u,X∗T , T, T ) = EQ
T

(
eiu

T X∗(T )|FT
)

= eiu
T X∗

T = eiux̃T ,

(as the price at time T is known deterministically). This boundary condition for τ = 0 gives Bx(u, 0) =
iu, A(u, 0) = 0, Br(u, 0) = 0, Bσ(u, 0) = 0, Bv(u, 0) = 0. The following lemmas define the ODEs, from
(5) and (6), and detail their solution.

Lemma 2.3 (Schöbel-Zhu-Hull-White ODEs). The functions A(u, τ), Bx(u, τ), Bσ(u, τ), Bv(u, τ),
Br(u, τ), u ∈ R, in (13) satisfy the following system of ODEs:

d

dτ
Bx = 0, (14)

d

dτ
Br = 1 +Bx − λBr, (15)

d

dτ
Bv = −1

2
Bx − 2κBv +

1
2
(
B2
x + 4γρx,vBxBv + 4γ2B2

v

)
, (16)

d

dτ
Bσ = 2κσBv − κBσ +

1
2
(
2ηρx,rBxBr + 2γρx,σBxBσ + 4ηγρr,vBrBv + 4γ2BvBσ

)
, (17)

d

dτ
A = Bvγ

2 +Bσκσ +
1
2
B2
rη

2 +
1
2
B2
σγ

2 +BσBrηγρr,σ. (18)
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Proof. The proof can be found in Appendix A.2.

Lemma 2.4. The solution to the system of ODEs, specified by (14), (15), (16), (17) and (18) is given
by:

Bx(u, τ) = iu,

Br(u, τ) = (1 + iu)λ−1
(
1− e−λτ

)
,

Bv(u, τ) =
β −D

2θ

(
1− e−τD

1− e−τDG

)
,

where β = (κ− ρx,vγui), D =
√
β2 − 4αγ, θ = 2γ2 with α = − 1

2u(i+ u), and G = β−D
β+D . Furthermore,

Bσ(u, τ) =

(
e

D
2 τ

eτD −G

)(
16κσb sinh2

(
τD
4

)
D

+
ηρx,riu(1 + iu)

λ
F1(u, τ) +

2ηγρr,v(1 + iu)b
λ

F2(u, τ)

)
,

with

F1(u, τ) =
2
D

(e
τD
2 − 1) +

2G
D

(e−
τD
2 − 1)−

2
(
e

τ
2 (D−2λ) − 1

)
D − 2λ

+
2G
(
1− e−

τ
2 (D+2λ)

)
D + 2λ

,

F2(u, τ) = − 4
D

+
2

D − 2λ
+

2
D + 2λ

+
(
e−

1
2 τ(D+2λ)

)(2eτλ(1 + eDτ )
D

− 2eDτ

D − 2λ
− 2
D + 2λ

)
,

and

A(u, τ) =
(β −D)s− 2 log

(
Ge−Ds−1
G−1

)
4γ2

− (iu+ 1)2(3 + e−2τλ − 4e−τλ − 2τλ)
2λ3

+ F3(u, τ),

with

F3(u, τ) =
∫ τ

0

Bσ(u, s)
(
κσ̄ +

1
2
γ2Bσ(u, s) + ηρr,σγBr(u, s)

)
ds. (19)

Proof. The proof is presented in Appendix A.3.
A closed form expression for the CF of the SZHW model with zero correlation between the equity

and interest rate and between the interest rate and volatility processes is presented in Appendix A.4.

Now, since we have found expressions for the coefficients A(u, τ) and BT (u, τ) we return to equation
(11) and derive a representation in which the term structure is included. It is known that the price of a
zero coupon bond can be obtained from the characteristic function by taking u = [0, 0, 0, 0]T . So,

φSZHW (0,Xt, τ) = exp

(
−
∫ T

t

ψsds

)
φSZHW (0,X∗t , τ)

= exp

(
−
∫ T

t

ψsds

)
exp (A(0, τ) +Bx(0, τ)xt +Br(0, τ)r̃t +Bv(0, τ)vt +Bσ(0, τ)σt) .

Since r̃0 = 0 we find,

P (0, T ) = exp

(
−
∫ T

0

ψsds

)
exp (A(0, τ) +Bx(0, τ)x0 +Bv(0, τ)v0 +Bσ(0, τ)σ0),

with boundary conditions Bx(0, T ) = 0, Bv(0, T ) = 0, Bσ(0, T ) = 0 and

A(0, T ) =
1
2
η2

∫ T

0

Br(0, s)2ds =
η2

2λ3

(
1
2

+ Tλ+ 2e−λT − 1
2
e−2λT

)
.

We thus find,

P (0, T ) = exp

(
−
∫ T

0

ψsds+A(0, T )

)
.

By combining the results from the previous lemmas, we can prove the following lemma.
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Lemma 2.5. In the Schöbel-Zhu-Hull-White model, the discounted characteristic function, φSZHW (u,Xt, t, T )
for logST , is given by

φSZHW (u,Xt, t, T ) = exp
(
Ã(u, τ) +Bx(u, τ)xt +Br(u, τ)rt +Bv(u, τ)vt +Bσ(u, τ)σt

)
,

where Bx, Br, Bv, Bσ are given in Lemma 2.4, and

Ã(u, τ) = −
∫ T

t

ψsds+ iu

∫ T

t

ψsds+A(u, τ) = Θ(u, τ) +A(u, τ), (20)

with

Θ(u, τ) = (1− iu) log
(
P (0, T )
P (0, t)

)
+ (1− iu)

η2

2λ2

(
(T − t) +

2
λ

(
e−λT − e−λt

)
− 1

2λ
(
e−2λT − e−2λt

))
.

(21)

Proof. The proof is straightforward from the definition of the discounted CF.

2.3.1 Numerical Test

Lemma 2.4 shows that most of the terms for the SZHW process can be obtained analytically, except
the F3-term (19), which requires numerical integration of the hyper-geometric function 2F1 [25]. There
are several ways to solve this integral. The simplest being the application of a basic integration routine.
In Figure 1 (left-side picture) the numerical solutions obtained with the composite trapezoidal rule for
N = 100 and N = 1000 points are compared. The parameters chosen are:

S0 = 1, λ = 0.04, κ = 0.5, η = 0.04, γ = 0.01, ρx,v = −0.1, ρx,r = −0.2, ρr,v = 0.4, r0 = 0.05, v0 = 0.05.
(22)

It is shown that the use of approximately 100 integration points gives a fully satisfactory accuracy for
our purposes. Figure 1 (right-side picture) shows that for higher values of τ in (19) the error increases.
However the relative error remains acceptable.

Figure 1: Left: Numerical solution of <(F3(u, τ)) with the trapezoidal rule, comparing N = 100 with
N = 1000 points. The lines are varying with respect to parameter τ in (19) ∈ {1, . . . , 30}, other
parameters as in (22). Right: The absolute difference between <(F3(u, τ)) and the “exact” solution.

Furthermore, for the same parameter set and fixing τ = 20, Figure 2 compares for a different number
of integration points, N , the convergence of the real part of F3(u, τ) to the “exact” solution (with 220

points). It is shown that 32 points already give an accurate numerical approximation. Table 1 compares,
for τ = 10, the accuracy for different values of N when evaluating integral (19) for a fixed u-vector
consisting of 200 points, with the CPU time needed to compute the integral included. So, for each

9



Figure 2: The influence of the number of integration points on the real part of the integral F3(u, τ) for
τ = 20 years.

element of u the numerical integration is performed. The squared sum error (SSE) in the Table 1 is
defined as follows

SSE =
∑
u

{
< (F3(u, τ))−<

(
F̃3(u, τ)

)}2

,

where F3(u, τ) represents the solution obtained with N = 220 grid points, and F̃3(u, τ) is the approxi-
mation. A linear computational complexity is observed for the numerical integration, as expected.

Table 1: Trapezoidal integration errors of F3(u, τ) with τ = 10 for a whole set of u-values, consisting of
200 points.

n (N = 2n) 4 5 6 7 8 9
SSE 2.2× 101 7.8× 10−1 4.1× 10−2 2.5× 10−3 1.5× 10−4 9.2× 10−6

CPU time [s] 0.07 0.15 0.25 0.40 0.66 1.12

2.4 Heston-Hull-White hybrid model

It was stated, see, for example, [26], that it is not possible to formulate a so-called Heston-Hull-White
hybrid process, which belongs to the AJD class, with a full matrix of correlations. For this, restrictions
regarding the parameters or the correlation structure have to be introduced. One possible restriction
is to assume that the interest rate process, rt, evolves independently of the stock price, St, and the
volatility process, σt, while the other correlation is not equal to zero, i.e., dWS

t dW
r
t = 0, dW σ

t dW
r
t = 0

and dWS
t dW

σ
t = ρdt. A second option is to solve the problem under the assumption that dW σ

t dW
r
t = 0

and additionally that γ2/4 = κσ [26]. It may, however, be difficult to apply this latter model in practice,
as the economical meaning of the parameter relationship is difficult to interpret. We therefore compare
the SZHW model with a HHW model in which two of the correlations are set to zero.

Lemma 2.6 (HHW model with zero correlation). The Heston-Hull-White model defined by (1) with
p = 1

2 , interest rate process (2), stochastic volatility (3), and correlations defined by (4) with ρr,s = 0
and ρr,σ = 0 has the following discounted characteristic function:

φHHW (u,Xt, t, T ) = φH(u,Xt, t, T ) exp (Br(u, τ)rt +AHW (u, τ)) ,

10



where

φH(u,Xt, t, T ) = exp (AH(u, τ) + iuxt +Bσ(u, τ)σt), (23)

AH(u, τ) =
κθ

γ2

(
(β −D)τ − 2 log

(
1−Ge−Dτ

1−G

))
, (24)

Bσ(u, τ) =
β −D

γ2

(
1− e−τD

1−Ge−τD

)
, (25)

Br(u, τ) = (1 + iu)λ−1
(
1− e−λτ

)
, (26)

AHW (u, τ) = −1
2

(
η2τ

λ2
(1 + iu)− η2Br(u, τ)

)
+ Θ(u, τ), (27)

with G = β−D
β+D , β = (κ− ρx,σγui), D =

√
β2 − 4αγ, α = − 1

2u(i+ u), and Θ(u, τ) defined in (21).

Proof. The proof is analogous to the proof of Lemma 2.4.

The next lemma describes an analytic relation between the Heston model and the Schöbel-Zhu-Hull-
White hybrid model.

Lemma 2.7. The relation between the Schöbel-Zhu-Hull-White model as defined in (9) and the plain
Heston Model can be expressed as follows,

φSZHW (u,X0, τ) = exp

Bσ(u, τ)σ0 +Br(u, τ)r0 + Ã(u, τ)−
(β −D)τ − 2 log

(
Ge−Dτ−1
G−1

)
4γ2

G(u, τ)

= φH(u, [x0, σ
2
0 ]T , κH , γH , σH , τ)G(u, τ),

with Ã from (20), Bσ, Br as in Lemma 2.4, and κH = 2κ, γH = 2γ, σH = γ2/2κ and

G(u, τ) = exp

Bx(u, τ)x0 +Bv(u, τ)v0 +
(β −D)τ − 2 log

(
Ge−Dτ−1
G−1

)
4γ2

,
with Bx and Bv from Lemma 2.4.

Proof. The proof is straightforward by the definition of the characteristic functions.

3 Calibration and pricing under the hybrid model

For exotic financial products that involve more than one asset class, the pricing engine would preferably
be based on a stochastic model which takes into account the interactions between the asset classes. It
is interesting to evaluate price differences between the classical models and the SZHW hybrid model
presented here. For this purpose we have introduced several hybrid products, treated in subsequent
subsections. The pricing is done using a Monte Carlo method.

Before we can price these products, however, we need to calibrate the models, i.e., to find the model
parameters so that the models recover the market prices of plain vanilla options well. This calibration
procedure relies heavily on the characteristic function derived in the previous section and the appendices.

Remark (Monte Carlo simulation and negative variance). For the pricing of financial derivatives, Monte
Carlo methods are commonly used tools, especially for products like hybrid derivatives for which a
closed-form pricing formula is not available.

Because of discretization techniques like the Euler-Maruyama or Milstein schemes (see, for example,
[31]) a Monte Carlo technique may sometimes give a negative or imaginary variance in the SV models.
This is not acceptable. The basic Euler-Maruyama discretization of the general SV model (3) for a given
time step ∆t reads,

σt+∆t = (1− κ∆t)σt + κσ∆t + γσ1−p
t

√
∆tZ.
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with Z being a standard normal random variable with cumulative distribution function Φ. For a given
σt > 0, the probability of σt+∆t

being negative equals to

Prob (σt+∆t < 0) = Φ
(

(κ∆t − 1)σt − κσ∆t

γσ1−p
t

√
∆t

)
. (28)

Formula (28) shows that for ∆t → 0 this probability goes to zero, but even a small time step may
cause the variance to become negative. In the literature, improved techniques to perform a simulation
of the AJD processes have been developed, see [6], [2]. An analysis of the possible ways to overcome
the negative variance problem can be found in [24]. We have chosen the so-called absorption scheme,
from [24], where at each iteration step max(σt+∆t , 0) is taken.

3.1 Calibration of the models

In this section we examine the extended stochastic volatility models and compare their performance to
the Heston model. We use financial market data to estimate the model parameters and discuss the effect
of different models on the implied market volatility. For this purpose we have chosen the CAC40 call
option implied volatilities of 17.10.2007. Implied volatilities were calculated from settlement prices using
BS option pricing formula for the Heston model, the HHW model (as in Lemma 2.6) and the SZHW
model.

We perform the calibration of the models in two stages. Firstly, we calibrate the parameters for
the interest rate process by using caplets and swaptions. Secondly, the remaining parameters, for the
underlying asset, the volatility and the correlations, are calibrated to the plain vanilla option market
prices. All the models are calibrated with an initial variance v0 = 0.02702 obtained from the calibration
of the Heston model. Tables 2 and 3 present the estimated parameters and associated squared sum errors
(SSE) defines as,

SSE =
n∑
i=1

m∑
j=1

(
C (Ti,Kj)− Ĉ (Ti, Tj)

)2

,

where C(Ti,Ki) and Ĉ (Ti, Tj) are the market and the model prices, respectively, Ti is the ith time to
maturity and Kj is the jth strike.

The tables show that all the models are calibrated reasonably well. The calibration error is the largest
for the HHW model. We cannot observe any similarities in the parameters obtained for the different
models.

Table 2: Parameters estimated from the market data (model of Hull-White), r0 is assumed to be the
earliest forward rate.

parameters r0 λ η SSE
Hull-White 0.01733 1.12 0.001 0.001

Table 3: Parameters in the stochastic volatility models (1), (2) and (3), estimated from the market data.
parameters r κ σ γ ρx,r ρx,σ ρr,σ SSE

Heston 0.0327 0.0125 0.5999 0.1248 - -0.6461 - 1.2× 10−6

Heston-H-W - 0.7463 0.0311 0.0811 0 -0.1247 0 5.0× 10−2

Schöbel-Zhu-H-W - 0.0063 0.6446 0.0124 -0.3864 -0.6714 0.177 9.0× 10−4

Figure 3 indicates how well the different models replicate the market smiles and skews. The pattern
of implied volatilities shows that for short maturities the fit of the SZHW model outperforms the Heston
model, however, for long maturities the latter one gives a slightly better fit. The results also show that
the HHW model gives a higher implied volatility for short maturities and high strikes, whereas it is lower
for long maturities than the implied volatilities generated by the other models.
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Figure 3: Implied market volatilities compared from settlement prices for the Heston’s, the HHW and
the SZHW model.

3.2 Variance swaps and cliquet options

Cliquet options are very popular in the world of equity derivatives [37]. The contracts are constructed
to give a protection against downside risk combined with a significant upside potential. A cliquet option
can be interpreted as a series of forward-starting European options, for which the total premium is
determined in advance. The payout on each option can either be paid at the final maturity date, or
at the end of a reset period. One of the cliquet type structures is a Globally Floored Cliquet with the
following payoff:

Π(t0 = 0, T ) = EQ

(
e−

∫ T
0 rsds max

(
M∑
i=1

min (Ati ,LocalCap) ,MinCoupon

)
|F0

)
. (29)

Here Ati = max
(
LocalFloor, Sti

Sti−1
− 1
)
, ti = i TM , with maturity T . M indicates the number of reset

periods. We notice that the term Ati can be recognized as an ATM forward starting option, which
is driven by a forward skew. It has been shown in [15] that the cliquet structures are significantly
underpriced under a local volatility model for which forward skews are basically too flat.

Since the forward prices are not known a-priori, we derive the values from the so-called forward
characteristic function. If we define XT as a state vector at time T then the forward characteristic
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function can be found as

φF (u,XT , t
∗, T ) = EQ

(
e−

∫ T
0 rsdseiu

T (XT−Xt∗ )|F0

)
= EQ

(
e−

∫ t∗
0 rsds−iuT Xt∗φ (u,XT , t

∗, T ) |F0

)
= eA(u,t∗,T )EQ

(
e−

∫ t∗
0 rsds−iuT Xt∗+BT (u,t∗,T )Xt∗ |F0

)
.

In the case of the plain Heston model, for u = [u, 0]T , the forward characteristic function reads:

φFH(u,XT , t
∗, T ) = eA(u,τ∗)EQ

(
eBσ(u,τ∗)vt∗ |F0

)
, (30)

where τ∗ = T − t∗ and AH(u, τ∗), Bσ(u, τ∗) are the Heston functions from (24), (25). The expectation
under the risk neutral measure in (30) can be recognized as the Laplace transform of the transitional
probability density function of a Cox-Ingersoll-Ross model [9], which is given by the following lemma:

Lemma 3.1 (Laplace transform of for Heston volatility process). The Laplace transform of the equation
given by (30) for Heston stochastic volatility process has the following form

EQ
(
eB(u,t∗,T )vt∗ |F0

)
=

(
1

1− η2

2κ (1− e−κτ )B(u, t∗, T )

) 2κθ
η2

exp

(
eκτB(u, t∗, T )σ0

1− η2

2κ (1− e−κτ )B(u, t∗, T )

)
.

Proof. A detailed proof can be found in [32] or [1].

Figure 4 shows the performance of all three models applied to the pricing of the cliquet option
defined in (29). We choose here T = 3, LocalCap = 0.01, LocalFloor = −0.01 and M = 36 (the contract
measures the monthly performance). For large values of the MinCoupon the values of the hybrid under
the three models are identical, which is expected since a large MinCoupon dominates the max operator
in (29) and the expectation becomes simply the price of a zero coupon bond at time t = 0 multiplied by
the deterministic MinCoupon. We also see that the Heston model generates lower prices for small values
of the MinCoupon.
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Figure 4: Pricing a cliquet product under different models with the underlying index CAC40. Left: the
price of a globally floored cliquet as a function of MinCoupon given by (29) for T = 3 years and M = 36.
Right: The absolute difference between two models decreases with MinCoupon.
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3.3 A diversification product

Other hybrid products that an investor may use in strategic trading are so-called diversification products.
These are based on sets of assets with different expected returns and risk levels. Proper construction
of such products may give reduced risk compared to any single asset, and an expected return that is
greater than that of the least risky asset [19]. A simple example is a portfolio with two assets: a stock
with a high risk and high return and a bond with a low risk and low return. If one introduces an equity
component in a pure bond portfolio the expected return will increase. However, because of a non-perfect
correlation between these two assets also a risk reduction is expected. If the percentage of the equity in
the portfolio is increased, it eventually starts to dominate the structure and the risk may increase with
a higher impact for a low or negative correlation [19]. An example is a financial product, defined in the
following way:

Π(t0 = 0, T ) = EQ
(
e−

∫ T
0 rsds max

(
0, ` · ST

S0
+ (1− `) · BT

B0

)
|F0

)
where ST is the underlying asset at time T , BT is a bond, ` represents a percentage ratio. Figure 5
shows the pricing results for the models discussed. The product pricing is performed with the Monte
Carlo method and the parameters calibrated from the market data. For ` ∈ [0, 1] the max disappears
from the payoff and only a sum of discounted expectations remains. The figure shows that the Heston
model generates a significantly higher price, whereas the HHW and SZHW prices are relatively close.
The absolute difference between the models increases with percentage `.
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Figure 5: Pricing of a diversification hybrid product under different models. Left: The Heston model
generates a significantly higher price for increasing l = ` · 100%, , whereas the HHW and SZHW prices
are relatively close. Right: The absolute difference between two models increases with percentage l.

3.4 Strategic investment hybrid

Suppose that an investor believes that if the price of an asset, S1
t , like oil, goes up, then the equity

markets under-perform relative to the interest rate yields, whereas, if S1
t drops down, the equity markets

over-perform relative to the interest rate [19]. If the prices of S1
t are high, the market may expect an

increase of the inflation and hence of the interest rates and low S1
t prices could have the opposite effect.

In order to include such a feature in a hybrid product we define a contract in which an investor is allowed
to buy a weighted performance coupon depending on the performance of another underlying. Such a
product can be defined as follows,

Π(t0 = 0, T ) = EQ
(
e−

∫ T
0 rsdsVT |F0

)
with (31)

VT = max
(

0, ` · L0

LT
+ (1− `)

ST
S0

)
1S1

T>S
1
0

+ max
(

0, (1− `)
L0

LT
+ ` · ST

S0

)
1S1

T<S
1
0
,
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where 0 ≤ ` is a weighting factor related to a percentage, LT =
∑M
i=1 P (T, ti) with t1 = T is the T -value

of projected liabilities for certain time tM , with ` > 1− `.
Figure 6 shows prices obtained from Monte Carlo simulation of the contract at time t0 = 0 for

maturity T = t1 = 3 and time horizon tM = 12 with one year spacing. Since we did not model the
second underlying process, S1

T , we assume that S1
T > S1

0 . We see that for ` ∈ [0, 1] the max over the
sum of performances disappears and the hybrid can be relatively easily priced, i.e., separately for both
underlyings (L0/LT and ST /S0). The difference between the stochastic models becomes pronounced
for ` > 1 since then the correlation plays a more important role. The absolute difference between the
different models for ` < 3 remains below 5× 10−3, whereas it more significant for high `. The right-side
figure shows that for large ` the prices of HHW and SZHW are relatively close, whereas the Heston
model gives higher prices.
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Figure 6: Left: Discounted payoffs of the strategic investment hybrid with the Heston, HHW and SZHW
models in dependence of l = ` · 100%. Right: Price difference between two different models.

4 Conclusions

In this paper we have presented an extension of the Schöbel-Zhu stochastic volatility model with a Hull-
White interest rate process and evaluated it by means of pricing structured hybrid derivative products.
The stochastic differential equations are driven by mean-reverting processes. The aim was to define a
hybrid stochastic process which belongs to the class of affine jump-diffusion models, as this may lead
to efficient calibration of the model. We have shown that the so-called Schöbel-Zhu-Hull-White model
belongs to the category of AJD processes. No restrictions regarding the choice of correlation structure
between the different Wiener processes appearing need to be made. Due to the resulting semi-analytic
characteristic function we were able to calibrate the model in an efficient way by means of the Carr-Madan
pricing technique.

It has been shown by numerical experiments for different hybrid products that under the same plain
vanilla prices the extended SV models give different prices than the Heston model.

The present hybrid model cannot model a skew in the interest rates, which will be part of our future
work.
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(eds.), Statistical tools for finance and insurance, 161 – 182, Springer, Berlin, 2005.

[37] P. Wilmott, Cliquet options and volatility models. WILMOTT magazine, 78-83, Dec. 2002.

A Proofs of various lemmas

In this appendix we have placed the proofs of the various lemmas.

A.1 Proof of Lemma 2.2

Proof.
We depart from φHW (u, xt, τ) = exp (A(u, τ) +B(u, τ)xt) (withB a scalar function) and find φHW (u, xt, 0) =
exp (iuxt), since A(u, 0) = 0 and B(u, 0) = iu. According to (5) we have to solve the following system
of ODEs 

d

dτ
A = −r0 +BTa0 +

1
2
BT c0B,

d

dτ
B = −r1 + aT1 B +

1
2
BT c1B,
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with dxt = −λxtdt + ηdWQ
t , rt = xt, and initial condition x0 = 0. Now, we recognize that r0 = 0,

r1 = 1, a0 = 0, a1 = −λ, σ(xt)σ(xt)T = η2, c0 = η2 and c1 = 0. Therefore, the system of ODEs reads
d

dτ
A =

1
2
B2η2

d

dτ
B = −λB − 1

where the second equation equals d
(
Beλτ

)
= −eλτdτ , with solution:

B(u, τ) = iue−λτ − 1
λ

(
1− e−λτ

)
.

The first equation gives,

dA =
(
−η

2u2

2
e−2λτ − 2iu

η2

2λ
(
e−λτ − e−2λτ

)
+

η2

2λ2

(
1− e−λτ

)2)
dτ,

with solution,

A(u, τ) =
η2

2λ3

(
λτ − 2

(
1− e−λτ

)
+

1
2
(
1− e−2λτ

))
− iu

η2

2λ2

(
1− e−λτ

)2
−1

2
u2 η

2

2λ
(
1− e−2λτ

)
.

This concludes the proof.

A.2 Proof of Lemma 2.3

Proof.
We need to find the solution of:

d

dτ
A(u, τ) = −r0 + BTa0 +

1
2
BT c0B,

d

dτ
B(u, τ) = −r1 + aT1 B +

1
2
BT c1B.

For the space vector X∗t = [x̃t, r̃t, vt, σt]
T we have

a0 = [0, 0, γ2, κσ]T , a1 =


0 1 − 1

2 0
0 −λ 0 0
0 0 −2κ 2κσ
0 0 0 −κ

 , r0 = 0, r1 =


0
1
0
0

 ,
and

Σ := σ(Xt)σ(Xt)T =


v σηρx,r 2vγρx,v σγρx,σ

η2 2ησγρr,v ηγρr,σ
4vγ2 2σγ2

γ2

 .
This leads to

c0 =


0 0 0 0

η2 0 ηγρr,σ
0 0

γ2

 , c1 =


(0, 0, 1, 0) (0, 0, 0, ηρx,r) (0, 0, 2γρx,v) (0, 0, 0, γρx,σ)

(0, 0, 0, 0) (0, 0, 0, 2ηγρr,v) (0, 0, 0, 0)
(0, 0, 4γ2, 0) (0, 0, 0, 2γ2)

(0, 0, 0, 0)

 .
With

1
2
BT c1B =

1
2


∑4
i=1

∑4
j=1Bi[s1(1)]i,jBj∑4

i=1

∑4
j=1Bi[s1(2)]i,jBj∑4

i=1

∑4
j=1Bi[s1(3)]i,jBj∑4

i=1

∑4
j=1Bi[s1(4)]i,jBj

 ,

19



(with i = 1, . . . , 4 representing x, v, r, σ) we obtain the following system

dA

dτ
= [Bx, Br, Bv, Bσ]


0
0
γ2

κσ

+
1
2
[Bx, Br, Bv, Bσ]


0 0 0 0

η2 0 ηγρr,σ
0 0

γ2



Bx
Br
Bv
Bσ

 ,

dB
dτ

=


dBx

dτ

dBr

dτ

dBv

dτ

dBσ

dτ

 =


0
1
0
0

+


0 0 0 0
1 −λ 0 0
− 1

2 0 −2κ 0
0 0 2κσ −κ



Bx
Br
Bv
Bσ

+
1
2


0
0
S1

S2

 ,

where

S1 = B2
x + 4γρx,vBxBv + 4γ2B2

v ,

S2 = 2ηρx,rBxBr + 2γρx,σBxBσ + 4ηγρr,vBrBv + 4γ2BvBσ.

So, we find the following system:

d

dτ
Bx = 0,

d

dτ
Br = 1 +Bx − λBr,

d

dτ
Bv = −1

2
Bx − 2κBv +

1
2
S1,

d

dτ
Bσ = 2κσBv − κBσ +

1
2
S2,

d

dτ
A = Bvγ

2 +Bσκσ +
1
2
B2
rη

2 +
1
2
B2
σγ

2 +BσBrηγρr,σ.

A.3 Proof of Lemma 2.4

Proof.
In the 1D case, i.e., u = [u, 0, 0, 0]T we start by solving the ODE for dBr,

d

dτ
Br + λBr = iu+ 1.

Standard calculations give ∫ τ

0

d
(
eλsBr(u, s)

)
= (1 + iu)

∫ τ

0

eλsds, i.e.,

eλτBr(u, τ)− e0Br(u, 0) = (1 + iu)
(

1
λ
eλτ − 1

λ

)
.

Using the boundary condition, Br(u, 0) = 0, gives, Br(u, τ) = (1 + iu)λ−1
(
1− e−λτ

)
.

The ODE for Bv now reads (using Bx = iu):

d

dτ
Bv = −1

2
u(i+ u) + 2γ2B2

v − 2Bv(κ− γρx,viu).

In order to simplify this equation we introduce the variables α = − 1
2u(i + u), β = 2(κ − γρx,viu) and

θ = 2γ2. The ODE can then be presented in the following form:

d

dτ
Bv = α− βBv + θB2

v . (32)
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Following the calculations for the Heston model the solution of (32) reads,

Bv(u, τ) =
β −D

2θ

(
1− e−τD

1− e−τD
(
b
a

)) ,
where a = β +D/2θ, b = β −D/2θ, and D =

√
β2 − 4αθ. This solution can be simplified to

Bv(u, τ) = b

(
1− e−τD

1− e−τDG

)
,

with G = (β −D)/(β +D).
Next, we solve the ODE for Bσ,

d

dτ
Bσ = 2κσBv + ηρx,rBxBr + 2ηγρr,vBrBv +

(
γρx,σBx + 2γ2Bv − κ

)
Bσ.

We introduce the following functions,

ζ(τ) = 2κσBv + ηρx,rBxBr + 2ηγρr,vBrBv,
ξ(τ) = γρx,σBx + 2γ2Bv − κ.

This leads to the following ODE
d

dτ
Bσ − ξ(τ)Bσ = ζ(τ),

whose solution follows from,

d

dτ

(
e−

∫ τ
0 ξ(s)dsBσ

)
= ζ(τ) exp

(
−
∫ τ

0

ξ(s)ds
)
,

or

exp
(
−
∫ τ

0

ξ(s)ds
)
Bσ =

∫ τ

0

ζ(s) exp
(
−
∫ s

0

ξ(k)dk
)
ds.

So, finally, we need to calculate

Bσ(u, τ) = exp
(∫ τ

0

ξ(s)ds
)∫ τ

0

ζ(s) exp
(
−
∫ s

0

ξ(k)dk
)
ds+ Const.

Bσ(u, 0) = 0

For this, we start with the integral for ξ(k):∫ s

0

ξ(k)dk =
∫ s

0

(
γρx,σiu+ 2γ2Bv − κ

)
dk

= γρx,σius− κs+ 2γ2b

∫ s

0

(
1− e−kD

1− e−kDG

)
dk

= γρx,σius− κs+ 2γ2b

(
Ds− (G− 1) log(1−G) + (G− 1) log(eDs −G)

DG

)
= (γρx,σiu− κ) s+

(β −D)Ds
2GD

+
(β −D)(G− 1) log( e

sD−G
1−G )

2GD

=
(
γρx,σiu− κ+

β −D

2G

)
s+

(β −D)(G− 1)
2GD

log(
esD −G

1−G
)

= C1s+ C2 log(
esD −G

1−G
)

where C1 =
(
γρx,σiu− κ+ β−D

2G

)
, C2 = (β−D)(G−1)

2GD , β = 2(κ − γρx,viu), D =
√
β2 − 4αθ and

G = β−D
β+D . After substitution of these quantities, we find that C1 = D/2 and C2 = −1.
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Next, we need to calculate the exponent of the integral of ξ:

exp
(∫ s

0

ξ(k)dk
)

= exp
(
C1s+ C2 log(

esD −G

1−G
)
)

= exp
(
D

2
s

)(
1−G

esD −G

)
,

and we can include ζ in the integral,∫ τ

0

ζ(s) exp
(
−
∫ s

0

ξ(k)dk
)
ds =

∫ τ

0

(2κσBv + ηρx,rBxBr + 2ηγρr,vBrBv) exp
(
−D

2
s

)(
esD −G

1−G

)
ds.

This integral is split into three parts. The first part can be solved analytically,∫ τ

0

2κσBve−
D
2 s

(
esD −G

1−G

)
ds = 2κσb

∫ τ

0

(
1− e−sD

1− e−sDG

)
e−

D
2 s

(
esD −G

1−G

)
ds

=
2κσb
1−G

∫ τ

0

(
1− e−sD

1− e−sDG

)
e−

D
2 s
(
esD −G

)
ds

=
2κσb
1−G

∫ τ

0

e−
sD
2
(
esD − 1

)
ds

=
16κσb sinh2

(
τD
4

)
(1−G)D

.

The second part can be solved analytically as well,∫ τ

0

ηρx,rBxBre
−D

2 s

(
esD −G

1−G

)
ds =

∫ τ

0

ηρx,riu(1 + iu)λ−1(1− e−λs)e−
Ds
2

(
esD −G

1−G

)
ds

=
ηρx,riu(1 + iu)

(1−G)λ

∫ τ

0

e−
Ds
2 (1− e−λs)(esD −G)ds

=
ηρx,riu(1 + iu)

(1−G)λ
A1(u, τ).

where

A1(u, τ) =
2
D

(e
τD
2 − 1) +

2G
D

(e−
τD
2 − 1)−

2
(
e

τ
2 (D−2λ) − 1

)
D − 2λ

+
2G
(
1− e−

τ
2 (D+2λ)

)
D + 2λ

, (33)

and the third part reads,∫ τ

0

2ηγρr,vBrBve−
D
2 s

(
esD −G

1−G

)
ds =

2ηγρr,v
1−G

∫ τ

0

BrBve
−D

2 s
(
esD −G

)
ds

=
2ηγρr,v(1 + iu)b

(1−G)λ

∫ τ

0

(1− e−λs)
(

1− e−sD

1− e−sDG

)
e−

D
2 s
(
esD −G

)
ds

=
2ηγρr,v(1 + iu)b

(1−G)λ

∫ τ

0

e−
1
2 s(D+2λ)(eDs − 1)(esλ − 1)ds

=
2ηγρr,v(1 + iu)b

(1−G)λ
(B1(u, τ) +B2(u, τ)),

where

B1(u, τ) = − 4
D

+
2

D − 2λ
+

2
D + 2λ

, (34)

B2(u, τ) =
(
e−

1
2 τ(D+2λ)

)(2eτλ(1 + eDτ )
D

− 2eDτ

D − 2λ
− 2
D + 2λ

)
. (35)

So, finally, we have:

Bσ(u, τ) = exp
(∫ τ

0

ξ(s)ds
)∫ τ

0

ζ(s) exp
(
−
∫ s

0

ξ(k)dk
)
ds

=

(
e

D
2 τ

eτD −G

)(
16κσb sinh2

(
τD
4

)
D

+
ηρx,riu(1 + iu)

λ
A1(u, τ) +

2ηγρr,v(1 + iu)b
λ

(B1(u, τ) +B2(u, τ))

)
,
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with A1(u, τ) from (33), B1(u, τ) from (34) and B2(u, τ) from (35).
Now, we solve the ODE for A(u, τ):

d

dτ
A = Bvγ

2 +Bσκσ +
1
2
B2
rη

2 +
1
2
B2
σγ

2 +BσBrηγρr,σ,

with solution,

A(u, τ)−A(u, 0) = γ2

∫ τ

0

Bvds+ κσ

∫ τ

0

Bσds+
1
2
η2

∫ τ

0

B2
rds+

1
2
γ2

∫ τ

0

B2
σds+ ηγρr,σ

∫ τ

0

BσBrds.

Or,

A(u, τ) =
∫ τ

0

(
γ2Bv +

1
2
η2B2

r

)
ds︸ ︷︷ ︸

A2(u,τ)

+
∫ τ

0

Bσ

(
κσ̄ +

1
2
γ2Bσ + ηρr,σγBr

)
ds︸ ︷︷ ︸

A3(u,τ)

(36)

In order to find A(u, τ) we have to evaluate the integrals A2 and A3. Integral A3 involves a hyper-
geometric function (called the 2F1 function or simply Gaussian function), which is computed numerically
here. For integral A2 we have two representations,

A2(u, τ) =
(β −D)s− 2 log

(
Ge−Ds−1
G−1

)
4γ2

−A4(u, τ), or

A2(u, τ) =
(β +D)s− 2 log

(
eDs−G
1−G

)
4γ2

−A4(u, τ), where

A4(u, τ) =
(iu+ 1)2(3 + e−2τλ − 4e−τλ − 2τλ)

2λ3
.

Since in A2(u, τ) a complex-valued logarithm appears, it should be treated with some care. It turns out
that the second formulation gives rise to discontinuities which may cause inaccuracies. According to [23],
an easy way to avoid any errors due to complex-valued discontinuities is to apply numerical integration.

We know that the price of a zero coupon bond can be obtained from the characteristic function,
φSZHW (u,Xt, t, T ), by setting u = [0, 0, 0, 0]T . So,

P (t, T ) = φ(0,Xt, τ)

= exp

(
−
∫ T

t

ψsds

)
exp (A(0, τ) +Bx(0, τ)xt +Br(0, τ)r̃t +Bv(0, τ)vt +Bσ(0, τ)σt).

Since r̃0 = 0, we have P (0, T ) = exp
(
−
∫ T
0
ψsds

)
exp (A(0, τ) +Bx(0, τ)x0 +Bv(0, τ)v0 +Bσ(0, τ)σ0)

and it is easy to check that Bx(0, T ) = 0, Bv(0, T ) = 0, Bσ(0, T ) = 0, and,

A(0, T ) =
1
2
η2

∫ T

0

Br(0, s)2ds

=
η2

2λ3

(
1
2

+ Tλ+ 2e−λT − 1
2
e−2λT

)
.

Therefore, P (0, T ) = exp
(
−
∫ T
0
ψsds+A(0, T )

)
, or, log (P (0, T )) = −

∫ T
0
ψsds+ A(0, T ), which finally

gives us:

ψT = − ∂

∂T
logP (0, T ) +

∂

∂T
A(0, T ) = f(0, T ) +

η2

2λ2

(
1− e−λT

)2
.

Since ψ0 = f(0, 0) ≡ r0, where r0 is the initial value of the interest rate process rt.
With u = [u, 0, 0, 0]T , we find:

φSZHW (u,Xt, t, T ) = exp
(
Ã(u, τ) +Bx(u, τ)xt +Br(u, τ)rt +Bv(u, τ)vt +Bσ(u, τ)σt

)
,
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with

Ã(u, τ) = −
∫ T

t

ψsds+ iu

∫ T

t

ψsds+A(u, τ)

= (iu− 1)
∫ T

t

(
f(0, s) +

η2

2λ2

(
1− e−λs

)2)
ds+A(u, τ)

= (1− iu)
∫ T

t

d (log(P (0, s))) + (1− iu)
η2

2λ2

∫ T

t

(
1− e−λs

)2
ds+A(u, τ)

= (1− iu) log
(
P (0, T )
P (0, t)

)
+ (1− iu)

η2

2λ2

(
(T − t) +

2
λ

(
e−λT − e−λt

)
− 1

2λ
(
e−2λT − e−2λt

))
+A(u, τ),

and A(u, τ) as in (36).
The discounted CF for the Schöbel-Zhu-Hull-White hybrid process is now determined, and reads,

φSZHW (u,X0, τ) = exp
(
Ã(u, τ) +Bx(u, τ)x0 +Br(u, τ)r0 +Bv(u, τ)v0 +Bσ(u, τ)σ0

)
,

where:

Bx(u, τ) = iu,

Br(u, τ) = (1 + iu)λ−1
(
1− e−λτ

)
,

Bv(u, τ) =
β −D

2θ

(
1− e−τD

1− e−τDG

)
,

Bσ(u, τ) =

(
e

D
2 τ

eτD −G

)(
16κσb sinh2

(
τD
4

)
D

+
ηρx,riu(1 + iu)

λ
F1(u, τ) +

2ηγρr,v(1 + iu)b
λ

F2(u, τ)

)
,

Ã(u, τ) = (1− iu)
(

log
(
P (0, T )
P (0, t)

)
+

η2

2λ2

(
(T − t) +

2
λ

(
e−λT − e−λt

)
− 1

2λ
(
e−2λT − e−2λt

)))
+A(u, τ),

and,

A(u, τ) =
(β −D)s− 2 log

(
Ge−Ds−1
G−1

)
4γ2

− (iu+ 1)2(3 + e−2τλ − 4e−τλ − 2τλ)
2λ3

+ F3(u, τ),

F1(u, τ) =
2
D

(e
τD
2 − 1) +

2G
D

(e−
τD
2 − 1)−

2
(
e

τ
2 (D−2λ) − 1

)
D − 2λ

+
2G
(
1− e−

τ
2 (D+2λ)

)
D + 2λ

,

F2(u, τ) = − 4
D

+
2

D − 2λ
+

2
D + 2λ

+
(
e−

1
2 τ(D+2λ)

)(2eτλ(1 + eDτ )
D

− 2eDτ

D − 2λ
− 2
D + 2λ

)
,

F3(u, τ) =
∫ τ

0

Bσ(u, s)
(
κσ̄ +

1
2
γ2Bσ + ηρr,σγBr

)
ds.

A.4 Exact solution for Schöbel-Zhu-Hull-White model for ρx,r = 0 and ρr,σ = 0

Here we present the closed form solution of the SZHW model with the correlations ρx,r = ρr,σ = 0.
Then, coefficient Bσ reads

Bσ(u, τ) =

(
e

D
2 τ

eτD −G

)(
16κσb sinh2

(
τD
4

)
D

)
.
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The integral (19) that we have to deal with to calculate coefficient A is of the following form:

F3(u, τ) =
∫ τ

0

Bσ

(
κσ̄ +

1
2
γ2Bσ

)
ds = κσ

∫ τ

0

Bσds+
1
2
γ2

∫ τ

0

B2
σds

=
−4κ2σ2b

GD2

(
Dτ + 4

√
G

(
Arctanh

(
1√
G

)
−Arctanh

(
e

τD
2

√
G

))
+ (1−G) log

(
1−G

eτD −G

))

−8γ2κ4σ4b2

D3G2

((
−1− 2

√
G+ 2G

3
2 +G2

)
log
(
1 + iG

1
4

)
+
(
−1 + 2

√
G− 2G

3
2 +G2

)
log
(
1 +G

1
4

))
−8γ2κ4σ4b2

D3G2

((√
G− 1

)3 (√
G+ 1

)
log
(
1−G

1
4

)
+
(√

G− 1
)(√

G+ 1
)3

log
(
1 + iG

1
4

)
+ 3G+G2

)
− 8γ2κ4σ4b2

D3G2(G− eDτ )

(
G
(
1− e

Dτ
2 + 6G− 4e

Dτ
2 G+G2

)
−DeDττ +DGτ

)
− 8γ2κ4σ4b2

D3G2(G− eDτ )
(
eDτ −G

)
(G− 1)

((√
G− 1

)2

log
(
e

Dτ
2 −G

1
4

)
+
(√

G+ 1
)2

log
(
e

Dτ
4 − iG

1
4

))
− 8γ2κ4σ4b2

D3G2(G− eDτ )
(
eDτ −G

)
(G− 1)

This expression can be confirmed with the help of Mathematica, for example.
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